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Interfacial shapes in the steady 
ow of a highly viscous

dispersed phase
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(Received 8 May 1998)

Here we develop a perturbation theory for the steady 
ow of immiscible liquids when the dispersed phase

is much more viscous than the continuous phase, as is the case in emulsions of highly viscous bitumen in

water and in water lubricated pipelines of heavy crude. The perturbation is non-singular, but non-standard;

the partitioning of the boundary conditions at di�erent orders is not conventional. At zeroth order the

dispersed phase moves as a rigid solid with an as yet unknown, to-be-determined, pressure. The 
ow of

the continuous phase at zeroth order is determined by a Dirichlet problem with prescribed velocities on a

to-be-iterated interfacial boundary. The �rst order problem in the dispersed phase is determined from the

solution of a Stokes 
ow problem driven by the previously determined shear strain on the as yet undetermined

interfacial boundary. This Stokes problem determines the unknown, to-be-determined, lowest order pressure

distribution. At this point we have enough information to test the balance of normal stresses at lowest order;

by iterating the interface shapes we may now complete the description of the lowest order problems.

The perturbation sequence in powers of the viscosity ratio has a similar structure at every order and all the

problems may be solved sequentially with the caveat that the interface shape must be determined iteratively

in each perturbation loop. Problems in which the internal motions of the dispersed phase are slow and slowly

varying can also be treated with the same perturbation scheme.
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1. Introduction

In treating the 
ow of two immiscible liquids with greatly di�erent viscosities, like bitumen and water,

certain simpli�cations arise when the more viscous liquid is dispersed and not attached to rigid boundaries.

In this case the dispersed phase may move nearly as a rigid body since the forces which arise from the motion

of the continuous phase are not great enough to drive large secondary motions in the dispersed phase. The

water will move bitumen dispersed in water more or less as a rigid body provided that the bitumen is not

anchored at some wall.

Here and henceforward we shall call the dispersed phase oil and the continuous phase water. We search

for simpli�ed mathematical descriptions as a perturbation of a rigid motion in the limit in which the ratio

of the water viscosity �w to the oil viscosity �o

" =
�w
�o

! 0 (1.1)

In this paper we will con�ne our attention to the cases in which interfacial rheology, and Maragnoni e�ects

are neglected. These e�ects are greatly diminished by the high bulk viscosity of the dispersed phase and in

a later work we will look to describe exactly how diminished these e�ects are. Generally speaking, our work

here is motivated by the needs of the heavy oil industry.

2. Governing Equations

To keep the description simple, we consider the case when the oil is free to move in the water as in the

case of sedimentation of a single drop of heavier-than-water oil or in the core annular 
ow studied by Bai,

Kelkar and Joseph [1996].

In steady 
ow the oil-water interface is given by

F (�("); ") = 0 (2.1)
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where x = �(") is the position of points on F = 0. The unknowns in our problem are

u(�; ");  (x; ") in the oil

�(x; "); �(x; ") in the water

�(")

9>>>>>>=
>>>>>>;

(2.2)

where u and � are velocities and

 = po + �o� � x

� = pw + �w� � x

9>>=
>>;

(2.3)

are \dynamic" pressures, p is pressure and � is a constant vector (� = g in sedimentation problems; � = ex�

for the constant part of the pressure gradient which balances the pressure drop in core-annular 
ow).

The equations of motion in the oil and water are

�ou � ru = �r +
�w
"
r2u; divu = 0; (2.4)

and

�w� � r� = �r�+ �wr
2�; div� = 0: (2.5)

At the interface, the velocity is continuous

u(�) = �(�) (2.6)

and the normal component vanishes

u(�) � n = �(�) � n = 0 (2.7)

where n is the normal from oil to water. The shear stress is continuous

� �D[u(�)� "�(�)] � n (2.8)

where D[u] , the rate of strain, is the symmetric part of ru and � is a unit tangent vector in the interface,

� � n = 0. The balance of normal stresses can be expressed as

��(�) +  (�)� (�w � �o)� � �

+2�wn �D[� � u="] � n = 2H(�)�

(2.9)

where H(�) is the mean curvature and � is interfacial tension.
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The boundary conditions apply only to water, since oil is assumed not to touch the boundary. For steady


ow the velocity of the bondary at x = xb is

�(xb) = V: (2.10)

V is the velocity of solid walls in a coordinate system centered on the falling drop or in a coordinate system

moving with the average velocity of the core in annular 
ow.

3. Equations when "! 0

Assuming now that all fuctions listed in (2.3) are bounded as "! 0, we �nd that

uo(0) = 0;

divuo = 0;

r2uo = 0;

uo(�o) � no = 0;

� o �D[uo(�o)] � no;

no �D[uo(�o)] � no:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(3.1)

The function

uo(x) � 0

satis�es (2.10). Then, in the water we have

�w�o � r�o = �r�o + �wr
2�o; div�o = 0

�o(�o) = 0

�(�b) = V

9>>>>>>=
>>>>>>;

(3.2)

Equations (3.2) are a Dirichlet problem for �o(x) and �o(x) which can be solved when the interface �o is

given. No condition on �(x) arises from the shear stress balance (2.8); and shear stress arising from (3.1) is

acceptable. The idea is to iterate �o, using the �o that will reduce (2.9) to an identiy. To do this iteration,

more work is required.
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4. Perturbation equations at lowest order

Now we develop a solution in powers of ", to the lowest order

u(x; ") = "u1(x);

 (x; ") =  o(x) + " 1(x);

�(x; ") = �o(x) + "�1(x);

�(x; ") = �o(x) + "�1(x);

�(") = �o + "�
1
:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(4.1)

At the interface, we have

�(�("); ") = �o(�o) + "�1(�o) + " 1 � r�o(�o); (4.2)

�(�("); ") = �o(�o) + "�1(�o) + "�
1
� r�o(�o) (4.3)

Since uo(x) � 0 in the oil

u(�("); ") = "u1(�o) + "2u2(�o) + "2�
1
� ru1(�o) (4.4)

but

 (�("); ") =  o(�o) + " 1(�o) + "�
1
� r o(xo): (4.5)

Moreover, since the shape of drop changes with

n(�) = no + "n1

� (�) = � o + "� 1

(4.6)

After inserting (4.1) through (4.6) into the basic equations (2.4) through (2.9) we �nd �rst that

r o = �wr
2u1; divu1 = 0;

u1(�o) � no = 0;

� o �D[u1(�o)� �o(�o)] � no = 0

9>>>>>>=
>>>>>>;

(4.7)

This problem may be solved for u1(x); and  o(x) when �o is given. The slow motion in the oil is driven by
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the shear rate in the water

� o �D[�o] � no = @�� (�o)=@yn
def
=

�


(�o) (4.8)

where �� (�o) is the velocity component tangent to the interface and yn is normal at x = �o.

The normal stress balance (2.9) now becomes

��1(�o) +  o(�o)� (�w � �o)g � �o

�2�wno �D[u1(�o)] � no = 2H(�o)�

(4.9)

We may write

no �D[u1(�o)] � no = @u1n=@yn

where u1n is the normal component of u1 at the interface point x = �o. In deriving (4.9) we used an easily

proved result which says that

no �D[�(�o)] � no = 0

when �o(�o) is the 
uid velocity at the boundary of a rigid body. Equation (4.9) selects �o which until now

was arbitrary.

5. Perturbation Equations at Higher Order

Continuing now to higher orders, we �nd that

�w[�o � r�1 + �1 � r�o] = �r�1 + �wr
2�1; div�1 = 0 (5.1)

and

�1(�o) = u1(�o)��1
� r�o(�o);�1(�b) = 0 (5.2)

Equations (5.1) and (5.2) may be solved for �1(x) and �1(x) when x1 is given.

To get �1, we must go to order "2 in our expansion. From (2.4) we get

0 = �r 1 + �wr
2u2; divu2 = 0 (5.3)
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Equation (2.7)1 gives rise to

no � (u2(�o) +�1
� ru1(�o)) + n1 � u1(�o) = 0: (5.4)

and (2.8) leads to

� o �D[u2 � �1 +�1 � r(u1 � �o)] � no

+� 1 �D[u1 � �o] � no + � oD[u1 � �o] � n1 = 0

(5.5)

Equations (5.3), (5.4) and (5.5) can be solved for u2 and  1
when �

1
is given. The normal stress condition

(2.9) at order "2 gives rise to

��1(�o) +  1(�o)��1
� r(�o �  o)

�(�w � �o)
�
h
� �

1
+ 2�wnoD[�1 � u2 +  1 � r(�o � u1)] � no

2dH
d�

(�o) � �1�

(5.6)

Equation (5.6) selects the correct boundary perturbation.

Equations (2.5) and (2.6) at order "2 give rise to a perturbation problem for �2 and �2, depending on �
2

and so on

� = exx+ ez�(x; ")

� = ez�1(x); �1 =
@�
@"

So �
1
is just one scalar function.

6. Core annular 
ow

Here we shall revisit the problem of waves on core-annular 
ow considered by Bai, Kelkar and Joseph

[1997]. They treated a steady 
ow in which the holdup ratio co=cw of average velocities co = Qo=�R
2

1 and

cw = Qw=�(R
2
2 � R2

1) is prescribed. Here Qo and Qw are the volume 
ux of oil and water, R2 is the outer

radius of the pipe and R1 is the mean radius of the core. In the approximation carried out by them, the

core is rigid. The analysis of the steady 
ow of water is carried out in a coordinate system in which the

core is stationary; secondary motions in the core were not treated. The shape of the interface was computed

using the normal stress condition under the assumption that the pressure in the core is uniform apart from

a constant pressure gradient � along the pipe axis z (see �gure 1).
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[Figure 1 goes near here]

The problem of core annular 
ow may be treated in the framework of the perturbation theory described

in section 3 and 4 with � � x in (2.3) equal to ��z where � is a constant pressure gradient. The governing

equations at zeroth order are essentially (3.2).

�w� � r� = �ez �rpw + �wr
2 = 0;

� = 0 on r = f(z);

� = �cez on r = R2

(6.1)

where r = f(z) gives the shape of the interface and f(z) was determined by Bai et al [1996] using the normal

stress condition

�

f(1 + f 02)
1

2

�
�f 00

(1 + f 02)
3

2

= C � pw: (6.2)

The ratio of the average oil to water velocity h = c=cw is given by

h =
Qo=Qw

R2

1
=(R2

2
�R2

1
)
=

�cR2

1

�c[f2 �R2

1
] + 2�

R R2

f
r�dr

R2 �R2

1

R2

1

(6.3)

Though f depends on z, h is a constant, independent of z; h = 2 for perfect core 
ow without waves and

h = 1 when the water is trapped between wavecrests touching the pipe wall. For wavy 
ow 1 < h < 2; h = 1:4

occurs frequently in experiments; the selection mechanism is related to stability and is not understood. Bai

et al [1996] prescribed h = 1:4, ensuring waves.

Going further now than Bai et al [1997] we consider now the problem (4.7) for the 
ow u = u1 in the oil

core

��ez +rpo = �wr
2u; divu = 0 (6.4)

where, on r = f(z), we have

u(r; z) � n = 0 (6.5)

and

� �D[u] � n =
�


(r; z) (6.6)
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where the shear rate

�


(f(z); z) = � �D[�] � n (6.7)

is evaluated on the solution � of equations (6.1)-(6.3). The constant � and function
�


(r; z) are prescribed.

After computing � and pw from the problem (6.1) and u and p0 from the problem (6.4)-(6.7), we may

complete the perturbation cycle by forming the normal stress balance corresponding to (4.9). This balance

replaces (6.2) with

�

f(1� f 02)
1

2

�
�f 00

(1 + f 02)
3

2

� 2�wD[u] � n = p0 � pw (6.8)

Equation (6.8) cannot be satis�ed for arbitrarily selected functions r = f(z) and wave lengths L. These

parameters are iterated at each perturbation cycle until (6.8) balances and holdupt ratio (6.3) is met, giving

rise to converged values of f(z) and L.

Preliminary calculations following the perturbation method just presented have been carried out using the

methods of Bai et al [1996]. The additional terms in the normal stress balance (6.8) are small (see Figure

2) and the di�erence between the rigid approximation of Bai et al [1996] and the present calculation are

also small (see Figure 3). The wavelength and pressure gradient versus Reynolds number is shown in Figure

4. The wavelength of perturbation is slightly larger than the wavelength of the rigid core, but the pressure

gradients are the same.

A more complete study of the perturbation solution will be presented in a future calculation.
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Captions

Figure 1. Core annular 
ow. The 
ow is periodic with period L. The mean radius is R1 where R2

1
=

1

L

R L
0
f2(z). The core moves forward with velocity c and the wall is stationary; here the core has been put

to rest. Let 
w be the domain occupied by water 0 � z � L; f(z) � r � R2 and 
o is the domain occupied

by oil 0 � z � L; 0 � r � f(z).

Figure 2. The pressure distributions and viscous contribution normal stress along the wave interface when

[�; h; IR; J] = [0:8; 1:4; 600; 13� 104].

Figure 3. The comparison of the wave shapes approached from perturbation and rigid approximation when

[�; h; IR; J] = [0:8; 1:4; 600; 13� 104].

Figure 4. The comparison of dimensionless wavelength and pressure gradient vs. Reynolds number IR for

[�; h; J ] = [0:8; 1:4; 13� 104]


