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Abstract

Capillary instability of a viscous fluid cylinder of diam-
eterD surrounded by another fluid is determined by a
Reynolds numberJ = V D�`=�`, a viscosity ratiom =

�a=�` and a density ratiò = �a=�`. HereV = 
=�`
is the capillary collapse velocity based on the more vis-
cous liquid which may be inside or outside the fluid cylin-
der. Results of linearized analysis based on potential flow
of a viscous and inviscid fluid are compared with the
unapproximated normal mode analysis of the linearized
Navier-Stokes equations. The growth rates for the inviscid
fluid are largest, the growth rates of the fully viscous prob-
lem are smallest and those of viscous potential flow are be-
tween. We find that the results from all three theories con-
verge whenJ is large with reasonable agreement between
viscous potential and fully viscous flow withJ > O(10).
The convergence results apply to two liquids as well as to
liquid and gas.

1 Introduction

Capillary instability of a liquid cylinder of mean radiusR
leading to capillary collapse can be described as a neck-
down due to surface tension
 in which fluid is ejected
from the throat of the neck, leading to a smaller neck and
greater neckdown capillary force as seen in the diagram in
figure 1.1.

The dynamical theory of instability of a long cylindri-
cal column of liquid of radiusR under the action of capil-
lary force was given by Rayleigh (1879) following earlier
work by Plateau (1873) who showed that a long cylin-
der of liquid is unstable to disturbances with wavelengths
greater than2�R. Rayleigh showed that the effect of in-
ertia is such that the wavelength� corresponding to the
mode of maximum instability is� = 4:51 � 2R; exceed-
ing very considerably the circumference of the cylinder.
The idea that the wave length associated with fastest grow-
ing growth rate would become dominant and be observed
in practice was first put forward by Rayleigh (1879). The
analysis of Rayleigh is based on potential flow of an invis-
cid liquid neglecting the effect of the outside fluid. (Look-
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ing forward, we here note that it is possible and useful to
do an analysis of this problem based on the potential flow
of a viscous fluid).

An attempt to account for viscous effects was made
by Rayleigh (1892) again neglecting the effect of the sur-
rounding fluid. One of the effects considered is meant to
account for the forward motion of an inviscid fluid with a
resistance proportional to velocity. The effect of viscos-
ity is treated in the special case in which the viscosity
is so great that inertia may be neglected. He shows that
the wavelength for maximum growth is very large, strictly
infinite. He says, “... long threads do not tend to divide
themselves into drops at mutual distances comparable to
with the diameter of the cylinder, but rather to give way
by attenuation at few and distant places.”

Weber (1931) extended Rayleigh’s theory by consider-
ing an effect of viscosity and that of surrounding air on the
stability of a columnar jet. He showed that viscosity does
not alter the value of the cut-off wavenumber predicted by
the inviscid theory and that the influence of the ambient air
is not significant if the forward speed of the jet is small.
Indeed the effects of the ambient fluid, which can be liq-
uid or gas, might be significant in various circumstances.
The problem, yet to be considered for liquid jets, is the su-
perposition of Kelvin-Helmholtz and capillary instability.

Tomotika (1935) considered the stability to axisymmet-
ric disturbances of a long cylindrical column of viscous
liquid in another viscous fluid under the supposition that
the fluids are not driven to move relative to one another.
He derived the dispersion relation for the fully viscous
case (his (33), our (2.17); he solved it only under the as-
sumption that the time derivative in the equation of motion

can be neglected but the time derivative in the kinematic
condition is taken into account (his (34)). These approxi-
mations lead herein to the asymptotic solution in the limit
of J ! 0, in which the wavenumber giving maximum in-
stability, saykm in our notation, depends only upon the
viscosity ratiom = �a=�`, where�` is the viscosity of
liquid in another fluid of viscosity�a; km takes a max-
imum askmR = 0:589 at m�1

= 0:28 (which gives
the criticalmc = 3:57), while km is reduced to zero as
m ! 0 (single fluid column of high viscosity studied by
Rayleigh (1982)) andm!1 (single hollow in a fluid of
high viscosity), as shown in his figure 2. The parameter`

is important forJ !1 as is shown figure 5.1 but not for
smallJ (Stokes flow); inertia is not important asJ ! 0.

The effect of viscosity on the stability of a liquid cylin-
der when the surrounding fluid is neglected and on a hol-
low (dynamically passive) cylinder in a viscous liquid was
treated briefly by Chandraseckhar (1961). The parameter

R�`=�

2

`
which can be identified as a Reynolds number

based on a velocity
=�` appears in the dispersion rela-
tion derived there.

Tomotika’s problem was studied by Lee and Flumer-
felt (1981) without making the approximations used by
Tomotika, focusing on the elucidation of various limiting
cases defined in terms of three dimensionless parameters,
a density ratio, a viscosity ratio and the Ohnesorge num-
berOh =

p
�
D=�` = J1=2. They showed for various

values ofOh and a fixed value of the density ratio thatkm
is bounded below by Tomotika’s limiting case (Oh ! 0)
and above by the inviscid case (Oh ! 1) that is inde-
pendent ofm; refer to their figure 4.

R
u

Capillary Force g/r

r = R+h

Figure 1.1:Capillary instability. The force 
=r forces fluid from the throat, decreasing r leading to collapse.

In this paper we treat the general fully viscous problem
considered by Tomotika. This problem is resolved com-
pletely without approximation and is applied to 14 pairs of
viscous fluids. Theories based on viscous and inviscid po-

tential flows are constructed and compared with the fully
viscous analysis and with each other.

It is perhaps necessary to call attention to the fact it
is neither necessary or desirable to put the viscosities to
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zero when considering potential flows. The Navier-Stokes
equations are satisfied by potential flow; the viscous term
is identically zero when the vorticity is zero but the vis-
cous stresses are not zero (Joseph and Liao 1994). It is not
possible to satisfy the no-slip condition at a solid boundary
or the continuity of the tangential component of velocity
and shear stress at a fluid-fluid boundary when the veloc-
ity is given by a potential. The viscous stresses enter into
the viscous potential flow analysis of free surface prob-
lems through the normal stress balance (2.10) at the inter-
face. Viscous potential flow analysis gives good approx-
imations to fully viscous flows in cases where the shears
from the gas flow are negligible; the Rayleigh-Plesset bub-
ble is a potential flow which satisfies the Navier-Stokes
equations and all the interface conditions. Joseph, Be-
langer and Beavers (1999) constructed a viscous poten-
tial flow analysis of the Rayleigh-Taylor instability which
can scarcely be distinguished from the exact fully viscous
analysis. Similar agreements were demonstrated for vis-
coelastic fluids by Joseph, Beavers & Funada (2002). In a
recent paper, Funada and Joseph (2001) analyzed Kelvin-
Helmholtz instability of a plane gas-liquid layer using vis-
cous potential flow. This problem is not amenable to anal-
ysis for the fully viscous case for several reasons identified
in their paper. The study leads to unexpected results which
appear to agree with experiments.

The present problem of capillary instability can be fully
resolved in the fully viscous and potential flow cases and it
allows us to precisely identify the limits in which different
approximations work well.

2 Governing equations and dimen-
sionless parameters

The problem formulation for the capillary instability of
a viscous cylinder in another viscous fluid was formu-
lated by Tomotika (1935). It is based on a normal mode
analysis of the linearized Navier Stokes equations. To-
motika’s problem was resolved for many limiting cases by
Lee and Flumerfelt (1981); they also recognized that the
solution was controlled by three dimensionless parame-
ters,m = �a=�`, ` = �a=�` and a Reynolds number
J = V D�`=�` whereV = 
=�`. A brief review of the
governing equations in dimensionless form is given be-
low to facilitate comparison with viscous and inviscid po-
tential flow. Consider the stability of a liquid cylinder of
radiusR (= D=2) with viscosity�` and density�` sur-
rounded by another fluid with viscosity�a and density�a
under capillary forces generated by interfacial tension
.
Our convention is that�` � �a. In the inverse problem
the viscous liquid is outside. The analysis is done in cylin-
drical coordinates(r; �; z) and only axisymmetric distur-
bances independent of� are considered.

The governing Navier-Stokes equations and interface
conditions for disturbance of the cylinder at rest are made

dimensionless with the following scales

[length, velocity, time, pressure] = [D;U; D=U; p0]

where

p0 = �`U
2; U =

r



�`D
: (2.1)

2.1 Linearized disturbance equations

The system of equations for small disturbances are given
by
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The kinematic condition at the interfacer = 1=2+� �
1=2 is given by

@�

@t
= u`;

@�

@t
= ua: (2.9)

The normal stress balance at the interface is given by

pa � p` +
2p
J
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+
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The velocity normal to the interface and the velocity tan-
gential to the interface are continuous as

u` = ua; w` = wa: (2.11)

The tangential stress balance at the interface is given by�
@u`

@z
+
@w`

@r

�
= m

�
@ua

@z
+
@wa

@r

�
: (2.12)
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2.2 Dispersion relation for fully viscous flow (FVF)

Following Tomotika, the velocities are expressed with a stream function (r; z; t):

u =
1

r

@ 

@z
; w = �1

r

@ 

@r
; (2.13)

and the basic variables are expressed in normal modes:

 ` = [A1rI1(kr) +A2rI1(k`r)] exp(�t+ {kz) + c:c:; (2.14)

 a = [B1rK1(kr) +B2rK1(kar)] exp(�t+ {kz) + c:c:; (2.15)

� = H exp(�t+ {kz) + c:c:; (2.16)

where the modified Bessel functions of the first order are denoted byI1 for the first kind andK1 for the second kind. Sub-
stitution of (2.14)-(2.16) into (2.11), (2.12) and (2.10) leads to the solvability condition, which is given as the dispersion
relation: ��������
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J
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with

k` =

q
k2 +

p
J�; ka =

r
k2 +

`

m

p
J�: (2.21)

For small
p
J , k` andka may be expanded aroundk up to the first order terms, which yields the expansion of (2.17)-(2.20)

and the resultant dispersion relation is Equation(34) in Tomotika’s paper; that is,� = (a function ofk andm) �
p
J .

2.3 More viscous fluid outside

The equations are the same except that subscripts` anda are interchanged,m; `; J are replaced withm0; `0; J 0:�
m0

=
1

m
; `0 =

1

`
; J 0 =

�aD


�2
a

�
(2.22)

The capillary collapse is still controlled by the more viscous fluidV = 
=�` where�` is now the viscosity of the
surrounding fluid. We shall index all our results withm, `, J .
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2.4 Dispersion relation for viscous potential flow (VPF)

The equations are the same as in sections 2.1 except thatu = r�, r2
u = 0 and the viscous terms on the right side

of (2.3), (2.4), (2.6), and (2.7) are zero. The latter condition in (2.11) and the condition (2.12) which enforce a no-slip
condition cannot be enforced and are omitted in the analysis of viscous potential flow.

By taking these into account in the linearized equations, the solutions are expressed as

 ` = A1rI1(kr) exp(�t+ {kz) + c:c:; (2.23)

 a = B1rK1(kr) exp(�t+ {kz) + c:c:; (2.24)

� = H exp(�t+ {kz) + c:c:; (2.25)

for which the dispersion relation is given by

(�` + `�a)�
2
+

2k2p
J
(�` +m�a)� =

�
1

R2
� k2

�
k; (2.26)

with

�` =
I0(kR)

I1(kR)
; �a =

K0(kR)

K1(kR)
; �` = �` �

1

kR
; �a = �a +

1

kR
: (2.27)

Solving (2.26), we get

� = � k
2
(�` +m�a)p
J (�` + `�a)

�

s�
k2 (�` +m�a)p
J (�` + `�a)

�2
+

�
1

R2
� k2

�
k

(�` + `�a)
: (2.28)

Thus instability arises in0 < kR < 1, for which the critical wavenumber is given bykc = R�1
= 2. Viscous normal

stresses are what produce the difference between IPF and VPF. This difference is small whenk is small and large fork
near to one (see figures 3.1–3.7).

For large
p
J , (2.28) reduces to

� = �
s�

1

R2
� k2

�
k

(�` + `�a)
; (2.29)

which is just the solution in the inviscid potential flow (IPF), giving for instability a maximum growth rate�m = �(km)

with the associated wavenumberkm. WhenJ is not too small, (2.28) reduces to (2.29) in the limitk ! 0; in this case the
normal viscous stresses disappear and� of VPF has the same asymptotic form as IPF.

For small
p
J , (2.28) for instability is reduced to

� =
1

2

�
1

R2
� k2

� p
J

k (�` +m�a)
; (2.30)

which is another asymptotic solution inJ ! 0 and is in good agreement with the curves of maximum growth rate�m of
VPF in figures 4.3-4.7. Therefore we find that VPF bridges two asymptotic solutions, one is given by (2.29) whenJ !1
and the other is given by (2.30) in the limit ofJ ! 0; the latter is not included in IPF. In the limit ofk ! 0, (2.30) is
then reduced to� =

p
J=(1 +m), which changes monotonically with increasingm. This aspect is different from that of

FVF (wherekm for small
p
J has a maximum with respect tom and is reduced to 0 form ! 0 andm ! 1; refer to

Tomotika (1935) and Lee and Flumerfelt (1981)).
Around the maximum growth rate,�m = �(km) andd�m=dkm = 0, we have an expansion of�:

�(k) = �m +
1

2

d
2�m

dk2
m

(k � km)
2
+ � � � ; (2.31)

thus�m, km and the curvatured2�m=dk2m may be used to compare the results of VPF, FVF and IPF.
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3 Growth rate curves, � vs. k

Growth rate curves were computed for 14 fluid pairs;`; a are listed in table 3.1.
In table 3.2 we list the 28 values of dimensionless parameters needed to calculate growth rates for fully viscous flow;

14 when the more viscous liquid is inside and an additional 14 when the more viscous liquid is outside. Growth rate curves
� vs.k for the 14 fluids listed in table 3.1 are given in figures 3.1–3.6. The inverse case, with the viscous fluid outside,
is plotted in figure 3.7. There are three curves in each figure belonging to fully viscous, viscous potential and inviscid
potential flow. The curves have a universal order with the highest growth given by IPF and the lowest growth rates by
FVF. Long waves are more stable for FVF than VPF (especially whenm is close to the critical; see figures 3.2, 3.5-3.7),
but the peak values are very close (see Fig.3.6, where

��d2�mV =dk
2

mV

�� is small).
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No. material (fluid` – fluid a) �` (kg m�3) �` (kg/m.sec) �a (kg m�3) �a (kg/m.sec) 
 (N/m)

1 mercury–air 13500 0.00156 1.2 1.8�10�5 0.4821
2 mercury–water 13500 0.00156 1000 0.001 0.375
3 water–air 1000 0.001 1.2 1.8�10�5 0.0728
4 benzene–air 860 0.00065 1.2 1.8�10�5 0.02886
5 water–benzene 1000 0.001 860 0.00065 0.0328
6 SO100–air 969 0.1 1.2 1.8�10�5 0.021
7 glycerine–mercury 1257 0.782 13500 0.00156 0.375
8 glycerine–air 1257 0.782 1.2 1.8�10�5 0.0634
9 oil–air 879.8 0.483 1.3 1.85�10�5 0.0315

10 goldensyrup–CC4 and paraffin 1400 11.0 1600 0.0034 0.023
11 SO10000–air 969 10.0 1.2 1.8�10�5 0.021
12 goldensyrup–BBoil 1400 11.0 900 6.0 0.017
13 goldensyrup–Black lubrication oil 1400 11.0 850 10.0 0.008
14 tar pitch mixture–goldensyrup 1400 200.0 1400 11.0 0.023

Table 3.1:Fluid pairs for study of capillary instability when the viscous fluid is inside; density (kg m�3), viscosity
(kg/m.sec) and interfacial tension (N/m). An additional 14 pairs numbered from 15-28 are obtained by inverting 1-14
so that the viscous fluid is outside; for example, 15 is air-mercury. These 28 fluid pairs are the data base for this paper.

No. ` m No. ` m J

1 8.889E-05 1.154E-02 15 1.125E+04 8.667E+01 2.674E+07
2 7.407E-02 6.410E-01 16 1.350E+01 1.560E+00 2.080E+07
3 1.200E-03 1.800E-02 17 8.333E+02 5.556E+01 7.280E+05
4 1.395E-03 2.769E-02 18 7.167E+02 3.611E+01 5.874E+05
5 8.600E-01 6.500E-01 19 1.163E+00 1.538E+00 3.280E+05
6 1.238E-03 1.800E-04 20 8.075E+02 5.556E+03 2.035E+01
7 1.074E+01 1.995E-03 21 9.311E-02 5.013E+02 7.708E+00
8 9.547E-04 2.302E-05 22 1.048E+03 4.344E+04 1.303E+00
9 1.478E-03 3.830E-05 23 6.768E+02 2.611E+04 1.188E+00

10 1.143E+00 3.091E-04 24 8.750E-01 3.235E+03 2.661E-03
11 1.238E-03 1.800E-06 25 8.075E+02 5.556E+05 2.035E-03
12 6.429E-01 5.455E-01 26 1.556E+00 1.833E+00 1.967E-03
13 6.071E-01 9.091E-01 27 1.647E+00 1.100E+00 9.256E-04
14 1.000E+00 5.500E-02 28 1.000E+00 1.818E+01 8.050E-06

Table 3.2:Dimensionless parameters ` = �a=�`, m = �a=�` and J = �
D=�2 is a Reynolds number based on the
maximum viscosity, which is the viscosity �` listed in table 3.1. Entries 15-28 are for cases in which �` and �` are for the
outside fluid.
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Figure 3.1:The growth rate � vs. k for case 1, mercury in
air.
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Figure 3.2:The growth rate � vs. k for case 5, water in
benzene.
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Figure 3.3:The growth rate � vs. k for case 8, glycerine
in air.
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Figure 3.4:The growth rate � vs. k for case 11, SO10000
in air.
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Figure 3.5:The growth rate � vs. k for case 12, golden-
syrup in BBoil.
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Figure 3.6:The growth rate � vs. k for case 14, tar pitch
mixture in goldensyrup.
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Figure 3.7:The growth rate � vs. k for case 15, (in-
verse), air in mercury; kmI = kmV = kmF =0.9696,
�mI =2.319, �mV =2.318, �mF =2.317, for which
�mV =�mI =0.9996 and �mV =�mF =1.000.
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Table 3.3 lists the maximum growth rate and the wavenumber of maximum growth for fully viscous and viscous
potential flow. We measure the agreement by monitoring the ratio of maximum growth rates�mV =�mF and the ratio
of the maximizing wavenumbers. The agreement is good when these ratios are nearly one. Table 3.3 shows very good
agreements for high Reynolds numbers greater than O(10

4
) and reasonable agreement for Reynolds numbers greater than

O(1). We call the readers attention to the fact that the agreements between fully viscous and viscous potential flow are
good whenJ is large, even the fluid when the pairs are two liquids. This result is in apparent disagreement with the notion
that such agreements are somehow associated with the behavior of boundary layers at gas-liquid surfaces (see section 6)
and not with boundary layers at liquid-liquid surfaces.

In table 3.4 we give the growth rate ratios and associated wavenumber ratios for viscous and inviscid potential flow.

No. J kmV �mV kmF �mF kmV =kmF �mV =�mF

1 2.6744E+07 1.3957E+00 9.7090E-01 1.3957E+00 9.7048E-01 1.0000E+00 1.0004E+00
2 2.0803E+07 1.3894E+00 9.6337E-01 1.3894E+00 9.5517E-01 1.0000E+00 1.0086E+00
3 2.0803E+07 1.3957E+00 9.6975E-01 1.3894E+00 9.6706E-01 1.0045E+00 1.0028E+00
4 7.2800E+05 1.3957E+00 9.6958E-01 1.3894E+00 9.6643E-01 1.0045E+00 1.0033E+00
5 5.8745E+05 1.3585E+00 8.9325E-01 1.3524E+00 8.4918E-01 1.0045E+00 1.0519E+00
6 3.2800E+05 1.2416E+00 7.8900E-01 1.0898E+00 5.9326E-01 1.1393E+00 1.3299E+00
7 3.1834E+04 1.0704E+00 4.7575E-01 9.9608E-01 3.4141E-01 1.0746E+00 1.3935E+00
8 2.0349E+01 9.8716E-01 5.1382E-01 7.4027E-01 2.7489E-01 1.3335E+00 1.8692E+00
9 1.3032E+00 9.7832E-01 5.0282E-01 7.3035E-01 2.6577E-01 1.3395E+00 1.8920E+00

10 1.1880E+00 2.9710E-01 4.8735E-02 2.7033E-01 1.6553E-02 1.0990E+00 2.9442E+00
11 4.2500E-03 2.7772E-01 4.2951E-02 1.7242E-01 1.4812E-02 1.6108E+00 2.8998E+00
12 2.0349E-03 2.0181E-01 2.7576E-02 1.0608E+00 4.3485E-03 1.9024E-01 6.3414E+00
13 6.8000E-04 1.4468E-01 1.5550E-02 1.1146E+00 2.2753E-03 1.2980E-01 6.8343E+00
14 8.0500E-06 6.7356E-02 2.6807E-03 7.1733E-01 6.4485E-04 9.3898E-02 4.1571E+00

Table 3.3:Maximum growth rate and the associated wavenumber ratios indexed by J; cases 1-14 are viscous fluid inside.
The ratios are nearly one, indicating agreement between FVF and VPF when J is large.

No. kmI �mI kmV �mV kmV =kmI �mV =�mI

1 1.3957E+00 9.7110E-01 1.3957E+00 9.7090E-01 1.0000E+00 9.9979E-01
2 1.3894E+00 9.6377E-01 1.3894E+00 9.6337E-01 1.0000E+00 9.9958E-01
3 1.3957E+00 9.7099E-01 1.3957E+00 9.6975E-01 1.0000E+00 9.9873E-01
4 1.3957E+00 9.7097E-01 1.3957E+00 9.6958E-01 1.0000E+00 9.9857E-01
5 1.3585E+00 8.9590E-01 1.3585E+00 8.9325E-01 1.0000E+00 9.9704E-01
6 1.3957E+00 9.7098E-01 1.2416E+00 7.8900E-01 8.8965E-01 8.1258E-01
7 1.1924E+00 5.5735E-01 1.0704E+00 4.7575E-01 8.9769E-01 8.5361E-01
8 1.3957E+00 9.7101E-01 9.8716E-01 5.1382E-01 7.0731E-01 5.2916E-01
9 1.3957E+00 9.7096E-01 9.7832E-01 5.0282E-01 7.0098E-01 5.1786E-01

10 1.3463E+00 8.7508E-01 2.9710E-01 4.8735E-02 2.2067E-01 5.5692E-02
11 1.3957E+00 9.7098E-01 2.7772E-01 4.2951E-02 1.9899E-01 4.4235E-02
12 1.3646E+00 9.1304E-01 2.0181E-01 2.7576E-02 1.4788E-01 3.0202E-02
13 1.3708E+00 9.1596E-01 1.4468E-01 1.5550E-02 1.0554E-01 1.6977E-02
14 1.3524E+00 8.8539E-01 6.7356E-02 2.6807E-03 4.9804E-02 3.0277E-03

Table 3.4:Maximum growth rate and wavenumber ratios for VPF and IPF when the viscous liquid is inside (No. 1-14).
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4 Maximum growth rates and wavenumbers, �m and km vs.
p
J

The growth rate curves� vs.k depend only on three control parameters`;m andJ . The dimensionless description allows
for maximum generality. We show how�m andkm from FVF vary with

p
J for different values of̀ andm in figures 4.1

and 4.2.
For large

p
J , the maximum growth rate in figure 4.1 depends only upon` as expected just by IPF. For small

p
J , the

maximum growth rate is proportional to
p
J and is shifted bym, which is evaluated by Tomotika’s (34). Equation (2.17)

includes these two asymptotic solutions.
Corresponding to figure 4.1,km changes with

p
J as in figure 4.2. For large

p
J , km is evaluated by IPF (0:9696 �

km � 1:396, for which refer to (5.2)-(5.3) and figure 5.1(b)). For small
p
J , km has a maximum with respect tom and

is reduced to 0 form ! 0 andm ! 1; note thatkm = 1:178 atmc = 3:57, thus0 < km � 1:178. The existence of a
maximum value ofkm at values ofJ near 1 for certain values of` andm is noteworthy.

0.0001 0.01 1 100 10000 1e+06 1e+08
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(0.01, 1.00)
(0.01, 100)
(0.01, 1000)
(1.00, 0.01)
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(1.00, 100)
(1.00, 1000)
(100, 0.01)
(100, 1.00)
(100, 100)
(100, 1000)
(1000, 0.01)
(1000, 1.00)
(1000, 100)
(1000, 1000)1e-06

1e-05

0.0001

0.001
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1

10

sm

J

(l, m)

Figure 4.1:Maximum growth rate �m vs.
p
J for various values of ` and m in the fully viscous case.
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Figure 4.2:Wavenumber km vs.
p
J for the values of ` and m for FVF. The existence of a maximum value of km at values

of J near 1 for certain values of ` and m is noteworthy. For small
p
J , km has a maximum with respect to m. For largep

J , all theories collapse to IPF which does not depend on the viscosity ratio m but does depend on the density ratio `.
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In figures 4.3–4.7 we plotted the peak values�m and
the corresponding wavenumberkm vs.

p
J for fixed val-

ues of` andm which are given in table 3.2. We can find
the two asymptotic solutions, one is given by IPF for largep
J and the other is given for small

p
J ; (2.30) for VPF

and Tomotika’s (34) for FVF. The maximum growth rate
�m andkm for IPF do not depend onJ andm and appear
as the highest flat value. The smallest growth rate is for
FVF.
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Figure 4.3:�m and km vs.
p
J for values of (`; m) =

(8:889� 10
�5; 1:154� 10

�2
) for mercury in air.
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Figure 4.4:�m and km vs.
p
J for values of (`; m) =

(8:600� 10
�1; 6:500� 10

�1
) for water in benzene.
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Figure 4.5:�m and km vs.
p
J for values of (`; m) =

(1:238� 10
�3; 1:800� 10

�6
) for SO10000 in air.
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Figure 4.6:�m and km vs.
p
J for values of (`; m) =

(1:000; 5:500 � 10
�2

) for tar pitch mixture in golden-
syrup.
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Figure 4.7:�m and km vs.
p
J for values of (`; m) =

(1:125� 10
4; 8:667� 10

1
) for air in mercury.
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5 �mI vs. km for IPF

For IPF, the growth rate�I (based upon the time scaleT` = D=U`, U` =

p

=(�`D), ` = �a=�` andR = 1=2) is

expressed as

�I =

s�
1

R2
� k2

�
k

(�` + `�a)
: (5.1)

For small`, this reduces to�I =

q�
1

R2 � k2
�

k

�`
, while for large`, it reduces to�I =

q�
1

R2 � k2
�

k

`�a
. Thus, combi-

nation of the results shown in figure 5.1 leads to asymptotic forms of the maximum growth rate�mI :

�mI =

�
0:971 at kmI = 1:39 for `� 1;

2:319� `�1=2
at kmI = 0:969 for `� 1:

(5.2)

If the fluid of density�` is outside and�a inside, thenTa = D=Ua; `
0

= 1=` and the subscripta and` are interchanged
in (5.1), for which we find that

�mI =

�
2:319 at kmI = 0:9696 for `0 � 1;

0:9711� `0�1=2
at kmI = 1:396 for `0 � 1:

(5.3)

The asymptotic form (5.2) and (5.3) are shown as dashed lines in figure 5.1. The cross point in figure 5.1(a) is given
by `1=2 = 2:319=0:971, which gives the critical valuèc = 5:70 (`0

c
= 1=`c = 0:175). This may be used to evaluate�m,

though the corresponding wavenumberkm changes in the range wider than0:175 < ` < 5:70. It is stressed, however, that
whenJ is large VPF has two structures as in IPF.

6 Conclusions and discussion

We studied capillary instability of a fluid cylinder of vis-
cosity�` in a fluid with viscosity�a; the fluids may be
liquid or gas. The problem is completely characterized by
three numbers: a viscosity ratiom = �a=�`; a density ra-
tio ` = �a=�` and by a Reynolds numberJ = �
D=�2

`

based on a collapse velocity
=�` where�` and�` are
for the more viscous of the two fluids. The goal of the
present study is to evaluate the utility of viscous potential
flow as an approximation to the unapproximated viscous
problem introduced by Tomotika (1935) and studied for
special cases by Chandrasekhar (1961) and for limiting
cases by Lee and Flumerfelt (1981). The effects of vor-
ticity and the continuity of the tangential compoenent of
velocity and stress cannot be enforced in the frame of po-
tential flow of a viscous fluid, but the extensional effects
of viscous stresses on capillary collapse are retained in the
normal stress balance.

Analysis of the viscous flow reveals the existence of fi-
nite maximum values ofkm, for certain viscosity ratios, as
J is increased (figures 4.1 and 4.2). We found that invis-
cid potential flow emerges as a unique high Reynolds limit
(practically, withJ > O(10)) of both the fully viscous
and viscous potential flow analysis. The inviscid limit de-
pends only on the density ratiò.

Comparisons of growth rate curves for fully viscous
flow, viscous potential flow and inviscid potential flow are
given in figures 3.1–3.7 for 7(5)of 28 fluid pairs. Com-

parisons of the maximum growth rate�m and associated
wavenumberkm as a function of

p
J for different values

of m and` are presented in figures 4.3–4.7. From these
figures we may conclude that the maximum growth rates
and wavenumber for inviscid potential flow, viscous po-
tential flow and fully viscous flow converge whenJ is
large; for smallerJ , the growth rates of inviscid potential
flow are greatest (and independent ofJ) and these fully
viscous flows are smallest and decrease with decreasing
J . The growth rates of viscous potential flow track fully
viscous flow and lie between inviscid potential flow and
fully viscous flow. A similar behavior is exhibited by the
associated wavenumbers, with viscous potential flow giv-
ing the smallestkm and inviscid potential flow the largest
km when

p
J is not too large.

It follows, from the comparisons just presented, that
viscous potential flow is a much better approximation of
fully viscous flow than inviscid potential flow for smallJ
and no worse than inviscid potential flow for allJ . There
is absolutely no advantage to putting the viscosities to zero
in the analysis of potential flow.

The convergence of fully viscous flow and viscous po-
tential flow to inviscid potential flow when the Reynolds
number J is large could have been anticipated from
general fluid mechanical principles. On the other hand,
Harper (1972) has argued (see also Joseph and Liao 1994,
pp 6 and 7) that the success of the Levich (1949,1962)
potential flow approximation in calculating the drag on a
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Figure 5.1:Maximum growth rate �mI and associated wave number for IPF: +++ fluid ` is inside,��� fluid is outside.
� is made dimensionless with T` = D=

p

=�`D when fluid ` is inside and with T` = D=

p

=�aD when it is outside.

The asymptotic forms (5.2) and (5.3) are marked with a dashed line and bold dashed line respectively.
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rising spherical bubble of gas is due to the nature of the
boundary layer at a tangentially stress-free surface. Pre-
sumably liquid-gas surfaces approximate such stress free
conditions when the viscosity contrast is large, but not at
liquid-liquid surfaces like water and benzene in which the
viscosities are comparable.

Levich computed the drag by equatingUD, whereU
is the rise velocity andD the drag, to the viscous dissipa-
tion in the liquid as would be true for the steady drag on
a solid. The approximation arises on both sides of the bal-
ance, on the left side–either by assuming that every part of
the boundary of the bubble moves with the same velocity
U , or that the tangential component of the traction vec-
tor vanishes at the bubble’s surface–and on the right, by
evaluating the dissipation integral on potential flow over a
sphere (see Joseph, Liao, and Hu 1993).

Our calculations of capillary instability given here
show that viscous potential flows approximate fully vis-
cous liquid-liquid as well as gas-liquid flows in cases in
which inviscid potential flow fails dismally provided only
thatJ is not too small.
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