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Abstract

In this article we discuss the application of a Lagrange multiplier based ®ctitious domain method to the numerical simulation of

incompressible viscous ¯ow modeled by the Navier±Stokes equations around moving rigid bodies; the rigid body motion is due to

hydrodynamical forces and gravity. The solution method combines ®nite element approximations, time discretization by operators

splitting and conjugate gradient algorithms for the solution of the linearly constrained quadratic minimization problems coming from

the splitting method. We conclude this article by the presentation of numerical results concerning the simulation of an incompressible

viscous ¯ow around a NACA0012 airfoil with a ®xed center, but free to rotate, then the sedimentation of circular cylinders in 2-D

channels, and ®nally the sedimentation of spherical balls in cylinders with square cross-sections. Ó 2000 Elsevier Science S.A. All

rights reserved.
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1. Introduction

Fictitious domain methods (some authors prefer to call them domain embedding methods) is a general
term which covers in fact a large variety of solution methods for partial differential equations. Glowinski
et al. discussed, in [1±3], ®ctitious domain methods based on boundary supported Lagrange multipliers to
enforce Dirichlet boundary conditions and on regular structured meshes (which were not boundary ®tted)
over a simple shape auxiliary domain (the ®ctitious domain). These methods, initially developed for the
solution of linear elliptic problems, have also been applied, as shown in the above references, to the solution
of nonlinear time dependent problems, such as the variational inequalities modeling the ¯ow of a viscous±
plastic medium in a pipe, Ginzburg±Landau equations, and the Navier±Stokes equations modeling in-
compressible viscous unsteady ¯ow. For the simulation of ¯ow around moving rigid bodies, whose motion
is known a priori, Glowinski et al. [4±6] have coupled the above boundary distributed multiplier method
with time discretization by operator splitting �a la Marchuk±Yanenko and with L2-projection technique
which forces the incompressibility condition; the resulting methodology is robust, stable and easy to im-
plement and parallelize.
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In this article, we consider the numerical simulation of incompressible viscous ¯ow around moving rigid
bodies when the rigid body motion is caused by hydrodynamical forces and given external forces, such as
gravity; let us mention several applications: ¯uidized beds, sedimentation, blood ¯ow around arti®cial heart
valves, store separation. The method of choice is a distributed Lagrange multiplier/®ctitious domain method
which consists to ®ll the moving bodies by the surrounding ¯uid and impose a rigid body motion to the
¯uid ®lling the regions previously occupied by the rigid bodies; then one relaxes the rigid body motion
constraint by using distributed Lagrange multipliers and obtains a ¯ow problem over the entire region. This
approach is quite different from the one in Refs. [4±6], which is concerned with the case where the rigid
body motion is known a priori. An advantage of the ®ctitious domain method discussed here is that we do
not need to generate a new mesh at each time step, immediately after updating the positions of the rigid
bodies. This is a very important issue since for 3-D particulate ¯ow, generating meshes for simulating ¯uid-
rigid body interactions is still a major problem and seems to require powerful parallel computers (see, e.g.,
Ref. [7]). If one uses the ®ctitious domain methods, described in this article, one just needs a very simple
mesh for the rigid bodies which can be generated very quickly. Moreover, we do not need to compute the
hydrodynamical forces explicitly, since the interaction between ¯uid and rigid bodies is implicitly modeled
by the global variational formulation at the foundation of the present methodology. This methodology has
been applied to simulate the ¯ow around a NACA0012 airfoil which has a ®xed center of mass, but is free
to rotate under the effect of hydrodynamical forces, and the motion of sedimenting rigid bodies in 2-D and
3-D channels and cylinders.

Let us mention that non-Lagrange multiplier based ®ctitious domain methods have been used by Peskin
and his collaborators [8±10] to simulate incompressible viscous ¯ow in regions with elastic moving
boundaries and by LeVeque [11,12] for elliptic problems with discontinuous coe�cients and singular
sources and Stokes ¯ow with elastic boundaries or surface tension.

2. A model problem and its ®ctitious domain formulation

Let X � Rd�d � 2; 3; see Fig. 1 for a particular case where d � 2) be a space region; we suppose that X is
®lled with a Newtonian viscous incompressible ¯uid (of density qf and viscosity mf ) and contains a moving
rigid body B. The ¯uid ¯ow is modeled by the following Navier±Stokes equations

qf

ou

ot

�
� �u � $�u

�
� qf g� $ � r in X n B�t�; �2:1�

r � u � 0 in X n B�t�; �2:2�

u�x; 0� � u0�x� 8x 2 X n B�0� �with $ � u0 � 0�; �2:3�

u � g0 on C; �2:4�

Fig. 1. An example of 2-D ¯ow region with one rigid body.
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to be completed by the boundary conditions on the boundary oB�t� of B�t�, given hereafter (see (2.9)). In
(2.1)±(2.4), the stress-tensor r is de®ned by

r � ÿpI� mf�$u� $ut�; �2:5�
u � fuigd

i�1

� �
and p denote, as usual, velocity and pressure, respectively; the viscosity mf positive, g the

gravity and x�� fxigd
i�1� is the generic point of Rd , and

�u � $�u �
Xd

j�1

uj
oui

oxj

( )d

i�1

:

From the rigid body motion of B, g0 has to satisfy
R

C g0 � n dC � 0, where n denotes the unit vector of the
outward normal at C (we suppose the no-slip condition on oB). In the following, we shall use, if necessary,
the notation /�t� for the function x! u�x; t�.

Assuming that the rigid body B does not touch C, its motion is described by the following Euler's
equations (an almost direct consequence of Newton's laws of motion)

M
dVG

dt
� Mg� F; �2:6�

I
dx

dt
ÿ Ix� x � T; �2:7�

dG

dt
� VG; �2:8�

where VG is the translation velocity of the rigid body B;x the angular velocity of B;M the mass of the rigid
body, I is inertia tensor of the rigid body at G and G being the center of mass of B. As already mentioned g

denotes gravity, while F and T are the resultant and the torque at G of the hydrodynamical forces acting on
B, respectively. The boundary condition on oB is given by

u � VG � x�Gx 8x 2 oB: �2:9�
The force F and torque T imposed on the rigid body by the ¯uid are described as follows:

F �
Z

oB
rn dc; �2:10�

T �
Z

oB
Gx� �rn� dc; �2:11�

where dc � d�oB�, x is the generic point of oB and n is the pointing outward unit normal vector on oB. In
order to treat possible collisions between B and C (collisions between particles will be addressed later on),
we substitute to the momentum equation in (2.6) the following modi®ed one

M
dVG

dt
� Mg� F� Fr; �2:12�

where Fr is a lubrication force (see [13,14]) imposed on B by C (in those parts of C that B cannot cross).

Remark 2.1. If B is made of an homogeneous material of density qs, we have

M � qs

Z
B

dx; �2:13�

I �
I11 ÿ I12 ÿ I13

ÿI12 I22 ÿ I23

ÿI13 ÿ I23 I33

0@ 1A; �2:14�
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where, in (2.13) and (2.14), dx � dx1dx2dx3 and

I11 � qs

Z
B
�x2

2 � x2
3� dx; I22 � qs

Z
B
�x2

3 � x2
1� dx; I33 � qs

Z
B
�x2

1 � x2
2� dx; �2:15�

I12 � I21 � qs

Z
B

x1x2 dx; I23 � I32 � qs

Z
B

x2x3 dx; I31 � I13 � qs

Z
B

x3x1 dx �2:16�

with the usual simplification for 2-D phenomena.

Remark 2.2. If the flow-rigid body motion is 2-D, or if B is a spherical ball made of an homogeneous material,
then the quadratic term Ix� x vanishes in (2.7).

Remark 2.3. We have to complete the Euler's equations (2.6)±(2.8) by initial conditions, typical ones being

VG�0� � V0; �2:17�

x�0� � x0; �2:18�

G�0� � G0: �2:19�
To obtain a variational formulation for problem (2.1)±(2.4), (2.7)±(2.12) and (2.17)±(2.19), we de®ne ®rst
the following functional spaces

Vg0
�t� � fv j v 2 �H 1�X n B�t���d ; v � g0�t� on C; v � VG�t� � x�t� �G�t�x on oB�t�g; �2:20�

V0�t� �ffv;Y; hg j v 2 �H 1�X n B�t���d ; v � 0 on C; v � Y� h�G�t�x on oB�t�;
with Y 2 Rd ; h 2 R3g; �2:21�

L2
0�X n B�t�� � q j q 2 L2�X n B�t��;

Z
XnB�t�

q dx

(
� 0

)
: �2:22�

In (2.20) and (2.21) we have x�t� � fxi�t�g3
i�1 and h � fhig3

i�1 if d � 3, while x�t� � f0; 0;x�t�g and
h � f0; 0; hg if d � 2.

Applying the virtual power principle to system (2.1)±(2.4), (2.7)±(2.12) and (2.17)±(2.19) yields the fol-
lowing variational formulation:

For a:e: t > 0; find fu�t�; p�t�;VG�t�;G�t�;x�t�g such that

u�t� 2 Vg0
�t�; p�t� 2 L2

0�X n B�t��; VG�t� 2 Rd ; G�t� 2 Rd ; x�t� 2 R3 �2:23�

and

qf

Z
XnB�t�

ou

ot
� v dx� qf

Z
XnB�t�
�u � $�u � v dxÿ

Z
XnB�t�

p$ � v dx� 2mf

Z
XnB�t�

D�u� : D�v� dx

� M
dVG

dt

�
ÿ Mgÿ Fr

�
� Y� �I dx

dt
ÿ Ix� x� � h � qf

Z
XnB�t�

g � v dx 8fv;Y; hg 2 V0�t�; �2:24�

Z
XnB�t�

q$ � u�t� dx � 0 8q 2 L2�X n B�t��; �2:25�

dG

dt
� VG; �2:26�

u�x; 0� � u0�x� 8x 2 X n B�0� �with r � u0 � 0�; �2:27�
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VG�0� � V0; x�0� � x0; G�0� � G0 �2:28�

within, (2.23)±(2.28), x�t� and h as in (2.20) and (2.21), D�v� � �$v� $vt�=2; also, in (2.24), we have used
the following notation

a � b �
Xd

i�1

aibi 8a and b 2 Rd ;

A : B �
Xd

i�1

Xd

j�1

aijbij 8A � �ai;j�16 i;j6 d and B � �bij�16 i;j6 d :

To the best of our knowledge, the above variational formulation was introduced by Hesla [15]. Hu [16] also
developed a similar variational formulation and combined it with an arbitrary Lagrange±Euler (ALE)
technique to simulate the ¯ow-motion of 2-D solid±liquid mixtures in a vertical channel with unstructured
grid.

In order to obtain an equivalent fictitious domain formulation, we shall proceed as follows:
(i) First, we ®ll the rigid body B by the surrounding ¯uid (i.e., embed X n B�t� in X).
(ii) Next, we correct (2.34) taking (i) into account.
(iii) Finally, we relax the rigid body motion constraint by using a distributed Lagrange multiplier and ob-
tain a ®ctitious domain formulation over the entire region.
Let us implement (i) and (ii). If we ®ll B with a ¯uid of density qf and if we suppose that this ¯uid has the

same rigid body motion as B itself, we have for the ¯uid velocity inside B.

u�x; t� � VG�t� � x�t� �Gx 8x 2 B�t�: �2:29�

Suppose now that fv;Y; hg veri®es

fv;Y; hg 2 ~V0�t� � fv;Y; hg j v jXnB�t�;Y; h
n o

2 V0�t�; v�x; t�
n

� Y� h�G�t�x 8x 2 B�t�
o
: �2:30�

We have then, if B is made of an homogeneous material of density qs (an assumption that we shall make
from now on),

qf

Z
B�t�

ou

ot
� v dx

 
�
Z

B�t�
�u � $�u � v dx

!
� �qf=qs� M

dVG

dt
� Y

�
� I

dx

dt

�
ÿ Ix� x

�
� h
�
: �2:31�

We also have

qf

Z
B�t�

v � g dx � �qf=qs�Mg � Y 8fv;Y; hg 2 ~V0�t�; �2:32�

$ � v � 0 in B�t� 8fv;Y; hg 2 ~V0�t�; �2:33�

and, if u veri®es (2.29),

$ � u � 0 in B�t� and D�u� � 0 in B�t�: �2:34�

Combining (2.29)±(2.34) with (2.23)±(2.28) yields the following variation of the virtual-power based for-
mulation:

For a:e: t > 0; find fu�t�; p�t�;VG�t�;G�t�;x�t�g such that

u�t� 2 Wg0
�t�; p�t� 2 L2

0�X�; VG�t� 2 Rd ; G�t� 2 Rd ; x�t� 2 R3 �2:35�
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and

qf

Z
X

ou

ot
� v dx� qf

Z
X
�u � $�u � v dxÿ

Z
X

p$ � v dx� 2mf

Z
X

D�u� : D�v� dx

� �1ÿ qf=qs� M
dVG

dt
� Y

�
� I

dx

dt

�
ÿ Ix� x

�
� h
�
ÿ Fr � Y

� qf

Z
X

g � v dx� �1ÿ qf=qs�Mg � Y 8fv;Y; hg 2 ~V0�t�; �2:36�

Z
X

q$ � u�t�dx � 0 8q 2 L2�X�; �2:37�

dG

dt
� VG; �2:38�

u�x; t� � VG�t� � x�t� �G�t�x 8x 2 B�t�; �2:39�

VG�0� � V0; x�0� � x0; G�0� � G0; �2:40�

u�x; 0� � u0�x� 8x 2 X n B�t� and u�x; 0� � V0 � x0 �G0x 8x 2 B�0�; �2:41�

with, in formulation (2.35)±(2.41), space Wg0
�t� de®ned by

Wg0
�t� � fv j v 2 �H 1�X��d ; v � g0�t� on Cg �2:42�

(and the usual simpli®cation of x and h if d � 2).
In order to relax the rigid body motion condition (2.39), we introduce a Lagrange multiplier, k, so that

k�t� 2 K�t� � �H 1�B�t���d ; we obtain then the following fictitious domain formulation with distributed
Lagrange multipliers

For a:e: t > 0; find fu�t�; p�t�;VG�t�;G�t�;x�t�; k�t�g such that

u�t� 2 Wg0
�t�; p�t� 2 L2

0�X�; VG�t� 2 Rd ; G�t� 2 Rd ; x�t� 2 R3; k�t� 2 K�t� �2:43�
and

qf

Z
X

ou

ot
� v dx� qf

Z
X
�u � r�u � v dxÿ

Z
X

pr � v dx� 2mf

Z
X

D�u� : D�v�dx

ÿ �k; vÿ Yÿ h�Gx�K�t� � �1ÿ qf=qs� M
dVG

dt
� Y

�
� I

dx

dt

�
ÿ Ix� x

�
� h
�
ÿ Fr � Y

� �1ÿ qf=qs�Mg � Y� qf

Z
X

g � v dx 8v 2 �H 1
0 �X��d 8Y 2 Rd 8h 2 R3; �2:44�

Z
X

q$ � u�t� dx � 0 8q 2 L2�X�; �2:45�

dG

dt
� VG; �2:46�

�l; u�t� ÿ VG�t� ÿ x�t� �G�t�x�K�t� � 0 8l 2 K�t�; �2:47�

VG�0� � V0; x�0� � x0; G�0� � G0; �2:48�

u�x; 0� � u0�x� 8x 2 X n B�0� and u�x; 0� � V0 � x0 �G0x 8x 2 B�0�; �2:49�
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the two most natural choices for ��; ��K�t� are

�l; v�K�t� �
Z

B�t�
�l � v� d2rl : rv�dx 8l and v 2 K�t�; �2:50�

�l; v�K�t� �
Z

B�t�
�l � v� d2D�l� : D�v��dx 8l and v 2 K�t�; �2:51�

with d a characteristic length (the diameter of B, for example).
The variational formulation (2.43)±(2.49) is due to the ®rst two authors.

Remark 2.4. Since, in (2.44), u is divergence free and satisfies Dirichlet boundary conditions of C, we have

2

Z
X

D�u� : D�v� dx �
Z

X
$u : $v dx 8v 2 �H 1

0 �X��d ;

a substantial simplification, indeed, from a computational point of view, which is another plus for the ficti-
tious domain approach used here.

Remark 2.5. Using High Energy Physics terminology, the multiplier k can be viewed as a gluon whose role is
to force the rigidity of B.

3. Finite element approximation

For simplicity, we assume that X � R2 (i.e., d � 2) and is polygonal; we have then x�t� � f0; 0;x�t�g
and h � f0; 0; hg with x�t� and h 2 R. Concerning the space approximation of problem (2.43)±(2.49) by a
®nite element method, we shall proceed as follows:

With h a space discretization step we introduce a ®nite element triangulation Th of �X and then T2h a
triangulation twice coarser (in practice we should construct T2h ®rst and then Th by joining the midpoints
of the edges of T2h, dividing thus, each triangle of T2h into 4 similar subtriangles, as shown in Fig. 2,
below).

We de®ne the following ®nite dimensional spaces which approximate Wg0
�t�, �H 1

0 �X��2, L2�X�, L2
0�X�,

respectively:

Wg0h
�t� � vh j vh 2 �C0��X��2; vh jT2 P1

n
� P1 8T 2Th; vh jC � g0h�t�

o
; �3:1�

W0h � vh j vh 2 �C0��X��2; vh jT2 P1

n
� P1 8T 2Th; vh jC � 0

o
; �3:2�

L2
h � qh j qh 2 C0��X�; qh jT2 P1 8T 2T2h

n o
; L2

0h � fqh j qh 2 L2
h;

Z
X

qh dx � 0g �3:3�

in (3.1)±(3.3), g0h�t� is an approximation of g0�t� verifying
R

C g0h�t� � n dC � 0 and P1 is the space of the
polynomials in two variables of degree 6 1.

Fig. 2. Subdivision of a triangle of T2h.
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Let Bh�t� be a polygonal domain inscribed in B�t� and TBh�t� be a ®nite element triangulation of Bh�t�,
like the one shown in Fig. 3, where B is a disk.

Then, a ®nite dimensional space approximating K�t� is

Kh�t� � lh j lh 2 �C0�Bh�t���2; lh jT 2 P1

n
� P1 8T 2TBh�t�

o
: �3:4�

An alternative to Kh�t� de®ned by (3.4) is as follows: let fxigNB
i�1 be a set of points from B�t� which cover B�t�

(uniformly, for example); we de®ne then

Kh�t� � lh j lh

(
�
XNB

i�1

lid�xÿ xi�; li 2 R2 8i � 1; . . . NB

)
; �3:5�

where d��� is the Dirac measure at x � 0. Then instead of the scalar product of �H 1�Bh�t���2 we shall use
h�; �iKh�t� de®ned by

hlh; vhiKh�t� �
XNB

i�1

li � vh�xi� 8lh 2 Kh�t�; vh 2 Wg0h
or W0h: �3:6�

The approach, based on (3.5) and (3.6), makes little sense for the continuous problem, but is meaningful for
the discrete problem; it amounts to forcing the rigid body motion of B�t� via a collocation method. A similar
technique has been used to enforce Dirichlet boundary conditions by Bertrand et al. (Ref. [17]).

Remark 3.1. The bilinear form in (3.6) has definitely the flavor of a discrete L2�B�t��-scalar product. Let us
insist on the fact that taking K�t� � �L2�X��d , and then

�l; v�K�t� �
Z

X
l � v dx 8l and v 2 K�t�;

makes no sense for the continuous problem. On the other hand, it makes sense for the discrete problem in
(2.43)±(2.48), but do not expect kh�t� to converge to a L2-function as h! 0 (it will converge to some element of
�H 1�B�t��0�2, where H 1�B�t��0 is the dual space of H 1�B�t��).

Using the above ®nite dimensional spaces leads to the following approximation of problems (2.43)±
(2.49):

Fig. 3. Triangulation of a disk.
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For t > 0 find fuh�t�; ph�t�;VG�t�;G�t�;x�t�; kh�t�g such that

uh�t� 2 Wg0h�t�; ph�t� 2 L2
0h; VG�t� 2 R2; G�t� 2 R2; x�t� 2 R; kh�t� 2 Kh�t� �3:7�

and

qf

Z
X

ouh

ot
� v dx� qf

Z
X
�uh � $�uh � v dxÿ

Z
X

ph$ � v dx� 2mf

Z
X

D�uh� : D�v� dx

� �1ÿ qf=qs�M
dVG

dt
� Y� �1ÿ qf=qs�I

dx
dt

hÿ Fr � Yÿ �kh; vÿ Yÿ h�Gx�Kh�t�

� �1ÿ qf=qs�Mg � Y� qf

Z
X

g � v dx 8v 2 W0h;Y 2 R2; h 2 R; �3:8�

Z
X

qr � uh�t� dx � 0 8q 2 L2
h; �3:9�

dG

dt
� VG; �3:10�

�lh; uh�t� ÿ VG�t� ÿ x�t� �G�t�x�Kh�t� � 0 8lh 2 Kh�t�; �3:11�

VG�0� � V0; x�0� � x0; G�0� � G0; �3:12�

uh�x; 0� � u0h�x� 8x 2 X n Bh�0�; uh�x; 0� � V0 � x0 �G0x 8x 2 Bh�0�: �3:13�

Remark 3.2. In relation (3.8), we can replace 2
R

X D�uh� : D�v�dx by
R

Xruh : rvdx, by taking Remark 2.4
into account.

Remark 3.3. Let hX (resp., hB�t�) be the mesh size of a regular triangulation of �X (resp., �B�t�) then
hX < jhB�t� < hB�t� < 2hX for j < 1 is needed in order to satisfy some kind of stability condition (for gener-
alities on the approximation of mixed variational problems, such as (3.7)±(3.13), involving Lagrange multi-
pliers, see, for example, the publications by Brezzi and Fortin (Ref. [18]) and Roberts and Thomas (Ref. [19]).

Remark 3.4. In order to avoid the solution at each time step of complicated triangulation intersection problems
we advocate the use of

�kh; phvÿ Yÿ h�G�t�x�Kh�t� �3:14�

resp.,

lh; phuh�t�
�

ÿ VG�t� ÿ x�t� �G�t�x�Kh�t�
�

�3:15�

in (3.8) (resp., (3.11)), instead of

�kh; vÿ Yÿ h�G�t�x�Kh�t�

resp.,

lh; uh�t�
�

ÿ VG�t� ÿ x�t� �G�t�x�Kh�t�
�
;

where, in (3.14) and (3.15), ph : �C0��X��2 ! Kh�t� is the piecewise linear interpolation operator, which, to
each function w belonging to �C0��X��2 associates the unique element of Kh�t� defined from the values taken by
w at the vertices of TBh�t�.
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Remark 3.5. If B is either a disk or a spherical ball, we can take advantage of the rotational invariance of B
and, for t P 0, derive sBh�t� from sBh�0� by translation. If B is not rotationally invariant, we shall take TBh�t�
rigidly attached to B.

Remark 3.6. In general, the function u�t� has no more than the �H 3=2�X��2-regularity. This low regularity
implies that we cannot expect more than O�h3=2� for the approximation error kuh�t� ÿ u�t�kL2�X�.

4. Time discretization by operator splitting

4.1. Generalities

Following Chorin (Refs. [20±22]), most `modern' Navier±Stokes solvers are based on operator splitting
algorithms (see, e.g., Refs. [23,24]) in order to force the incompressibility condition via a Stokes solver or a
L2-projection method. This approach still applies to the initial value problem (3.7)±(3.13) which contains
four numerical di�culties to each of which can be associated a speci®c operator, namely

(a) The incompressibility condition and the related unknown pressure.
(b) An advection±di�usion term.
(c) The rigid body motion of Bh�t� and the related multiplier kh�t�.
(d) The collision term Fr.
The operators in (a) and (c) are essentially projection operators. From an abstract point of view, problem

(3.7)±(3.13) is a particular case of the following class of initial value problems

du
dt
� A1�u; t� � A2�u; t� � A3�u; t� � A4�u; t� � f ; u�0� � u0; �4:1�

where the operators Ai can be multivalued. Among the many operator-splitting methods which can be
employed to solve (4.1), we advocate (following, e.g., [25]) the very simple one below; it is only ®rst order
accurate, but its low order accuracy is compensated by good stability and robustness properties. Actually,
this scheme can be made second order accurate by symmetrization (see, e.g., [26,27] for the application of
symmetrized splitting schemes to the solution of the Navier±Stokes equations).

A fractional step scheme �a la Marchuk±Yanenko: With Dt�> 0� a time discretization step, applying the
Marchuk±Yanenko scheme to the initial value problem (4.1) leads to

u0 � u0 �4:2�
and for n P 0, compute un�1 from un via

un�j=4 ÿ un��jÿ1�=4

Dt
� Aj�un�j=4; �n� 1�Dt� � f n�1

j ; �4:3�

for j � 1; 2; 3; 4 with
P4

j�1 f n�1
j � f n�1.

4.2. Application of the Marchuk±Yanenko scheme to particulate ¯ow

Applying scheme (4.2) and (4.3) to problem (3.7)±(3.13), we obtain (with 06 a; b6 1; a� b � 1 and
after dropping some of the subscripts h and denoting VGn by Vn):

u0 � u0h; V0;x0 and G0 are given; �4:4�
for n P 0, knowing un;Vn;xn;Gn, we compute un�1=4; pn�1=4 via the solution of

qf

Z
X

un�1=4 ÿ un

Dt
� v dxÿ

Z
X

pn�1=4$ � v dx � 0 8v 2 W0h;Z
X

q$ � un�1=4 dx � 0 8q 2 L2
h; un�1=4 2 W n�1

g0h
; pn�1=4 2 L2

0h: �4:5�
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Next we compute un�2=4 via the solution of

qf

Z
X

un�2=4 ÿ un�1=4

Dt
� v dx� 2amf

Z
X

D�un�2=4� : D�v� dx� qf

Z
X
�un�1=4 � $�un�2=4 � v dx

� qf

Z
X

g � v dx 8v 2 W0h; un�2=4 2 W n�1
g0h

; �4:6�

and then, predict the position and the translation velocity of the center of mass as follows:
Take Vn�3=4;0 � Vn and Gn�3=4;0 � Gn; then predict the new position and translation velocity of Bh via the

following subcycling technique:

For k � 1; . . . ;N , computebVn�3=4;k � Vn�3=4;kÿ1 � �Dt=N��g� �1ÿ qf=qs�ÿ1Mÿ1Fr�Gn�3=4;kÿ1��; �4:7a�

bGn�3=4;k � Gn�3=4;kÿ1 � �Dt=2N��bVn�3=4;k � Vn�3=4;kÿ1�; �4:7b�

Vn�3=4;k � Vn�3=4;kÿ1 � �Dt=N�g� �Dt=2N��1ÿ qf=qs�ÿ1Mÿ1�Fr�bGn�3=4;k� � Fr�Gn�3=4;kÿ1��; �4:7c�

Gn�3=4;k � Gn�3=4;kÿ1 � �Vn�3=4;k � Vn�3=4;kÿ1��Dt=2N�; �4:7d�
enddo;

and let Vn�3=4 � Vn�3=4;N ; Gn�3=4 � Gn�3=4;N :

Finally, we compute un�1; kn�1; Vn�1;xn�1 via the solution of

qf

Z
X

un�1 ÿ un�2=4

Dt
� v dx� 2bmf

Z
X

D�un�1� : D�v� dx

� �1ÿ qf=qs�I
xn�1 ÿ xn

Dt
h� �1ÿ qf=qs�M

Vn�1 ÿ Vn�3=4

Dt
� Y

� �kn�1; vÿ Yÿ h�Gn�3=4x�
Bn�3=4

h
8v 2 W0h;Y 2 R2; h 2 R; �4:8a�

�l; un�1 ÿ Vn�1 ÿ xn�1 �Gn�3=4x�
Bn�3=4

h
� 0 8l 2 Kn�3=4

h ; �4:8b�

un�1 2 W n�1
g0h

; kn�1 2 Kn�3=4
h ; �4:8c�

then take Gn�1;0 � Gn�3=4; then correct the position of the rigid body center as follows:

For k � 1; . . . ;N , computebGn�1;k � Gn�1;kÿ1 � �Dt=2N��Vn � Vn�1�; �4:9a�

Gn�1;k � bGn�1;k � �Dt�2
4N 2

�1ÿ qf=qs�ÿ1Mÿ1�Fr�bGn�1;k� � Fr�Gn�1;kÿ1��; �4:9b�

enddo;
and let Gn�1 � Gn�1;N .

In (4.4)±(4.9b) we have W n�1
g0h
� Wg0

��n� 1�Dt�h; Ks
h � Kh�sDt�, and Bs

h � Bh�sDt�. Using operator
splitting, we can use time steps much smaller than Dt to predict and correct, as in (4.7a)±(4.7d) and (4.9a)
and (4.9b), the position of the center of mass, without changing the time step Dt in algorithm (4.4)±(4.9).
For our numerical simulations, we have used a � 1 and b � 0 in (4.6) and (4.8a)±(4.8c) and N � 10 in
(4.7a)±(4.7d) and (4.9a) and (4.9b).
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4.3. Solution of the subproblem (4.5)

By inspection of (4.5) it is clear that un�1=4 is the �L2�X��2-projection of un on the (a�ne) subset of the
functions v 2 W n�1

g0h
such that

R
X q$ � v dx � 0 8q 2 L2

h, and that pn�1=4 is the corresponding Lagrange
multiplier in L2

0h. The pair fun�1=4; pn�1=4g is unique and to compute it we can use an Uzawa/conjugate
gradient algorithm operating in L2

0h equipped with the scalar product fq; q0g ! R
Xrq � rq0 dx. We obtained

then an algorithm preconditioned by the discrete equivalent of ÿD for the homogeneous Neumann
boundary condition. It follows from, e.g., [6], that such an algorithm, applied to the solution of

qf

Z
X

uÿ u�

Dt
� v dxÿ

Z
X

p$ � v dx � 0 8v 2 W0h;Z
X

q$ � u dx � 0 8q 2 L2
h; u 2 W n�1

g0h
; p 2 L2

0h; �4:10�

reads as follows:

p0 is given in L2
0h; �4:11�

solve

u0 2 W n�1
g0h

;

qf

Z
X

u0 � v dx � qf

Z
X

u� � v dx�rt
Z

X
p0$ � v dx 8v 2 W0h; �4:12�

g0 2 L2
0h;Z

X
rg0 � rq dx �

Z
X

$ � u0 dx 8q 2 L2
h; �4:13�

and set

w0 � g0: �4:14�
Then for k P 0, assuming that pk; gk;wk are known, we compute pk�1; gk�1 and, if necessary wk�1 as follows:

solve:

�uk 2 W0h;

qf

Z
X

�uk � v dx � Dt
Z

X
wk$ � v dx 8v 2 W0h; �4:15�

�gk 2 L2
0h;Z

X
r�gk � rq dx �

Z
X

$ � �ukq dx 8q 2 L2
h; �4:16�

and compute

qk �
Z

X
jrgkj2 dx

�Z
X

$ � �ukwk dx; �4:17�

pk�1 � pk ÿ qkwk; �4:18�
gk�1 � gk ÿ qk �gk: �4:19�

If
R

X jrgk�1j2 dx=
R

X jrg0j2 dx6 �, take p � pk�1; else compute

ck �
Z

X
jrgk�1j2 dx

�Z
X
jrgkj2 dx �4:20�
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and set

wk�1 � gk�1 � ckwk: �4:21�
Do k � k � 1 and go back to (4.15).

Algorithms (4.11)±(4.21) is very easy to implement and has very good convergence properties.

4.4. Solution of the subproblems (4.6)

If a > 0, problem (4.6) is a linear advection±diffusion problem; it can be easily solved by a least squares/
conjugate gradient algorithm, like those discussed in, e.g., ch. 7 of Ref. [28].

4.5. Solution of the subproblems (4.8a)±(4.8c)

The solution of problems (4.8a)±(4.8c) can be computed by algorithms similar to those in [1] for elliptic
problems, with the additional di�culty that there are here three more equations, namely the ones used to
compute the translation velocity and angular speed of the rigid body. Problem (4.8a)±(4.8c) has the fol-
lowing form:

qf

Z
X

uÿ u �
Dt

� v dx� 2bmf

Z
X

D�u� : D�v� dx

� �1ÿ qf=qs�I
xÿ x�

Dt
h� �1ÿ qf=qs�M

Vÿ V�

Dt
� Y �4:22�

ÿ�k; vÿ Yÿ h�Gx�Bh
� 0 8v 2 W0h; Y 2 R2; h 2 R;

�l; uÿ Vÿ x�Gx�Bh
� 0 8l 2 Kh; u 2 Wg0h

; k 2 Kh; �4:23�
where the center of mass G of the rigid body Bh is known and where Wg0h

� W n�1
goh

.
Problem (4.22) and (4.23) is itself a particular case of the following saddle-point system

Ax� Bty � b; Bx � c; �4:24�
where A is symmetric and positive de®nite if qs > qf . It follows from e.g., [29] and [30], that problem (4.24)
can be solved by Uzawa/conjugate gradient algorithms. Applying such an algorithm to problem (4.22),
(4.23) leads to

k0 is given in Kh; �4:25�
solve

qf

Z
X

u0 � v dx� 2Dtbmf

Z
X

D�u0� : D�v� dx � qf

Z
X

u� � v dx� Dt�k0; v�Bh
8v 2 W0h; u0 2 Wg0h

;

�4:26�

�1ÿ qf=qs�MV0 � Y � �1ÿ qf=qs�MV� � Yÿ Dt�k0;Y�Bh
8Y 2 R2; V0 2 R2; �4:27�

�1ÿ qf=qs�Ix0h � �1ÿ qf=qs�Ix�hÿ Dt�k0; h�Gx�Bh
8h 2 R; x0 2 R; �4:28�

then

�l; g0�Bh
� �l; u0 ÿ V0 ÿ x0 �Gx�Bh

8l 2 Kh; g0 2 Kh; �4:29�
and set

w0 � g0: �4:30�
Then, for k P 0, assuming that kk, gk, wk, uk, Vk, xk are known, we obtain kk�1, gk�1; wk�1uk�1, Vk�1, xk�1

p as
follows:
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solve

qf

Z
X

�uk � v dx� 2Dtbmf

Z
X

D��uk� : D�v�dx � Dt�wk; v�Bh
8v 2 W0h; �uk 2 W0h; �4:31�

�1ÿ qf=qs�M �Vk � Y � ÿDt�wk;Y�Bh
8Y 2 R2; �Vk 2 R2; �4:32�

�1ÿ qf=qs�I �xkh � ÿDt�wk; h�Gx�Bh
8h 2 R; �xk 2 R; �4:33�

and then

�l; �gk�Bh
� l; �uk
�

ÿ �Vk ÿ �xk �Gx
�

Bh

8l 2 Kh; �gk 2 Kh: �4:34�

Compute

qk � �gk; gk�Bh

.
�wk; �gk�Bh

; �4:35�

and then

kk�1 � kk ÿ qkwk; �4:36�
uk�1 � uk ÿ qk�u

k; �4:37�
Vk�1 � Vk ÿ qk

�V k; �4:38�
xk�1 � xk ÿ qk �xk; �4:39�
gk�1 � gk ÿ qk�g

k: �4:40�
If �gk�1; gk�1�Bh

=�g0; g0�Bh
6 �, take u � uk�1; V � Vk�1 and x � xk�1. Else, compute

ck � �gk�1; gk�1�Bh
=�gk; gk�Bh

; �4:41�
and set

wk�1 � gk�1 � ckwk: �4:42�
Do k � k � 1 and go back to (4.31).

Remark 4.1. If qs6 qf , the corresponding matrix A in (4.24) is no longer positive definite. However, due to the
small dimension of fV;xg, it is very easy to adapt algorithm (4.25)±(4.41) to the case qs6 qf . Similarly, there
is no practical difficulty at treating the neutrally buoyant case �qs � qf�.

5. Remarks on the computational treatment of particle collisions

In the above sections, we have considered the particular case of a single particle moving in a region X
®lled with a Newtonian incompressible viscous ¯uid; we took into account possible particle-boundary
collisions via the repulsion force Fr, but we did not provide, yet, an explicit form of Fr. Actually, the above
methodology can be generalized fairly easily to many particles cases, with however, a computational dif-
®culty: one has to prevent particle interpenetration or particle/boundary penetration. To achieve those
goals we have included in the Newton±Euler equations modeling particle motions a short range repulsing
force. If we consider the particular case of circular particles (in 2-D) or spherical particles in (3-D), and if Bi

and Bj are such two particles, with radius Ri and Rj and centers of mass Gi and Gj, we shall require the
repulsion force ~Fij between Bi and Bj to satisfy the following properties:

(i) To be parallel to GiGj
��!

.
(ii) To verify

j~Fijj � 0 if dij P Ri � Rj � q; j~Fijj � c=e if dij � Ri � Rj �5:1�
with dij � jGiGj

��!j; c a scaling factor and e a `small' positive number.
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(iii) j~Fijj has behave as in Fig. 4, for

Ri � Rj6 dij6Ri � Rj � q:

Parameter q is the range of the repulsion force; for the simulations discussed in the following section we
have taken q ' hX. Boundary/particle collisions can be treated in a similar way (see [13] for details).

Remark 5.1. The above collision model is fairly simple and is inspired from penalty techniques classically used
for the computational treatment of some contact problems in Mechanics (see, e.g., [30,31] for details and
applications). Despite its simplicity, this model produces good results, the main reason for that being, in our
opinion, that if the fluid is sufficiently viscous and if the fluid and particle densities are close, the collisions ± if
they occur ± are nonviolent ones, implying that the particles which are going to collide move at almost the same
velocity just before collision. For more sophisticated models allowing more violent collisions see, e.g., [14] and
the references therein.

Remark 5.2. For those readers wondering how h, q, and c=� are adjusted we would like to do the following
comments: clearly the space discretization parameter h is adjusted so that the finite element approximation can
resolve the boundary and shear layers occurring in the flow. Next, it is clear that q can be taken of the order of
h. The choice of c=� is more subtle; let us say that simple model problems for harmonic oscillators with rigid
obstacles (see Ref. [32] for details) show that we can expect interpenatration of the order of

�������
�=c

p
; this suggests

therefore to take q� �������
�=c

p
, which is what we did in our calculations.

6. Numerical experiments

We are going to present now the results of numerical experiments for 2-D and 3-D ¯ow.

6.1. Flow around a NACA0012 airfoil which has a ®xed center and is free to rotate due to hydrodynamical
forces

Here we consider an incompressible viscous ¯ow around a NACA0012 airfoil which has a ®xed center of
mass and is free to rotate due to hydrodynamical forces; the surrounding region X is the rectangle
�ÿ4; 16� � �ÿ2; 2�. The characteristic length, namely the airfoil length, is 1.008930411365 and the ®xed
center of mass of the NACA0012 airfoil is at (0.420516, 0). Initial angular velocity and incident angle are
zeroes. The density of the ¯uid qf � 1:0 and the density of the airfoil qs � 1:1. The viscosity of the ¯uid is
mf � 0:00125. The initial condition for the ¯uid ¯ow is u � 0 and the boundary data g0 is given by

Fig. 4. Repulsion force behavior.
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g0�x; t� �
0 if x2 � ÿ2 or 2;

�1ÿ eÿ50t� 1

0

 !
if x1 � ÿ4 or 16;

8><>:
for t P 0, but we could have used another function g0. Hence the Reynolds number is about 807 with
respect to the characteristic length of the NACA0012 airfoil and the maximal in¯ow speed. The time step is
varied from Dt � 0:001 to about 0.0005. The mesh size for the velocity ®eld is hv � 1=96 (there are 739,585
nodes). The mesh size for pressure is hp � 1=48 (185,473 nodes). In this test case, the mesh size hv � 1=96 is
required to catch the velocity ®eld close to the leading edge of the NACA0012 airfoil. For the airfoil mesh
necessary at each time step, we have just chosen all the grid points from the velocity grid contained in the

Fig. 5. Part of the velocity mesh and example of mesh points for enforcing the rigid body motion in the NACA0012 airfoil.

Fig. 6. The histories of the angle (dashed±dotted line) and angular velocity (solid line) of the NACA0012 airfoil at Re � 807.
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NACA0012 at that time completed by a selected set of points belonging to the boundary of the airfoil (see
Fig. 5) and then use a scalar product over Kh�t� such as the one de®ned by (3.6).

In the simulation, the number of iterations for the divergence free projection problem (4.5) is 16, the
number of iterations for the linearized advection±di�usion problem (4.6) is 2, and the one for the rigid
body motion projection varies from 65 to 238. The ®rst two numbers of iterations are almost independent
of the mesh size; the last one is quite large and we are working to reduce it via the use of a H 1-scalar product
such as the ones de®ned by (2.50) and (2.51). The histories of the angle and angular velocity of the
NACA0012 airfoil are shown in Fig. 6. The ¯ow ®elds at times t � 2; 9; 10; 11; 12; 13; 14 are shown in
Figs. 7±13. Before t � 2, the NACA0012 airfoil is completely ®xed without possible rotation and a steady

Fig. 7. Flow ®eld around the NACA0012 airfoil at t � 2.

Fig. 8. Flow ®eld around the NACA0012 airfoil at t � 9.
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¯ow around it is obtained. After t � 2, we allow the NACA0012 airfoil to rotate freely. We observe then
that the NACA0012 airfoil oscillates widely from about ÿ70� to 74�.

In the second test case, we have used the same parameters except that the viscosity mf is 0.01 (implying
that Re is about 101), the time step Dt is 0.001, and the NACA0012 airfoil is completely ®xed till t � 1. The
range of oscillation of the NACA0012 airfoil is much smaller (see Fig. 14) and the eddies created by the

Fig. 9. Flow ®eld around the NACA0012 airfoil at t � 10.

Fig. 10. Flow ®eld around the NACA0012 airfoil at t � 11.
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oscillation of the airfoil are weaker than those in the case of Re � 807. In this case the NACA0012 airfoil
intends to keep its broadside perpendicular to the in¯ow direction, which is a stable position for noncircular
particles settling in the channel at small Reynolds number (see Ref. [33] for more details).

Reducing h and Dt brings essentially the same results.

Fig. 11. Flow ®eld around the NACA0012 airfoil at t � 12.

Fig. 12. Flow ®eld around the NACA0012 airfoil at t � 13.
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6.2. A 1008 particles case

The second test problem that we consider concerns the simulation of the motion of 1008 sedimenting
cylinders in the closed channel X � �0; 2� � �0; 4�. The diameter d of the cylinders is 0.0625 and the position
of the cylinders at time t � 0 is shown in Fig. 15. The solid fraction in this test case is 38.66%. Initial velocity
and angular velocity of the cylinders are V0

i � 0; w0
i � 0 for i � 1; . . . ; 1008. The density of the ¯uid is

qf � 1:0 and the density of the cylinders is qs � 1:01. The viscosity of the ¯uid is mf � 0:01. The initial
condition for the ¯uid ¯ow is u � 0 and g0�t� � 0 8t P 0. The time step is Dt � 0:001. The mesh size for the
velocity ®eld is hv � 1=256 (there are 525,835 nodes). The mesh size for pressure is hp � 1=128 (131,841
nodes). For this many particle case, a ®ne mesh is required. The parameters for the repulsion force dis-
cussed in (5.1) are q � hv; c � 1, and � is in the order of 10ÿ5. We have chosen a � 1 and b � 0 in the

Fig. 13. Flow ®eld around the NACA0012 airfoil at t � 14.

Fig. 14. The histories of the angle (dashed±dotted line) and angular velocity (solid line) of the NACA0012 airfoil at Re � 101.

260 R. Glowinski et al. / Comput. Methods Appl. Mech. Engrg. 184 (2000) 241±267



Marchuk±Yanenko scheme. The number of iterations for the divergence free projection problem varies
from 12 to 14, the number of iterations for the linearized advection±di�usion problem is 5, and the one for
the rigid body motion projection is about 7. Those numbers of iterations are almost independent of the
mesh size and of the number of particles. With the ®nite dimensional spaces de®ned in Section 3, the

Fig. 15. Sedimentation of 1008 circular particles: t � 0; 1 (left to right).

Fig. 16. Sedimentation of 1008 circular particles: t � 2; 3 (left to right).
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evolution of the 1008 cylinders sedimenting in the closed channel is shown in Figs. 15±19. The maximal
particle Reynolds number in the entire evolution is 17.44. The slightly wavy shape of the interface observed
at t � 1 in Fig. 15 is the typical onset of a Rayleigh±Taylor instability. When t is between 1 and 2, two small
eddies are forming close to the left wall and the right wall and some particles are pulling down fast by these

Fig. 18. Sedimentation of 1008 circular particles: t � 6; 10 (left to right).

Fig. 17. Sedimentation of 1008 circular particles: t � 4; 5 (left to right).
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two eddies. Then other two stronger eddies are forming at the lower center of the channel for t between 2
and 4; they push some particles almost to the top wall of the channel. The above ®gures clearly show a
®ngering phenomenon, followed by a symmetry breaking. At the end all particles are settled at the bottom
of the channel.

Fig. 20. Particle position at t � 0; 1 (left to right).

Fig. 19. Sedimentation of 1008 circular particles: t � 20; 48 (left to right).
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6.3. A 3-D case with two identical spherical particles

The third test problem that we consider here concerns the simulation of the motion of two sedimenting
balls in a rectangular cylinder. A 2-D analogue of this test case problem has been (successfully) investigated
in [13] using similar techniques. The initial computational domain is X � �0; 1� � �ÿ1; 1:5� � �0; 1�, then it
moves with the center of the lower ball. The diameter d of the two balls is 1/6 and the position of the balls at
time t � 0 is shown in Fig. 20. The initial velocity and the angular velocity of the balls are zero. The density
of the ¯uid is qf � 1:0 and the density of the balls is qs � 1:04. The viscosity of the ¯uid is mf � 0:01. The
initial condition for the ¯uid ¯ow is u � 0. The mesh size for the velocity ®eld is hv � 1=60. The mesh size

Fig. 21. Particle position at t � 1:149; 1:169 (left to right).

Fig. 22. Particle position at t � 1:5; 2 (left to right).
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for pressure is hp � 1=30. The time step is Dt � 0:001. For the parameters discussed in (5.1) we have taken
q � 1:5 hv; c � 1, and � is in the order of 10ÿ3. The maximal particle Reynolds number in the entire evo-
lution is 47.57. Figs. 20±22 are drawn by following the position of these two balls. We can see in these
®gures the fundamental features of two sedimenting balls, i.e., drafting, kissing and tumbling [34]. We
observe that a symmetry breaking occurs before the kissing; with a smaller Re, this symmetry breaking
would occur after the kissing. Using smaller h and Dt brings essentially the same results.

6.4. Sedimentation of 128 balls in three dimension

The last test problem that we consider here concerns the simulation of the motion of 128 sedimenting
balls in a rectangular cylinder. The initial computational domain is X � �0; 1� � �0; 4� � �0; 1�, then it
moves with the center of the lowest ball. The diameter d of 128 balls is 1/6 and the position of the balls at
time t � 0 is shown in Fig. 23. The initial velocity and angular velocity of the balls are zero. The density of
the ¯uid is qf � 1:0 and the density of the balls is qs � 1:14. The viscosity of the ¯uid is mf � 0:01. The initial
condition for the ¯uid ¯ow is u � 0. The mesh size for the velocity ®eld is hv � 1=60 (896,761 nodes). The
mesh size for pressure is hp � 1=30 (116,281 nodes). The time step Dt � 0:002. For the parameters discussed
in (5.1) we have taken q � 1:5hv, c � 1, and � is in the order of 10ÿ5. The maximal particle Reynolds
number in the entire simulation is about 98. In Figs. 23 and 24, we can see those balls falling, and later
drafting, kissing, and tumbling. This simulation demonstrates the potential of distribution Lagrange
multiplier method.

Fig. 23. Particle position at t � 0; 0:5 (left to right).
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7. Conclusion

We have presented in this article a distributed Lagrange multiplier based ®ctitious domain method for
the simulation of ¯ow with moving boundaries. Compared to the one discussed earlier in [13], it allows the
simulation of fairly complicated ¯ow phenomena, such as particulate ¯ow, including sedimentation. Some
preliminary experiments have shown the potential of this method for the direct simulation of ¯uidization
which is in some sense the inverse phenomenon of sedimentation; the results already obtained look
promising. Other goals include: 3-D particulate ¯ow with large number of particles of di�erent sizes and
shapes, particulate ¯ow for viscoelastic liquids such as Oldroyd B and so on.
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Fig. 24. Particle position at t � 1; 1:5 (left to right).
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