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In this letter, I am going to propose that the cavitation threshold in a flowing liquid could be

associated with the maximum tension that the fluid can sustain before undergoing cohesive fracture at a

point.  My criterion is not isotropic; I am thinking that a liquid will break if the tension in one direction

exceeds a threshold, independent of the value of the other principal stresses.  The other thought is that if a

liquid breaks, it is a cohesive fracture in which the liquid molecules disassociate into vapor and recondense

as mist.

Suppose that the vapor pressure of the liquid at a certain temperature θ  is ps θ( ).  In general, ps θ( )

is an increasing function so that the cavitation threshold

p ps< ( )θ , (1)

where p is the pressure in the liquid is raised with the temperature [1–2].  The pressure in a liquid at rest is

the mean normal stress.  For a liquid in motion, the stress is given by

T 1 S= − +p , (2)

where S is the extra stress due to motion.  Here p is an extra variable needed to satisfy the constraint of

incompressibility, and it is not determined by a constitutive equation or equation of state.

The considerations just raised pose the problem of how to pose the cavitation threshold condition

in a moving liquid.  In fact, the liquid does not understand the decomposition into p1 and S.  If we cut the
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liquid, the traction vector on the cut is given by n · T, where n is normal to the cut.  The fluid feels

tractions n · T on cuts and the stress T in the bulk.

There is a very substantial literature aimed at determining the maximum tension that a liquid may

withstand, and it is found that if nucleation sites are eliminated, large tensions can be maintained [3–5].  In

practical applications, ps θ( ) in (1) can be replaced with an empirical criterion, say, p̃s θ( ), which could be

a limit associated with degassing or impurities [2–6].

The interpretation of the maximum tension in a liquid at point requires that we compare the

components on the diagonal of T in a coordinate system in which it is diagonal.  Supposing then that

T T T11 22 33≥ ≥ , (3)

we may state that the liquid at point will break if

T T11 ≥ m , (4)

where Tm is the breaking threshold.  If we think that the breaking stress is determined by the cavitation

threshold, then Tm sp≥ − ( )˜ θ  and we should see vapor whenever and wherever

T11 ≥ − ( )˜ .ps θ (5)

This criterion implies (3.1) if the fluid is at rest, but in a Newtonian fluid for which

T11 2= − +p
u

x
µ ∂

∂
, (6)

we can expect vapor and mist when and where the rate of stretching

ṡ
u

x
= ∂

∂
(7)

is large enough

˙
˜

.s
p ps> − ( )θ

µ2
(8)
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Equation (8) is our proposal for a cavitation threshold and it can lead cavity formation under conditions

greatly different than (1).

Professor Barenblatt has brought to my attention that the concept of a breaking threshold in

cavitation proposed here is to a certain extent analogous to the theoretical strength of solids -- the

maximum tensile strength between two planes.  Apparently, as in the fracture of solids, this idealized

criterion could be modified if the fluid contains defects:  impurities, bubbles, etc.  In this case, a criterion

like

T11 a Kcr< ( )θ (9)

can be proposed, analogous to similar criteria in the theory of fracture mechanics.  Here, a is the size of

the defect, Kcr θ( ) is a temperature dependent material property.
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