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Abstract

In this article we discuss the application of a Lagrange multiplier based fictitious domain method to the numerical simulation of
incompressible viscous flow modeled by the Navier-Stokes equations around moving rigid bodies; the rigid body motion is due to
hydrodynamical forces and gravity. The solution method combines finite element approximations, time discretization by operators
splitting and conjugate gradient algorithms for the solution of the linearly constrained quadratic minimization problems coming from
the splitting method. We conclude this article by the presentation of numerical results concerning the simulation of an incompressible
viscous flow around a NACAO0012 airfoil with a fixed center, but free to rotate, then the sedimentation of circular cylinders in 2-D
channels, and finally the sedimentation of spherical balls in cylinders with square cross-sections. © 2000 Elsevier Science S.A. All
rights reserved.

Keywords: Particulate flow; Fictitious domain methods; Navier-Stokes equations; Liquid-solid mixtures; Rayleigh-Taylor instabilities

1. Introduction

Fictitious domain methods (some authors prefer to call them domain embedding methods) is a general
term which covers in fact a large variety of solution methods for partial differential equations. Glowinski
et al. discussed, in [1-3], fictitious domain methods based on boundary supported Lagrange multipliers to
enforce Dirichlet boundary conditions and on regular structured meshes (which were not boundary fitted)
over a simple shape auxiliary domain (the fictitious domain). These methods, initially developed for the
solution of linear elliptic problems, have also been applied, as shown in the above references, to the solution
of nonlinear time dependent problems, such as the variational inequalities modeling the flow of a viscous—
plastic medium in a pipe, Ginzburg-Landau equations, and the Navier-Stokes equations modeling in-
compressible viscous unsteady flow. For the simulation of flow around moving rigid bodies, whose motion
is known a priori, Glowinski et al. [4-6] have coupled the above boundary distributed multiplier method
with time discretization by operator splitting a la Marchuk—Yanenko and with L?-projection technique
which forces the incompressibility condition; the resulting methodology is robust, stable and easy to im-
plement and parallelize.
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In this article, we consider the numerical simulation of incompressible viscous flow around moving rigid
bodies when the rigid body motion is caused by hydrodynamical forces and given external forces, such as
gravity; let us mention several applications: fluidized beds, sedimentation, blood flow around artificial heart
valves, store separation. The method of choice is a distributed Lagrange multiplier/fictitious domain method
which consists to fill the moving bodies by the surrounding fluid and impose a rigid body motion to the
fluid filling the regions previously occupied by the rigid bodies; then one relaxes the rigid body motion
constraint by using distributed Lagrange multipliers and obtains a flow problem over the entire region. This
approach is quite different from the one in Refs. [4-6], which is concerned with the case where the rigid
body motion is known a priori. An advantage of the fictitious domain method discussed here is that we do
not need to generate a new mesh at each time step, immediately after updating the positions of the rigid
bodies. This is a very important issue since for 3-D particulate flow, generating meshes for simulating fluid-
rigid body interactions is still a major problem and seems to require powerful parallel computers (see, €.g.,
Ref. [7]). If one uses the fictitious domain methods, described in this article, one just needs a very simple
mesh for the rigid bodies which can be generated very quickly. Moreover, we do not need to compute the
hydrodynamical forces explicitly, since the interaction between fluid and rigid bodies is implicitly modeled
by the global variational formulation at the foundation of the present methodology. This methodology has
been applied to simulate the flow around a NACAO0012 airfoil which has a fixed center of mass, but is free
to rotate under the effect of hydrodynamical forces, and the motion of sedimenting rigid bodies in 2-D and
3-D channels and cylinders.

Let us mention that non-Lagrange multiplier based fictitious domain methods have been used by Peskin
and his collaborators [8-10] to simulate incompressible viscous flow in regions with elastic moving
boundaries and by LeVeque [11,12] for elliptic problems with discontinuous coefficients and singular
sources and Stokes flow with elastic boundaries or surface tension.

2. A model problem and its fictitious domain formulation
Let Q@ € RY(d = 2, 3; see Fig. 1 for a particular case where d = 2) be a space region; we suppose that @ is

filled with a Newtonian viscous incompressible fluid (of density p, and viscosity v¢) and contains a moving
rigid body B. The fluid flow is modeled by the following Navier—Stokes equations

pf[%—&-(wV)u} =pig+ V-6 inQ\B), (2.1)
V-u=0 inQ\B(), (2.2)
u(x,0) =uy(x) VYxe Q\B(0) (with V.uy=0), (2.3)
u=g, onl, (2.4)

Q

Fig. 1. An example of 2-D flow region with one rigid body.
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to be completed by the boundary conditions on the boundary 0B(¢) of B(¢), given hereafter (see (2.9)). In
(2.1)—(2.4), the stress-tensor o is defined by

6 = —pl +v(Vu+ Vi), (2.5)

u(= {u,«}j’:l and p denote, as usual, velocity and pressure, respectively; the viscosity v; positive, g the
gravity and’x(= {x;}_,) is the generic point of R, and

From the rigid body motion of B, g, has to satisfy |, 18 -ndl’ =0, where n denotes the unit vector of the
outward normal at I" (we suppose the no-slip condition on 0B). In the following, we shall use, if necessary,
the notation ¢(#) for the function x — ¢(x,¢).

Assuming that the rigid body B does not touch I', its motion is described by the following Euler’s
equations (an almost direct consequence of Newton’s laws of motion)

w2 pg i E, (2.6)
de

Ii—?—lwxw:T, (2.7)

4G vy, (2.8)

dt

where Vg is the translation velocity of the rigid body B, o the angular velocity of B, M the mass of the rigid
body, 1 is inertia tensor of the rigid body at G and G being the center of mass of B. As already mentioned g
denotes gravity, while F and T are the resultant and the torque at G of the hydrodynamical forces acting on
B, respectively. The boundary condition on 0B is given by

u=Veg+oxGx VxeOiB. (2.9)
The force F and torque T imposed on the rigid body by the fluid are described as follows:
F :/ ondy, (2.10)
0B
T= | Gxx (en)dy, (2.11)

0B

where dy = d(0B), x is the generic point of 0B and n is the pointing outward unit normal vector on 0B. In
order to treat possible collisions between B and I' (collisions between particles will be addressed later on),
we substitute to the momentum equation in (2.6) the following modified one

M%:Mg—i—F—FF’, (2.12)

where F is a lubrication force (see [13,14]) imposed on B by I' (in those parts of I' that B cannot cross).

Remark 2.1. If' B is made of an homogeneous material of density p,, we have

M:ps/ dx, (2.13)
B

Iy —Ly —1s
I=\| -1, In —In |, (2.14)

Iz —DbLy Iy
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where, in (2.13) and (2.14), dx = dx;dx,dx; and

I = ps/(xg +x3)dx, In=p, /(x% +x1)dx, I = ps/(x% +x3) dx, (2.15)
B B B
112 = 121 = ps/xle dX7 ]23 = ]32 = ps/x2x3 dX, ]3] = ]13 = ps/x3x1 dx (216)
B B B

with the usual simplification for 2-D phenomena.

Remark 2.2. If the flow-rigid body motion is 2-D, or if B is a spherical ball made of an homogeneous material,
then the quadratic term lo x @ vanishes in (2.7).

Remark 2.3. We have to complete the Euler’s equations (2.6)—(2.8) by initial conditions, typical ones being

Vg (0) = V°, (2.17)
0(0) = o, (2.18)
G(0) =G". (2.19)

To obtain a variational formulation for problem (2.1)—(2.4), (2.7)~(2.12) and (2.17)—(2.19), we define first
the following functional spaces

Ve, (1) ={v|ve (H'(Q\B(1))!, v=2g,(t) on T, v=Vg()+ () x G(r)x on 0B(t)}, (2.20)
Vo(t) ={{v,Y,0} | ve (H'(Q\B())', v=0o0n T, v=Y + 0 x G()x on 3B(1), (2.21)
with Y € RY, 0 € R}, '
Lﬁ(Q\WF{qlqeLz(Q\W), /_qu:O}- (2.22)
Q\B{)

In (2.20) and (2.21) we have o(t) = {w;(1)};_, and 0 = {6}, , if d =3, while o(t) = {0,0,w(r)} and
0={0,0,0} if d = 2.

Applying the virtual power principle to system (2.1)-(2.4), (2.7)—(2.12) and (2.17)—(2.19) yields the fol-
lowing variational formulation:

For ae. t >0, find {u(?),p(¢), Va(t),G(#),»(t)} such that

u(t) € ¥, (1), p(t) € LI(Q\ B(t)), Va(t) € RY, G(t) € R, o(t) € R’ (2.23)
and

0

pf/ —u-vdx+pf/ (u-Viju-vdx — pV-vdx—|—2vf/ D(u) : D(v) dx

250 9 250 250 )
dVG " do
+ |\ M——Mg—F |- Y+ (I—-loxw) 0=p; g-vdx W{v,Y,0} € (?), (2.24)
de de QB0
/ _ qV-u(t)dx =0 Vg e L*(Q\B(r)), (2.25)
Q\B()
dG
5= Ve (2.26)

u(x,0) =uy(x) Vxe Q\B(0) (with V-uy=0), (2.27)
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Ve(0) =V’ 0(0)=0’, G(0)=G’ (2.28)

within, (2.23)(2.28), @(¢) and 6 as in (2.20) and (2.21), D(v) = (Vv + V¥')/2; also, in (2.24), we have used
the following notation

d
a~b:Za~b,- Va and be R,
i=1
d

d
A:B= Z Zaubu VA = atj)lgz:jgd and B= (bi/)lgzljgd'

J=1

To the best of our knowledge, the above variational formulation was introduced by Hesla [15]. Hu [16] also
developed a similar variational formulation and combined it with an arbitrary Lagrange—Fuler (ALE)
technique to simulate the flow-motion of 2-D solid-liquid mixtures in a vertical channel with unstructured
grid.

In order to obtain an equivalent fictitious domain formulation, we shall proceed as follows:

(i) First, we fill the rigid body B by the surrounding fluid (i.e., embed Q \ B(¢) in Q).

(i1)) Next, we correct (2.34) taking (i) into account.

(iii) Finally, we relax the rigid body motion constraint by using a distributed Lagrange multiplier and ob-

tain a fictitious domain formulation over the entire region.

Let us implement (i) and (ii). If we fill B with a fluid of density p; and if we suppose that this fluid has the
same rigid body motion as B itself, we have for the fluid velocity inside B.

u(x,t) = V(1) + o(t) x Gx  Vx € B(r). (2.29)
Suppose now that {v,Y, 0} verifies

(v, Y, 0} € V) = {{V,Y,o} | {v o Y o} € Vo(1),¥(x,1) = Y + 0 x G(1)x Vx € B(t)}. (2.30)

We have then, if B is made of an homogeneous material of density p, (an assumption that we shall make
from now on),

o¢ / a—u~vdx+/ (u-Viu-vdx | = (p;/p,) M%-Y—k Id—w—waw -0]. (2.31)
() Ot B() de dr

We also have
o | vRA= (ofp)Me Y YINY,0) € (), (2.32)
B(t

V-v=0inB(t) Y{v,Y,0} € V,(¢), (2.33)

and, if u verifies (2.29),
V.-u=0inB(f) and D(u) =0 in B(¢). (2.34)

Combining (2.29)—(2.34) with (2.23)—(2.28) yields the following variation of the virtual-power based for-
mulation:

For ae. r> 0, find {u(?),p(t),Va(t),G(¢),»(t)} such that
u(t) € W, (1), p(t) € L}(Q), Ve(t) € RY, G(t) € RY, o(t) e R’ (2.35)
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pf/a—u-vder,Df/(ll'V)u-vdx—/pV-vdx+2vf/D(u):D(v)dx
dVG do ”
+UPM%4MTF~Y+<LE—wam)ﬂ}F~Y

= o [ g vdx (1= pi/p)ME Y V(. Y.0) € T,
Q

/qV u(t)dx =0 Vg€ L*(Q),
Q

dG
dr — ¥G

u(x,t) = V() + o(t) x G(6)x  Vx € B(¢),

u(x,0) =uy(x) Vx € Q\ B(r) and u(x,0) =V’ + o’ x G’x V¥x € B(0),

with, in formulation (2.35)—(2.41), space W, (¢) defined by

Wy (1) = {v| v € (H'(Q))", v=g(r) on I'}

(and the usual simplification of w and 0 if d = 2).

In order to relax the rigid body motion condition (2.39), we introduce a Lagrange multiplier, A, so that
AMt) € A(t) = (H'(B(1)))?; we obtain then the following fictitious domain formulation with distributed
Lagrange multipliers

and

Forae. >0, find {u(?),p(?), Va(t), G(?),w(t), A(t)} such that
u(t) € W, (1), p(t) € Li(Q), Ve(t) € RY, G(t) € RY, o(t) € R}, i(t) € A(t)

pf/a—“-vdx—f—pf/(u-V)u~vdx—/pV-vdx+2vf/D(u):D(v)dx
o Of Q Q Q
dvg

(l,vYOxGx)A(t)Jr(lpf/ps){M'Y+(Idwlw><a)) ~0} -F-Y

dz dz

:(l—pf/pS)Mg-Y+pf/g-vdx We (H'(Q)! YYeR! voeR,
Q

/qV ‘u(f)dx =0 VgeL*(Q),
o

dG
E = VG7

(mu(t) = Ve(t) — o(t) x G()x) 4y =0 Vu € At),
Ve(0) =V’ o(0) =0’ G(0)=G",

u(x,0) =uy(x) Vx € Q\ B(0) and u(x,0) =V’ + &’ x G’x V¥x € B(0),

(2.36)

(2.37)

(2.38)

(2.39)
(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
(2.47)

(2.48)

(2.49)
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the two most natural choices for (-,-) ., are

(V) 4y = / (u-v+0"Vu:Vv)dx VYuandve Ar), (2.50)
B(1)

() iy = [ (v + 5D s DO)AX Vi and v € AQ) (.51)
B(t)

with 0 a characteristic length (the diameter of B, for example).
The variational formulation (2.43)—(2.49) is due to the first two authors.

Remark 2.4. Since, in (2.44), u is divergence free and satisfies Dirichlet boundary conditions of I', we have
Z/D(u) :D(v) dx = / Vu:Vvdx Wve (H(Q)),
Q Q

a substantial simplification, indeed, from a computational point of view, which is another plus for the ficti-
tious domain approach used here.

Remark 2.5. Using High Energy Physics terminology, the multiplier A can be viewed as a gluon whose role is
to force the rigidity of B.

3. Finite element approximation

For simplicity, we assume that Q C R? (i.e., d = 2) and is polygonal; we have then (t) = {0,0, w(¢)}
and 0 = {0,0, 0} with w(¢) and 0 € R. Concerning the space approximation of problem (2.43)—(2.49) by a
finite element method, we shall proceed as follows:

With £ a space discretization step we introduce a finite element triangulation .7, of Q and then 7, a
triangulation twice coarser (in practice we should construct .7 ,, first and then .7, by joining the midpoints
of the edges of 7, dividing thus, each triangle of 7 ,, into 4 similar subtriangles, as shown in Fig. 2,
below).

We define the following finite dimensional spaces which approximate W, (1), (HL(2)), L*(Q), L3(Q),
respectively:

We,, (1) = {Vh Vi € (C°(Q))°, Vi lr€ L x PLYT € T, i |r = go;,(t)}, (3.1

VV();, = {Vh |Vh S (CO(Q))z, A\ |T€ P] X P1 VT € 3‘/” \Z ‘F = 0}7 (32)

L= {Qh | g € C°(Q), g |[r€ P VT € 72}1}7 Ly, ={aqn | qn € L}, /Qh dx =0} (3.3)
o

in (3.1)~(3.3), g, (¢) is an approximation of g,(¢) verifying [.g,(f) - ndI’=0 and P, is the space of the
polynomials in two variables of degree < 1.

Fig. 2. Subdivision of a triangle of 7 .
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Fig. 3. Triangulation of a disk.

Let B, () be a polygonal domain inscribed in B(¢) and 7 g,(, be a finite element triangulation of B,(¢),
like the one shown in Fig. 3, where B is a disk.
Then, a finite dimensional space approximating A(¢) is

Aty = {m, |, € (CBO), my lr € PLx PVT € Ty . (3.4)

An alternative to A,(z) defined by (3.4) is as follows: let {x;}"*, be a set of points from B(z) which cover B(r)
(uniformly, for example); we define then

Np
A,(t) = {yh | p, = Zyié(xfx,-), u, € R?Vi= 1,...N3}, (3.5)
i=1

where d(-) is the Dirac measure at x = 0. Then instead of the scalar product of (H'(B,(¢)))> we shall use
() 4,y defined by

Np

(s Vi) gy = Zﬂ,- Vi(X;)  Vay, € Ay(t), Vi € Wy, OF W (3.6)
pm)

The approach, based on (3.5) and (3.6), makes little sense for the continuous problem, but is meaningful for
the discrete problem; it amounts to forcing the rigid body motion of B(¢) via a collocation method. A similar
technique has been used to enforce Dirichlet boundary conditions by Bertrand et al. (Ref. [17]).

Remark 3.1. The bilinear form in (3.6) has definitely the flavor of a discrete L*(B(t))-scalar product. Let us
insist on the fact that taking A(t) = (L*(Q))’, and then

(1) 400 :/y~vdx Yu and v € A(t),
Q

makes no sense for the continuous problem. On the other hand, it makes sense for the discrete problem in
(2.43)~(2.48), but do not expect 4,(t) to converge to a L*-function as h — 0 (it will converge to some element of
(H'(B(1))')?, where H'(B(1))' is the dual space of H'(B(r))).

Using the above finite dimensional spaces leads to the following approximation of problems (2.43)-
(2.49):
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For ¢t > 0 find {w,(¢), ps(¢), Ve (£), G(¢), w(t), A4(¢)} such that
w,(t) € Wy, pa(t) €LY, Ve(t) € R, G(1) € R, o(f) € R, () € A,(2) (3.7)

and

o¢ a@t vdx+pf/(u;, Viu, - vdx — /phV vdx+2vf/D(uh):D(v) dx

Q

av do
(L= pr/pIM =S Y+ (L= pr/p )l 0= F Y = (3, v = Y =0 x Gx) .

de
=(1 —pf/ps)Mg-Y+pf/g~vdx W e Wy, Y € R0 € R, (3.8)
Q

/qV-uh(t)dx:O Vg € L7, (3.9)

Q

dG
G = Vg, (3.10)
(o wi (1) — V(1) — o(t) x G(1)x) ;) =0 Vm, € 4,(2), (3.11)
Ve(0) =V’ o(0) =0’ G(0)=G’ (3.12)
u,(x,0) = ug,(x) Vx € Q\ B,(0), u,(x,0) = V' + 0’ x G"x  ¥x € B,(0). (3.13)

Remark 3.2. In relation (3.8), we can replace 2 [, D(w,) : D(v)dx by [, Vw, : Vvdx, by taking Remark 2.4
into account.

Remark 3.3. Let hq (resp., hpy) be the mesh size of a regular triangulation of Q (resp., B(t)) then
ho < Kkhpy < hgpy < 2hgo for k < 1 is needed in order to satisfy some kind of stability condition (for gener-
alities on the approximation of mixed variational problems, such as (3.7)—(3.13), involving Lagrange multi-
pliers, see, for example, the publications by Brezzi and Fortin (Ref. [18]) and Roberts and Thomas (Ref. [19]).

Remark 3.4. In order to avoid the solution at each time step of complicated triangulation intersection problems
we advocate the use of

(A — Y — 0 x G(1)x) ., (3.14)
resp.,

(,uh, (1) — V(1) — 1) x G(t)x)Ah(,)> (3.15)
in (3.8) (resp., (3.11)), instead of

(45, V=Y — 0 x G()x) 4,
resp.,

(B w0) = V(1) = 0(0) x G(0x),1,).

where, in (3.14) and (3.15), m, : Co(zQ — Ay (¢) is the piecewise linear interpolation operator, which, to
each function w belonging to (C°(Q))” associates the unique element of A(t) defined from the values taken by
w at the vertices of T g,
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Remark 3.5. If B is either a disk or a spherical ball, we can take advantage of the rotational invariance of B
and, for t = 0, derive g, from tg,0) by translation. If B is not rotationally invariant, we shall take T g,
rigidly attached to B.

Remark 3.6. In general, the function w(t) has no more than the (HY*(Q))*-regularity. This low regularity
implies that we cannot expect more than O(h*?) for the approximation error |lu,(¢) — u()]l2q)-

4. Time discretization by operator splitting
4.1. Generalities

Following Chorin (Refs. [20-22]), most ‘modern’ Navier—Stokes solvers are based on operator splitting
algorithms (see, e.g., Refs. [23,24]) in order to force the incompressibility condition via a Stokes solver or a
L*-projection method. This approach still applies to the initial value problem (3.7)—(3.13) which contains
four numerical difficulties to each of which can be associated a specific operator, namely

(a) The incompressibility condition and the related unknown pressure.

(b) An advection—diffusion term.

(c) The rigid body motion of B,(#) and the related multiplier 4,(¢).

(d) The collision term F".

The operators in (a) and (c) are essentially projection operators. From an abstract point of view, problem
(3.7)~(3.13) is a particular case of the following class of initial value problems

C:i_‘;’ + A1 (@, 1) + Az (@, 1) + A3(@, 1) + As(0, ) = £, @(0) = oy, (4.1)

where the operators 4; can be multivalued. Among the many operator-splitting methods which can be
employed to solve (4.1), we advocate (following, e.g., [25]) the very simple one below; it is only first order
accurate, but its low order accuracy is compensated by good stability and robustness properties. Actually,
this scheme can be made second order accurate by symmetrization (see, e.g., [26,27] for the application of
symmetrized splitting schemes to the solution of the Navier—Stokes equations).

A fractional step scheme G la Marchuk—Yanenko: With At(> 0) a time discretization step, applying the
Marchuk—Yanenko scheme to the initial value problem (4.1) leads to

o’ = @y (4.2)
and for n = 0, compute @"*! from ¢” via
@il gD/
At
for j=1,2,3,4 with 37, fr+! = o+,

+ A (", (n+ DAY = £, (4.3)

4.2. Application of the Marchuk—Yanenko scheme to particulate flow

Applying scheme (4.2) and (4.3) to problem (3.7)—(3.13), we obtain (with 0<a, <1, a+ f =1 and
after dropping some of the subscripts # and denoting Vg by V"):

uw’ =ug, V°, 0" and G are given, (4.4)

for n > 0, knowing w", V", ", G", we compute u"*'/*_ p"*1/4 via the solution of

un+1/4_un
pf/iwdx—/p”“/“V-vdx:O v € Wy,
Q At Q

2on

/ gV -wtdx =0 Vgelk uwtewrt prit el (4.5)
Q
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n+2/4

Next we compute u via the solution of

w4 — g t/4
pf/ A YdxF 2 / D(u"*) : D(v) dx + pf/(un+l/4 VU dx
Q o ,

_ ) /Q g vdx Ve Wy wi e ) 4.6)

gon
and then, predict the position and the translation velocity of the center of mass as follows:
Take V"*3/40 — V" and G""¥/*° = G"; then predict the new position and translation velocity of B, via the

following subcycling technique:

For k=1,...,N, compute

VIR VI (AN (g (1= pe/py) MR (G), (472)
G4k — griafael 4 (At/2N)(\A7”+3/4’k i Vn+3/47k71), (4.7b)
VIR = YIS (AL/N)g + (A/2N) (1= pe/pg)” M (ET (G 4 BTG, (4.7¢)
Gk = Gy (yre Ak |y A1y (AL DN, (4.7d)
enddo;

and let V"4 = V”+3/4vN’ G4 = G

Finally, we compute w'*', "' V"*! o1 via the solution of

N —
pf/ 7-vdx+2ﬁvf/D(u"“) :D(v) dx
Q Q

At
U= oo NP (g Yy
= (AT v-Y—-0x G"+3/4x)32+3/4 Wy € Wy, Y € R%,0 € R, (4.8a)
(ot — Vgt G”+3/4x)3,h,+3/4 =0 Vupe A (4.8b)
wth et e AR, (4.8¢)

then take G""'* = G"*¥/*; then correct the position of the rigid body center as follows:

For k=1,...,N, compute

an+1,k — Gt + (At/zN)(V” + Vrl+1)7 (4.9&)
. At)? . :

Gn+1,k — Gn+1,k + % (1 _ pf/ps)flM—l(Fr(Gn+14k) + Fr(Gn+l,I»—l))7 (49b)

enddo;

and let G"!' = G"'V,

In (4.4)-(4.9b) we have Wyt = W ((n+ 1)At)h, A; = A,(sAt), and Bj = Bj(sAt). Using operator
splitting, we can use time steps much smaller than Az to predict and correct, as in (4.7a)—(4.7d) and (4.9a)
and (4.9b), the position of the center of mass, without changing the time step At in algorithm (4.4)—(4.9).
For our numerical simulations, we have used « =1 and =0 in (4.6) and (4.8a)—(4.8c) and N = 10 in
(4.7a)—(4.7d) and (4.9a) and (4.9b).
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4.3. Solution of the subproblem (4.5)

By inspection of (4.5) it is clear that u"*!'/* is the (Lz(Q))z-projection of u” on the (affine) subset of the
functions v W+ such that [,qV-vdx =0 Vg e L}, and that P14 is the corresponding Lagrange
multiplier in L2,. The pair {w"*'/* p"1/4} is unique and to compute it we can use an Uzawalconjugate
gradient algorithm operating in Lj, equipped with the scalar product {q,q'} — [, Vg - V4’ dx. We obtained
then an algorithm preconditioned by the discrete equivalent of —A for the homogeneous Neumann
boundary condition. It follows from, e.g., [6], that such an algorithm, applied to the solution of

pf/u;tu ~vdx—/pV~vdx:0 v € Wop,
Q Q

/QqV-udx:O VgL ue Wt pely, (4.10)

reads as follows:

po is given in L7, ; (4.11)
solve

u € Wy,

pf/uo-vdX:pf/u*-vdx+Vt/poV-vdx Vv € Wy, (4.12)

Q Q Q
£o eL(z)ha
/Vgo-qux:/V-uo dx Vgqel, (4.13)
Q Q

and set

w’ =g, (4.14)

Then for £ > 0, assuming that p;, g, w; are known, we compute p;. 1, g1 and, if necessary wy, as follows:
solve:

u;, € Wop,
pf/ﬁk~vdx:At/ka~vdx Vv € Wy, (4.15)
Q Q
g € Ly,
/ng-qux:/Vikqu Vg € L;, (4.16)
Q Q

and compute

Pr = / |ng|2 dX// A\’ u Wy dX7 (417)
Q Q

Prs1 = Dk — PyWis (4.18)
i1 = &k — Pr&x- (4-19)

If [,V > dx/ Jo |Vgo|* dx <e, take p = py.1; else compute

- / Vel dx / / Vel dx (4.20)
Q Q
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and set
Wil = k1 + ViWe- (4.21)
Do k =k + 1 and go back to (4.15).

Algorithms (4.11)—(4.21) is very easy to implement and has very good convergence properties.

4.4. Solution of the subproblems (4.6)

If o > 0, problem (4.6) is a linear advection—diffusion problem; it can be easily solved by a least squares/
conjugate gradient algorithm, like those discussed in, e.g., ch. 7 of Ref. [28].

4.5. Solution of the subproblems (4.8a)—(4.8¢)

The solution of problems (4.8a)—(4.8¢c) can be computed by algorithms similar to those in [1] for elliptic
problems, with the additional difficulty that there are here three more equations, namely the ones used to
compute the translation velocity and angular speed of the rigid body. Problem (4.8a)-(4.8¢) has the fol-
lowing form:

pf/ u_Al;* ~vdx+2ﬁvf/D(u) : D(v) dx

F el 20 (1= ooy (4.22)

—(AV=Y—-0xGx), =0 Wel, YER, 0cR,

(mu—V-—0xGx), =0 Vpecd; uecW,, Le, (4.23)
where the center of mass G of the rigid body B, is known and where W, = W'
Problem (4.22) and (4.23) is itself a particular case of the following saddle- pomt system
Ax+By=b, Bx=c, (4.24)

where A is symmetric and positive definite if p, > p;. It follows from e.g., [29] and [30], that problem (4.24)
can be solved by Uzawa/conjugate gradient algorithms. Applying such an algorithm to problem (4.22),
(4.23) leads to

A" is given in A, (4.25)

solve

pf/uo.vdx+2At,8vf/D(u0) :D(v) dx:pf/u* ~vdx+At(/lO,v)Bh vy € Wy € W,
Q Q Q

(4.26)
(1= pe/p )MV - Y = (1 — p/p)MV* - Y — At(i’,Y), VY € R* V' e R’ (4.27)
(1= pi/p 0’0 = (1 — p;/p )00 — At(X°,0 x Gx), VO ER; o’ € R, (4.28)
then
(1,8")5, = (0" =V — 0’ x GX),  Vue Ay; g € Ay, (4.29)
and set
w =g, (4.30)
Then, for k > 0, assuming that 4, g*, w*, u*, V¥, &* are known, we obtain A*™!, ght! whtlykt! VAL wy as

follows:
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solve
pf/ o - vdx + 2At,8vf/ D(") : D(v)dx = Ar(w,v), WV € Wy; 0" € Wy, (4.31)
Q Q

(1= p/p)MVE-Y = —Al(w"Y), VY e R’ Ve R’ (4.32)

(1= pr/p)I"0 = —At(w*,0 x Gx), VO € R; o €R, (4.33)
and then

(&), = (M,ak —VF— & x Gx)Bh Vue Ay g € A, (4.34)
Compute

pr = (gkyg")gh/(wk, g5, (4.35)
and then

=75~ powk, (4.36)

vt =t — pif, (4.37)

Vi vk R (4.38)

ot = o — pa, (4.39)

g =g —pg. (4.40)
If (g1, g ), /(g 8°)s, <e takew =u!! V= V¥ and o = o**!. Else, compute

7= ("8 ),/ (8,85, (4.41)
and set

WA — gkt W (4.42)

Do k =k + 1 and go back to (4.31).

Remark 4.1. If p, < pg, the corresponding matrix A in (4.24) is no longer positive definite. However, due to the
small dimension of {V,w}, it is very easy to adapt algorithm (4.25)—(4.41) to the case p, < p;. Similarly, there
is no practical difficulty at treating the neutrally buoyant case (p, = p;).

5. Remarks on the computational treatment of particle collisions

In the above sections, we have considered the particular case of a single particle moving in a region Q2
filled with a Newtonian incompressible viscous fluid; we took into account possible particle-boundary
collisions via the repulsion force F”, but we did not provide, yet, an explicit form of F". Actually, the above
methodology can be generalized fairly easily to many particles cases, with however, a computational dif-
ficulty: one has to prevent particle interpenetration or particle/boundary penetration. To achieve those
goals we have included in the Newton—Euler equations modeling particle motions a short range repulsing
force. If we consider the particular case of circular particles (in 2-D) or spherical particles in (3-D), and if B;
and B; are such two particles, with radius R; and R; and centers of mass G; and G, we shall require the
repulsion force 17“,-j betw% B; and B, to satisfy the following properties:

(i) To be parallel to G;G;.

(ii) To verify

Fy|=0if dy =R +R,+p, |F;|=c/eif d;=R +R, (5.1)

. =~ . ¢ ) I
with d; = |G;G,|, ¢ a scaling factor and ¢ a ‘small’ positive number.
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t ~t

Ri+Rj Ri+R]'+p d‘J

Fig. 4. Repulsion force behavior.

(iii) || has behave as in Fig. 4, for
Ri + R; <dyy <R +R; + p.

Parameter p is the range of the repulsion force; for the simulations discussed in the following section we
have taken p ~ hq. Boundary/particle collisions can be treated in a similar way (see [13] for details).

Remark 5.1. The above collision model is fairly simple and is inspired from penalty techniques classically used
for the computational treatment of some contact problems in Mechanics (see, e.g., [30,31] for details and
applications). Despite its simplicity, this model produces good results, the main reason for that being, in our
opinion, that if the fluid is sufficiently viscous and if the fluid and particle densities are close, the collisions — if
they occur — are nonviolent ones, implying that the particles which are going to collide move at almost the same
velocity just before collision. For more sophisticated models allowing more violent collisions see, e.g., [14] and
the references therein.

Remark 5.2. For those readers wondering how h, p, and c/e are adjusted we would like to do the following
comments: clearly the space discretization parameter h is adjusted so that the finite element approximation can
resolve the boundary and shear layers occurring in the flow. Next, it is clear that p can be taken of the order of
h. The choice of c/e is more subtle; let us say that simple model problems for harmonic oscillators with rigid
obstacles (see Ref. [32] for details) show that we can expect interpenatration of the order of \/6/7; this suggests
therefore to take p > \/e/_c, which is what we did in our calculations.

6. Numerical experiments

We are going to present now the results of numerical experiments for 2-D and 3-D flow.

6.1. Flow around a NACAOO0I2 airfoil which has a fixed center and is free to rotate due to hydrodynamical
forces

Here we consider an incompressible viscous flow around a NACAO0012 airfoil which has a fixed center of
mass and is free to rotate due to hydrodynamical forces; the surrounding region Q is the rectangle
(—4,16) x (—=2,2). The characteristic length, namely the airfoil length, is 1.008930411365 and the fixed
center of mass of the NACAO0012 airfoil is at (0.420516, 0). Initial angular velocity and incident angle are
zeroes. The density of the fluid p; = 1.0 and the density of the airfoil p, = 1.1. The viscosity of the fluid is
ve = 0.00125. The initial condition for the fluid flow is u = 0 and the boundary data g, is given by
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0 if x=—-2or2,
go(X, 1) = (1 —e™5) ( 1) if x,
0

for ¢t = 0, but we could have used another function g,. Hence the Reynolds number is about 807 with
respect to the characteristic length of the NACAO0012 airfoil and the maximal inflow speed. The time step is
varied from A7 = 0.001 to about 0.0005. The mesh size for the velocity field is 4, = 1/96 (there are 739,585
nodes). The mesh size for pressure is &, = 1/48 (185,473 nodes). In this test case, the mesh size h, = 1/96 is
required to catch the velocity field close to the leading edge of the NACAO0012 airfoil. For the airfoil mesh
necessary at each time step, we have just chosen all the grid points from the velocity grid contained in the

—4 or 16,

Fig. 5. Part of the velocity mesh and example of mesh points for enforcing the rigid body motion in the NACA0012 airfoil.

0.5+

-0.5

-1k

-1 L

L n
o 5 10 15

Fig. 6. The histories of the angle (dashed—dotted line) and angular velocity (solid line) of the NACAO0012 airfoil at Re = 807.
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NACAO0012 at that time completed by a selected set of points belonging to the boundary of the airfoil (see
Fig. 5) and then use a scalar product over A,(¢) such as the one defined by (3.6).

In the simulation, the number of iterations for the divergence free projection problem (4.5) is 16, the
number of iterations for the linearized advection—diffusion problem (4.6) is 2, and the one for the rigid
body motion projection varies from 65 to 238. The first two numbers of iterations are almost independent
of the mesh size; the last one is quite large and we are working to reduce it via the use of a H'-scalar product
such as the ones defined by (2.50) and (2.51). The histories of the angle and angular velocity of the
NACAOQ012 airfoil are shown in Fig. 6. The flow fields at times r = 2,9,10,11,12,13, 14 are shown in
Figs. 7-13. Before ¢ = 2, the NACAO0012 airfoil is completely fixed without possible rotation and a steady

Fig. 8. Flow field around the NACAOQ012 airfoil at t = 9.
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flow around it is obtained. After ¢ = 2, we allow the NACAO0012 airfoil to rotate freely. We observe then
that the NACAO012 airfoil oscillates widely from about —70° to 74°.

In the second test case, we have used the same parameters except that the viscosity v¢ is 0.01 (implying
that Re is about 101), the time step Az is 0.001, and the NACAO0012 airfoil is completely fixed till # = 1. The
range of oscillation of the NACAO0012 airfoil is much smaller (see Fig. 14) and the eddies created by the

Fig. 10. Flow field around the NACAOQ012 airfoil at z = 11.
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oscillation of the airfoil are weaker than those in the case of Re = 807. In this case the NACAO0012 airfoil
intends to keep its broadside perpendicular to the inflow direction, which is a stable position for noncircular
particles settling in the channel at small Reynolds number (see Ref. [33] for more details).

Reducing i and At¢ brings essentially the same results.

Fig. 11. Flow field around the NACAO0012 airfoil at z = 12.

Fig. 12. Flow field around the NACAOQ012 airfoil at z = 13.
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6.2. A 1008 particles case

The second test problem that we consider concerns the simulation of the motion of 1008 sedimenting
cylinders in the closed channel Q = (0,2) x (0,4). The diameter d of the cylinders is 0.0625 and the position
of the cylinders at time ¢ = 0 is shown in Fig. 15. The solid fraction in this test case is 38.66%. Initial velocity
and angular velocity of the cylinders are V) =0, w? =0 for i = 1,...,1008. The density of the fluid is
pr = 1.0 and the density of the cylinders is p, = 1.01. The viscosity of the fluid is v, = 0.01. The initial
condition for the fluid flow is u = 0 and g,(z) = 0 V¢ > 0. The time step is Az = 0.001. The mesh size for the
velocity field is 4, = 1/256 (there are 525,835 nodes). The mesh size for pressure is &, = 1/128 (131,841
nodes). For this many particle case, a fine mesh is required. The parameters for the repulsion force dis-
cussed in (5.1) are p = hy,c = 1, and € is in the order of 10~°>. We have chosen o« =1 and =0 in the

Fig. 13. Flow field around the NACAO0012 airfoil at 7 = 14.
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Fig. 14. The histories of the angle (dashed—dotted line) and angular velocity (solid line) of the NACAO0012 airfoil at Re = 101.
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Marchuk—Yanenko scheme. The number of iterations for the divergence free projection problem varies
from 12 to 14, the number of iterations for the linearized advection—diffusion problem is 5, and the one for
the rigid body motion projection is about 7. Those numbers of iterations are almost independent of the
mesh size and of the number of particles. With the finite dimensional spaces defined in Section 3, the
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Fig. 15. Sedimentation of 1008 circular particles: t = 0, 1 (left to right).
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Fig. 16. Sedimentation of 1008 circular particles: t = 2, 3 (left to right).



Taylor instability. When ¢ is between 1 and 2, two small

ol
oS

%

°;‘$
e
:o

W,
5 (left to right).

%0

[O=0!
o3
CXCICs
e
4 b

o
g-ﬂ
o0
5

Q)
2

P otole
axoial

SERE
Faese

(KX
08,
£ XATx
FEAL
£
e

AN

SOQSEIEN
OO
2358

no:
®,
%%

@
S,
XX

0
9

|
|
(800
o2
a9
aal

Q
)
®)
o’

036 RSTanSrSa It
iR

SARLAI L
&a.vm.\s\wu\

X!

NN

O &\\@.\‘v 2320

SR

R. Glowinski et al. | Comput. Methods Appl. Mech. Engrg. 184 (2000) 241-267

262

evolution of the 1008 cylinders sedimenting in the closed channel is shown in Figs. 15-19. The maximal

particle Reynolds number in the entire evolution is 17.44. The slightly wavy shape of the interface observed

att = 1 in Fig. 15 is the typical onset of a Rayleigh

eddies are forming close to the left wall and the right wall and some particles are pulling down fast by these

Fig. 17. Sedimentation of 1008 circular particles: ¢

Fig. 18. Sedimentation of 1008 circular particles: ¢ = 6, 10 (left to right).
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two eddies. Then other two stronger eddies are forming at the lower center of the channel for ¢ between 2
and 4; they push some particles almost to the top wall of the channel. The above figures clearly show a
fingering phenomenon, followed by a symmetry breaking. At the end all particles are settled at the bottom
of the channel.

OO

133660000339 6600008

DO HOHO00099000000000000089 0 ¢
JOSSS 0000055906000 6566600000061
)3 300900003350 000083500000000¢

Fig. 19. Sedimentation of 1008 circular particles: ¢ = 20,48 (left to right).
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Fig. 20. Particle position at ¢ = 0, 1 (left to right).
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6.3. A 3-D case with two identical spherical particles

The third test problem that we consider here concerns the simulation of the motion of two sedimenting
balls in a rectangular cylinder. A 2-D analogue of this test case problem has been (successfully) investigated
in [13] using similar techniques. The initial computational domain is Q = (0,1) x (—1,1.5) x (0, 1), then it
moves with the center of the lower ball. The diameter d of the two balls is 1/6 and the position of the balls at
time ¢ = 0 is shown in Fig. 20. The initial velocity and the angular velocity of the balls are zero. The density
of the fluid is p; = 1.0 and the density of the balls is p, = 1.04. The viscosity of the fluid is v = 0.01. The
initial condition for the fluid flow is u = 0. The mesh size for the velocity field is 4, = 1/60. The mesh size
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Fig. 21. Particle position at r = 1.149,1.169 (left to right).
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Fig. 22. Particle position at ¢ = 1.5,2 (left to right).
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Fig. 23. Particle position at ¢ = 0,0.5 (left to right).

for pressure is , = 1/30. The time step is Az = 0.001. For the parameters discussed in (5.1) we have taken
p=15h,,c=1, and € s in the order of 10~3. The maximal particle Reynolds number in the entire evo-
lution is 47.57. Figs. 20-22 are drawn by following the position of these two balls. We can see in these
figures the fundamental features of two sedimenting balls, i.e., drafting, kissing and tumbling [34]. We
observe that a symmetry breaking occurs before the kissing; with a smaller Re, this symmetry breaking
would occur after the kissing. Using smaller # and At brings essentially the same results.

6.4. Sedimentation of 128 balls in three dimension

The last test problem that we consider here concerns the simulation of the motion of 128 sedimenting
balls in a rectangular cylinder. The initial computational domain is Q = (0,1) x (0,4) x (0,1), then it
moves with the center of the lowest ball. The diameter d of 128 balls is 1/6 and the position of the balls at
time ¢ = 0 is shown in Fig. 23. The initial velocity and angular velocity of the balls are zero. The density of
the fluid is p; = 1.0 and the density of the balls is p; = 1.14. The viscosity of the fluid is v¢ = 0.01. The initial
condition for the fluid flow is u = 0. The mesh size for the velocity field is A, = 1/60 (896,761 nodes). The
mesh size for pressure is 4, = 1/30 (116,281 nodes). The time step At = 0.002. For the parameters discussed
in (5.1) we have taken p = 1.5k, ¢ =1, and ¢ is in the order of 107. The maximal particle Reynolds
number in the entire simulation is about 98. In Figs. 23 and 24, we can see those balls falling, and later
drafting, kissing, and tumbling. This simulation demonstrates the potential of distribution Lagrange
multiplier method.
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Fig. 24. Particle position at ¢ = 1, 1.5 (left to right).

7. Conclusion

We have presented in this article a distributed Lagrange multiplier based fictitious domain method for
the simulation of flow with moving boundaries. Compared to the one discussed earlier in [13], it allows the
simulation of fairly complicated flow phenomena, such as particulate flow, including sedimentation. Some
preliminary experiments have shown the potential of this method for the direct simulation of fluidization
which is in some sense the inverse phenomenon of sedimentation; the results already obtained look
promising. Other goals include: 3-D particulate flow with large number of particles of different sizes and
shapes, particulate flow for viscoelastic liquids such as Oldroyd B and so on.
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