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ABSTRACT
This paper summarizes our recent efforts using direct

numerical simulations to determine microstructural properties of
fluidized suspensions of a few particles.  We have been studying
the motions of a few particles in a viscous fluid by direct
numerical simulation at moderate values of the Reynolds number
in the 100’s.  From these simulations, we find the mechanisms
which give rise to lateral migration of particles and turn the
broad side of long bodies perpendicular to the stream.  We find
that a viscous “stagnation” point is a point on the body where the
shear stress vanishes and the pressure is nearly a maximum.  We
show how the migration is controlled by stagnation and
separation points and go further than before in the discussion of
Segré-Silberberg effects of cross-streamline migration in two
dimensions.  We have analyzed the lift off and steady flight of
solid capsules in Poiseuille flows.  We do a three-dimensional
simulation of steady flow at slow speeds and show that the
extensional stresses in a viscoelastic flow change the sign of the
normal stress which would exist at points of stagnation in a
Newtonian fluid, causing the long side of the body to line up
with the stream.

INTRODUCTION
This paper is a review of CFD approaches to problems of

two-phase flows which have been developed by my colleagues
and ex-students, H. Hu and P. Singh, my present students, J.
Feng, T. Hesla and Y. Huang, and my colleagues, M. Crochet,
R. Glowinski and T. Pan.  Our goal is to obtain exact results in
which the nonlinear hydrodynamic mechanisms inducing flow
microstructure are fully revealed.  We have determined the
motion of a few interacting particles in a variety of flows at
Reynolds numbers up to the hundreds.  Most, but not all, of our
simulations have been restricted to two dimensions.  Direct
simulations of the motion of many particles, even in two

dimensions, have not yet been done.  Stokesian dynamics is an
approximate and not direct numerical method of handling the
motion of many particles when inertia of the fluid and inertia of
the particle are neglected.  By interrogating our simulations, we
are able to identify the nonlinear mechanisms which produce
microstructures through particle-particle and wall-particle
interactions.  Microstructural properties of fluidized suspensions
in Newtonian fluids are associated with wake interactions and
turning couples on long bodies in a scenario, which I have
described as drafting, kissing and tumbling.  Kissing particles
are sucked together in wakes and the long body, which kissing
spheres momentarily form, is unstable when the axis of the long
body is along the stream.  The kissing spheres tumble into
across-the-stream arrangements basically for the same reason
that a long body will put its broadside perpendicular to the
stream.  These microstructural elements endow a fluidized
suspension with anisotropic structure in which spherical
particles on the average line up across the stream.  The
anisotropy, which is readily observed in experiments, is due to
nonlinear mechanisms revealed in simulations that could not be
predicted by any of the continuum models of two-phase flows or
even by perturbation methods which were promoted in the
1980’s.

Other features of particle-fluid, particle-particle and particle-
wall interactions which can be illuminated by intelligent
interrogation of direct simulations are related to the effects of the
shear and pressure distributions exerted by the fluid on the
particle surface on the motion of the particle.  These forces are
responsible for lateral drift and rotation of particles in
sedimenting and shear flows.  We can determine the effects of
the walls on the equilibrium position of the particles away from
the wall.  We can also study the evolution of systems of particles
as dynamical systems by looking at the bifurcations of steady
solutions.
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We have developed two types of direct finite-element
simulations in which the forces exerted by the fluid on the body
are computed.  The first type of calculation can be called a force
calculation and the second is a motion calculation.  In a force
calculation, the position and velocity of the bodies are prescribed
and the fluid motion is computed by a Navier-Stokes solver.  We
have used three kinds of solvers and they all work well.  After
having computed the fluid motion, we can compute the forces
and moments that are exerted by the fluid on the objects in the
flow.  The forces tell us how the body would move thereafter if it
could.  In a motion calculation, we actually move the body with
those forces and carry out a motion simulation iteratively.  Of
course, we like motion calculations better because they go
further.  The only force calculations we have done are described
in the paper by Singh, Caussignac, Fortes, Joseph and Lundgren
[1989], which was our first CFD effort, and the paper by Feng,
Joseph, Glowinski and Pan [1993], which was our first three-
dimensional CFD effort.  All the other papers are motion
calculations that extend and enhance a finite-element package
first introduced by Hu, Joseph and Crochet [1992].

In this paper, I will give an overview of our works on direct
simulations of two-phase flows emphasizing the intelligent
interrogation of simulations for the underlying fluid dynamics
rather than the details of algorithm development.  I will follow a
chronological format in presenting the results, listing the abstract
of each paper verbatim, followed by a selection of some special
results designed to give the reader the flavor of the work.  We
have actually done quite a lot and much of it is not yet
published.

SELECTED WORKS
1. Singh, P. Caussignac, P.H., Fortes, A., Joseph, D.D. and

Lundgren, T., 1989, “Stability of Periodic Arrays of
Cylinders Across the Stream by Direct Simulation,” J. Fluid
Mech. 205, pp. 553-571.

We treat the problem of the stability of an infinite
horizontal array of cylinders, spaced periodically, by
a direct numerical simulation of the Navier-Stokes
equations for steady flow at Reynolds numbers less
than or equal to 100.  We find that the only stable
configuration for the array is one with equal spacing
between cylinders and all cylinders lying on a line
perpendicular to the flow.  The array is found to be
stable under displacements of the cylinders
perpendicular and parallel to the array.  We say a
perturbation is stable when it gives rise to a force
which acts to restore the original stable configuration.
Our results are consistent with experiments in which
spheres were confined by the sidewalls of a fluidized
bed to move in two dimensions.  As a secondary issue
we consider the variation with parameters of the
length and width of wakes behind cylinders.

This paper may have been the first to give the results of
direct simulation of flow at finite Reynolds numbers past an

array of cylinders in which no assumption is made about the
nature of the flow near the cylinders.  The stability calculation is
also the first of its type and the results are satisfactory.  One
defect of the calculation is that a too strong interpretation of
periodicity is used in which it is assumed that vertical lines
between the spheres are streamlines.

2. Hu. H.H., Joseph, D.D. and Crochet, M., 1992, “Direct
Simulation of Fluid Particle Motions,” Theoretical and
Computational Fluid Dynamics 3, pp. 285-306.

Continuum models of two phase flows of solids and
liquids use constitutive assumptions to close the
equations. A more fundamental approach is a
“molecular dynamic” simulation of flowing “big”
particles based on reliable macroscopic equations for
both solid and liquid. We developed a package that
simulates the unsteady two dimensional solid-liquid
two phase flows using the Navier-Stokes equations for
the liquid and the Newton’s equations of motion for
the solid particles. The Navier-Stokes equations are
solved using a finite element formulation and the
Newton’s equations of motion are solved using an
explicit-implicit scheme. We show that the simplest
fully explicit scheme to update the particle motion
using Newton’s equations is unstable. To correct this
instability we propose and implement an Explicit-
Implicit Scheme in which at each time step, the
positions of the particles are updated explicitly, the
computational domain is remeshed, the solution at the
previous time is mapped onto the new mesh, and
finally the non-linear Navier-Stokes equation and the
implicitly discretized Newton’s equations for particle
velocities are solved on the new mesh iteratively. The
numerical simulation reveals the effect of vortex
shedding on the motion of the cylinders and
reproduces the drafting, kissing and tumbling scenario
which is the dominant rearrangement mechanism in
two-phase flow of solids and liquid in beds of spheres
which are constrained to move in only two dimensions.



3

(a)

(b)

Figure 1.  Some typical meshes used in the computation.  In
each window, the left is an overall view of the mesh and the
right is a closer view near the cylinders.  The core of our
remeshing package is the subroutine MSHPTG from the
interactive two-dimensional mesh generator EMC2
developed by F. Hecht and E. Saltel [1989].  The remeshing
package has a refinement capability in the regions where
the cylinders are very close to the channel walls, as in (b).

This was the first paper in which we moved the particles in a
full dynamical simulation.  The Navier-Stokes equations are
solved using a finite element code POLYFLOW (Crochet,
Debaut, Keunings and Marchal, [1991]).  The dynamic coupling
between the fluid flow and the motion of the particles is realized
by an Explicit-Implicit scheme developed in the paper.

The numerical simulation involves three major difficulties.
The first is automatic remeshing.  We use unstructured meshes
since the geometry of the computation domain can change
drastically from time to time.  A new mesh needs to be generated
at each time, according to the positions of the particles.  Some
typical meshes are shown in Figure 1.

The second difficulty is projection.  The flow field at the old
time step must be mapped onto the new mesh in order to
evaluate the unsteady term in the Navier-Stokes equations in
Eulerian form.  Finally, the numerical scheme that discretizes
the coupled Navier-Stokes equations and particle equations has
to be stable and efficient.

The basic procedure is as follows:
(1) Explicit updating.  At time ti, the current position,

velocity of and force on the particle are used to predict
the new position and velocity at time ti+1.

(2) Remeshing and projection.  For this new position, the
computational domain is remeshed and the velocity field
at ti is projected onto the new mesh.

(3) Navier-Stokes solution.  On the new mesh, the pressure
and velocity fields at ti+1 are computed using the
velocity field at ti (after projection).  The explicitly
updated particle velocity serves as the boundary
condition on the particle surface.  Then the force and
moment on the particle are computed.

(4) Implicit updating.  The velocity of the particle is re-
updated implicitly using the force and moment at ti+1.
If the new particle velocity is different from the one
obtained in (1), then we go back to (3) and solve the
Navier-Stokes   equations using the new particle
velocity as the boundary condition.  This  process is
repeated until satisfactory convergence is reached.

In POLYFLOW, the surface force on the solid particle is not
integrated directly from the stress tensor on boundary nodes.
Instead, the Gauss integral formula is used to convert this
surface integral into a volume integral on the domain outside the
particle.  This method of computation does not give the
distributions of surface stresses.  Huang, Feng and Joseph [1993,
number 5 in this list] enhanced the motion solver with a package
which computes the shear stress on the body directly from the
velocity gradient in the finite elements around the capsule.  The
pressure force is obtained from the pressure field which is
computed from POLYFLOW without enhancement.

3. Hu, H., Joseph, D.D. and Fortes, A., 1992, “Experiments and
Direct Simulations of Fluid Particle Motion,” Int. Video J. of
Eng. Res. 2, pp. 17-24.

This paper and the accompanying video segment show
how the motions of sedimenting particles may be
simulated by direct computations based on the Navier-
Stokes equations and the particles equations of
motion.  Sedimenting and fluidized particles are
confined by closely spaced walls to move essentially in
two dimensions under forces determined by three-
dimensional motions of the fluidizing liquids.
Attention is confined to the case when there are only
few particles, not more than four.  The experiments
and simulations give rise to deterministic dynamics, to
equilibrium positions and steady flows, to Hopf
bifurcation and wavy fall trajectories and to more
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chaotic motions.  It is shown that long bodies always
turn to put their broadside perpendicular to the
stream.  The same mechanism which causes long
bodies to turn broadside-on causes spherical bodies,
which come into contact by wake interactions, to
tumble, giving rise to a flow induced anisotropy in
which across stream arrangements are favored.  The
numerical simulation, unlike the experiments, is
strictly two-dimensional, but many of the observed
features of the experiments are predicted by the
simulation.

The video segment on which this paper is based is
a stand alone document.  The paper gives additional
information which is not conveniently expressed in a
video format.

4. Hu, H.H. and Joseph, D.D., 1994, “Evolution of a Liquid
Drop in a Spinning Drop Tensiometer,” J. Colloid and
Interface Science 162, pp. 331-339.

To obtain desired material properties, a blend of two
mostly incompatible polymers is often used.  The blend
morphology developed during the mixing process of
molten polymers is strongly influenced by interfacial
tension between the polymers.  A spinning drop
tensiometer is commonly used to measure the
interfacial tension between two polymeric liquids.  In
this study a numerical method is developed which
simulates the evolution of a liquid drop in a spinning
drop apparatus.  The Navier-Stokes equations are
solved with a finite element formulation.  A mixed
Lagrangian and Eulerian technique is used to deal
with the moving interface.  The computation domain is
remeshed and the flow field is interpolated to avoid
mesh entanglement as drop deforms.  The simulation
generates the relaxation curves for the radius and the
length of the drop.  The numerical results show that
the shear stress on the drop surface is quite important.
A simple theory of relaxation is then formulated which
takes account of the shear stress on the surface of the
cylindrical drop.  It is found that the exponent for the
relaxation of the drop depends on the interfacial
tension, the equilibrium radius of the drop, the
viscosities of both fluids and the geometric ratios of
the length to the radius of the drop and of the radius of
the container to the radius of the drop.

5. Liu, Y.J., Nelson, J., Feng, J. and Joseph, D.D., 1993,
“Anomalous Rolling of Spheres Down an Inclined Plane,” J.
Non-Newtonian Fluid Mech. 50, pp. 305-329.

A sphere in air will roll down a plane that is tilted
away from the vertical.  The only couple acting about
the point of contact between the sphere and the plane
is due to the component of the weight of the sphere
along the plane, provided that air friction is

negligible.  If on the other hand the sphere is immersed
in a liquid, hydrodynamic forces will enter into the
couples that turn the sphere, and the rotation of the
sphere can be anomalous, i.e., as if rolling up the
plane while it falls.  In this paper we shall show that
anomalous rolling is a characteristic phenomenon that
can be observed in every viscoelastic liquid tested so
far.  Anomalous rolling is normal for
hydrodynamically-levitated spheres, both in
Newtonian and viscoelastic liquids.  Normal and
anomalous rolling are different names for dry and
hydrodynamic rolling.  Spheres dropped at a vertical
wall in Newtonian liquids are forced into anomalous
rotation and are pushed away from the wall while in
viscoelastic liquids, they are forced into anomalous
rotation, but are pushed towards the wall.  If the wall
in inclined and the fluid is Newtonian, the spheres will
rotate normally for dry rolling, but the same spheres
rotate anomalously in viscoelastic liquids when the
angle of inclination from the vertical is less than some
critical value.  The hydrodynamic mechanisms
underway in the settling of circular particles in a
Newtonian fluid at a vertical wall are revealed by an
exact numerical simulation based on a finite-element
solution of the Navier-Stokes equations and Newton’s
equations of motion for a rigid body.

The numerical simulation is restricted to the case in which a
circular particle is dropped in a Newtonian fluid at a vertical
wall.  In our experiments, spheres dropped from rest in glycerin
would rotate and drift rapidly away from the wall and after a
short time reach an apparently steady state with a definite
angular velocity ω0 and a fixed stand-away distance with no
further side drift.  In the simulation, the particle is seen to drift
to the center of the channel, and the drift takes place on a much
larger time scale.  The rotation of the particle is anomalous at
the beginning, and dies away as the particle approaches its
equilibrium position at the channel center.

At first,  when the particle is very near the wall, the passage
of fluid between the circular particle and the wall is blocked, so
that the flow passes over the outside of the circular particle,
turning it in the direction that we call “anomalous.” The
pressure and shear stress distributions on the surface of the
particle shows that the maximum pressure occurs roughly at the
point of vanishing shear stress (Figure 2).

In Figure 3  we have compared the side thrusts, p sinθ of the
pressure and  τ cosθ  of the shear stress on the boundary a = 0 of
the circular particle.  The side force resultants of these stresses
are given by integration over θ

F
p
, Fτ[ ] = p sin θ,  τ cos θ[ ]

0

2 π

∫ adθ

= −0.062,  0.013[ ]dyne cm
−1

(1)
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The lateral thrust of the pressure gives rise to the largest
contribution to the total thrust.  The lateral thrust of the shear
stress opposes the thrust due to pressure.
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Figure 2.  Pressure and shear stress distribution on a
circular particle, at R = 5.28, in terms of dimensionless
coefficients Cp = 2 p ρU

2
and Cf  = 2τ

rθ ρU
2

  where U is

the falling speed.  The modified stress distribution  ̃τ 
rθ  is

expressed through the modified coefficient  ̃C 
f
.  Because

the angular speed is small, the difference between  ̃C 
f
 and

Cf is only about 0.3% and cannot be seen in this plot.  The
maximum pressure is very near the “stagnation” point
where the modified shear stress vanishes (  ̃C 

f
 = 0) on the

front face of the circle.
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Figure 3.  Distributions of the side thrust coefficients for
the pressure Cp sinθ, for the viscous part of the normal
stress C sinθ   and for the shear stress Cf cosθ  on the
surface of a circular particle settling near a wall with R =
5.28 and x/d = 10-3.  The resultant side thrusts are given by
(1).  The lateral thrust of the pressure gives rise to the
largest contribution of the total thrust.  The lateral thrust of

the shear stress opposes the thrust of the normal stress due
to pressure.

In Figure 3  we have compared the side thrusts, p sinθ of the
pressure and  τ cosθ  of the shear stress on the boundary a = 0 of
the circular particle.  The side force resultants of these stresses
are given by integration over θ

F
p
, Fτ[ ] = p sin θ,  τ cos θ[ ]

0

2 π

∫ adθ

= −0.062,  0.013[ ]dyne cm
−1

(1)

The lateral thrust of the pressure gives rise to the largest
contribution to the total thrust.  The lateral thrust of the shear
stress opposes the thrust due to pressure.

After the particle drifts sufficiently far away from the wall,
the blockage is relieved and a more symmetrical flow pattern is
achieved.  The pressure and shear stress on the circle resemble
those on a fixed particle in a uniform flow, and the rotation and
lateral drift eventually vanish.

6. Feng, J., Hu, H.H. and Joseph, D.D., 1994, “Direct
Simulation of Initial Value Problems for the Motion of Solid
Bodies in a Newtonian Fluid. Part 1:  Sedimentation,” J.
Fluid Mech. 261, pp. 95-134.

This paper reports the result of direct simulations of
fluid-particle motions in two dimensions.  We solve the
initial value problem for the sedimentation of circular
and elliptical particles in a vertical channel.  The fluid
motion is computed from the Navier-Stokes equations
for moderate Reynolds numbers in the hundreds.  The
particles are moved according to the equations of
motion of a rigid body under the action of gravity and
hydrodynamic forces arising from the motion of the
fluid.  The solutions are as exact as our finite element
calculations will allow.  As the Reynolds number is
increased to 600, a circular particle can be said to
experience five different regimes of motion: steady
motion with and without overshoot and weak, strong
and irregular oscillations.  An elliptic particle always
turns its long axis perpendicular to the fall, and drifts
to the center-line of the channel during sedimentation.
Steady drift, damped oscillation and periodic
oscillation of the particle are observed for different
ranges of the Reynolds number.  For two particles
which interact while settling, a steady staggered
structure, a periodic wake-action regime and an active
drafting-kissing-tumbling scenario are realized at
increasing Reynolds numbers.  The non-linear effects
of the particle-fluid, particle-wall and inter-particle
interactions are analyzed, and the mechanisms
controlling the simulated flows are shown to be
lubrication, turning couples on long bodies, steady
and unsteady wakes and wake interactions.  The
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results are compared to experimental and theoretical
results previously published.

7. Huang, P.Y., Feng, J. and Joseph, D.D., 1994, “The Turning
Couples on an Elliptic Particle Settling in a Vertical
Channel,” J. Fluid Mech. (in press).

We do a direct two-dimensional finite element
simulation of the Navier-Stokes equations and compute
the forces which turn an ellipse settling in a vertical
channel of viscous fluid in a regime in which the
ellipse oscillates under the action of vortex shedding.
Turning this way and that is induced by large and
unequal values of negative pressure at the rear
separation points which are here identified with the
two points on the back face where the shear stress
vanishes.  The main restoring mechanism which turns
the broadside of the ellipse perpendicular to the fall is
the high pressure at the “stagnation point” on the
front face, as in potential flow, which is here identified
with the one point on the front face where the shear
stress vanishes.

To do this interrogation we had to enhance the code so that
the separate contributions of the shear stress and pressure to the
force and moment on the body could be computed.  Hu et al.
[1992] calculated the pressure and the total force in an indirect
manner which did not allow us to interrogate the results.  First
we found that the viscous part of the normal stress vanishes at
each point on the boundary; in the plane tangent to a rigid body
at the point in question, tangential derivatives of the velocity
vanish and the continuity equation then shows that the normal
derivative of the normal velocity also vanishes.  This implies
that Dnn = 0.  This is an obvious result which must be known,
though we could not find it in the literature.  Of course, everyone
knows that to compute the drag, you need the shear stress and
pressure.  Second, we found that a viscous “stagnation” point is
a point on the body where the shear stress vanishes and the
pressure is nearly a maximum.  Separation points are also
stagnation points in the sense of vanishing shear stress, but the
pressures are minimum there.  The computation showed that the
pressures turn the body, with pressures at the separation points
turning the body to and fro at successive vortex shedding events,
and the stagnation pressures always resist turning, producing
couples which turn the long axis of the ellipse perpendicular to
the flow.  The precise fluid dynamic mechanisms which turn the
ellipse were effectively realized for the first time in this
simulation.

8. Feng, J., Hu, H. and Joseph, D.D., 1994, “Direct Simulation
of Initial Value Problems for the Motion of Solid Bodies in a
Newtonian Fluid. Part 2:  Couette and Poiseuille Flows,” J.
Fluid Mech., (in press).

This  paper reports the results of a two-dimensional
finite element simulation of the motion of  a circular

particle in a Couette and Poiseuille flow.  The size of
the particle and the Reynolds number are large enough
to include fully non-linear inertial effects and wall
effects.  Both neutrally buoyant and non-neutrally
buoyant particles are studied and the results are
compared with pertinent experimental data and
perturbation theories.  A neutrally buoyant particle is
shown to migrate to the centerline in a Couette flow,
and exhibits the Segré-Silberberg effect in a Poiseuille
flow.  Non-neutrally buoyant particles have more
complicated patterns of migration, depending upon the
density difference between the fluid and the particle.
The driving forces of the migration have been
identified as a wall repulsion due to lubrication, an
inertial lift related to shear-slip, a lift due to particle
rotation, and in the case of Poiseuille flow, a lift
caused by the velocity profile curvature.  These forces
are analyzed by interrogating the distributions of
pressure and shear stress on the particle.  The
stagnation pressures on the particle surface are
particularly important in determining the direction of
migration.

9. Feng, J., Joseph, D.D., Glowinski, R. and Pan, T.W., 1993,
“A Three-Dimensional Computation of the Force and
Moment on an Ellipsoid Settling Slowly Through a
Viscoelastic Fluid,” MSI Preprint 93/217.

The orientation of an ellipsoid falling in a viscoelastic
fluid filling a long cylinder of square cross-section is
studied by methods of perturbation theory, with the
added caveat that the perturbation problems are
resolved without approximation by direct numerical
simulation.  Asymptotically, for small fall velocity, the
fluid’s rheology is described by a second-order fluid
model.  There are three problems:  the zeroth order
Stokes problem for a translating ellipsoid and two first
order problems, one for inertia and one for second
order rheology.  A Stokes operator is inverted in each
of the three cases.  The problems are solved
numerically on a three-dimensional domain by a finite
element method with fictitious domains, and the force
and moment on the body are evaluated.  The results
show that the signs of the perturbation pressure and
velocity around the particle for inertia are reversed by
viscoelasticity.  The moments are also of opposite
sign:  inertia turns the major axis of the ellipsoid
perpendicular to the fall; normal stresses turn the
major axis parallel to fall.  The competition of these
two effects gives rise to an equilibrium tilt angle
between perpendicular and parallel, which the settling
ellipsoid would eventually assume.  The equilibrium
tilt angle is a function of the elasticity number, which
is the ratio of the Weissenberg number and the
Reynolds number.  This ratio is velocity-independent
and the theory is valid for small velocities.  Very small
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elasticity numbers are required to make the ellipsoid
turn to a fixed angle of tilt between perpendicular and
parallel.   The results are in qualitative agreement
with observations of shape tilting but they do not
explain the sudden turning of a long body which
occurs when a critical fall velocity is exceeded.

The problem solved is described mathematically by the
following equations (in dimensionless form)

∇ ⋅u = 0

∇ p − ∇ 2 u = −R u ⋅∇ u( ) − W∇ ⋅ A2 + εA1
2( )

u γ = e γ

u γ = 0

 

 
  

 
 
 

(2)

where p is the pressure, u is the velocity in a system of
coordinates in which the ellipse is stationary and the sides of the
rectangular channel move up with a unit velocity.  R is a
Reynolds number and W is a Weissenberg number.  The
coefficient of W represents the effects of normal stress.  The
problem is solved by perturbations

u = u
0

+ Ru
1

+ Wu
2

p = p
0

+ Rp
1

+ Wp
2

, (3)

where u0 and p0 are a Stokes flow, u1 and p1 are perturbations of
Stokes flow with inertia and u2 and p2 are perturbations of
Stokes flow with normal stresses.  The perturbation problems
are generated in the usual way, but they are solved numerically.

A fictitious domain was used to solve these boundary value
problems on multiply-connected domains.  The basic idea is to
convert the original problem into a new one posed on an
auxiliary domain of a simple shape which contains the actual
domain.  Then structured mesh and fast solvers can be used on
the auxiliary domain.  The application of this method to
incompressible viscous flows has been explored by Glowinski,
Pan and Periaux [1993].  Sketches of u0, u1, u2, p1 and p2 are
shown bn Figure 4 below, together with explanatory captions.

(a) Stokes flow u0.

high pressure

high pressure

low 
pressure

low 
pressure

(b) Perturbation of Stokes flow with inertia,
streamlines u1 and pressure p1.
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high 
pressure

high 
pressure

low 
pressure

low 
pressure

(c) Perturbation of Stokes flow with normal
stresses, streamlines u2 and pressure p2.

Figure 4.  Perturbation of Stokes flow (a) in a long cylinder
of square cross-section with inertia (b) and normal stresses
(c).  The Stokes flow (a) enters from the bottom and leaves
from the top.  The stagnation points in (a) locate the
position of high pressure in (b) and low pressure in (c).
The flows in (b) and (c) are symmetric in the sense that the
flow is into both top and bottom points of stagnation in the
inertial case (b) and just the opposite in the viscoelastic
case (c).  The flows go from high to low pressure.

10. Hu. H.H., 1994, “Motion of a Circular Cylinder in a
Viscous Liquid Between Parallel Plates,” Theoretical and
Computational Fluid Dynamics (submitted).

The motion of a cylinder in a viscous fluid between a
channel of two parallel walls is studied.  It is found
that when the cylinder is translating very closely along
one of the channel walls, it always rotates in the
direction opposite to that of contact rolling along the
nearest wall.  When the cylinder is away from the
walls, its rotation depends on the Reynolds number of
the flow.  In this study, two numerical methods were
used.  One is for the unsteady motion of a sedimenting
cylinder initially released from a position close to one
of the channel walls, where the Navier-Stokes
equations are used for the fluid and the Newton’s
equations of motion for the rigid cylinder.  The other
is for the steady flow in which a cylinder is placed at
different locations in a uniform flow field, or
equivalently a cylinder is moving in a quiescent fluid
with a constant velocity.  The flow field, the drag, the
side force (lift) and the torque experienced by the
cylinder are studied in detail.  The effects of the
cylinder location in the channel, the size of the
channel relative to the cylinder diameter and the

Reynolds number of the flow are examined.  In the
limit when the cylinder is translating very closely
along one of the walls, the flow in the gap between the
cylinder and the wall is solved analytically using the
lubrication approximation, and the numerical solution
in the other region is used to piece together the whole
flow field.

This simulation is of the type given by Liu et al. [1993,
number 5 in this list], but it is carried further, has more detailed
results and focuses on the differences between the motion of a
sphere and a cylinder moving along a vertical wall.  When the
gap is small, the sphere will turn as if falling on a dry wall, but a
cylinder will turn the other way.  The differences in the drag and
torque on a cylinder are due to the fact that the gap between the
sphere and the wall is three dimensional while the gap between
the cylinder and wall is two dimensional.  Since the back flow
due to the lubrication pressure is much weaker for the sphere
than for a cylinder, the torque on a sphere is mainly due to the
shear of the fluid in the minimum gap region.

11. Joseph, D.D., Liu, Y.J. Poletto, M. and Feng. J., 1994,
“Aggregation and Dispersion of Spheres Falling in
Viscoelastic Liquids,”  J. Non-Newtonian Fluid Mech. (in
press), and 1993 MSI Preprint 93/185.

This paper focuses on the settling of one sphere near
another or near a wall.  We find maximum differences
between Newtonian and viscoelastic liquids, with
repulsion between nearby bodies in the Newtonian
case and attraction in the viscoelastic case.  Side-by-
side arrangements of sedimenting spheres are unstable
in exactly the same way that broadside-on settling of
long bodies is unstable at subcritical speeds in a
viscoelastic fluid.  The line of centers between the
spheres rotates from across to along the stream as the
spheres are sucked together.  The resulting chain of
two spheres is a long body which is stable when the
line between centers is parallel to the fall, but this
configuration breaks up at supercritical speeds in
which inertia again dominates.  To explain the
orientation of particles in the subcritical case, we
correlate the aggregative power of a viscoelastic fluid
with the zero shear value of the coefficient of ratio of
the first normal stress difference to the shear stress,
and for exceptional cases we introduce the idea of the
memory of shear-thinning leading to corridors of
reduced viscosity.

We did a two-dimensional simulation of the motion of two
circular particles sedimenting in a channel filled with Newtonian
fluid.  In our experiments, spheres dropped side-by-side in
Newtonian liquids would begin to rotate and drift rapidly away
from each other and after a short time reach an apparently steady
state with definite angular velocity and a fixed stand-away
distance with no further drift.  In this simulation, a fixed stand-
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away distance with the line of centers perpendicular to the flow
is not achieved.  The side-by-side configuration, however, is very
persistent as the following figure indicates.

2

3

4

5

6

7

y/d

0 2000 4000 6000 8000 10000 12000

t *

Center-line

left particle

right particle

Figure 5.  Trajectories of two circular cylinders dropped
from a side-by-side initial condition in a channel of 8
diameters width.  The dimensionless time is defined by t* =
t g/d .  The oscillation seen in the trajectories is
associated with a wall effect.

At first, when the side-by-side particles are close together,
the passage of fluid between the particles is blocked, so that the
flow passes over the outside of the particle, turning them from
the outside.  We are going to show that the pressure and the
shear stress distributions on the surface of the particle give rise
to a lateral force and a torque that define the drift and rotation of
the particle.

Figure 6 shows that the maximum pressure occurs near θ =
202.5_.  This position is also where the dividing streamline
seems to hit the surface of the body.  Because the circular
particle is rotating, the no-slip condition implies that there are
closed streamlines around the surface of the particle and a
stagnation point cannot be strictly defined.  The stagnation point
usually corresponds to vanishing shear stress.  This is not the
case here because of the strong rotation of the particle.  If we
modify the shear stress by taking out the contribution from
rotation, we should still have the correspondence.  This is done
by considering a potential vortex at the center of the particle
with velocity

uθ

p = ωa
2

r (4)

where ω is the angular velocity at this moment.  The shear at r =
a for this is

τ
rθ

p = −2ηω (5)

Figure 6 shows that the extreme values of the pressure are near
to the zeros of the effective shear stress.
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Effective shear stress

Figure 6.  The pressure and shear stress distribution on the
surface of the right particle.  Dimensionless time t* = 31
and instantaneous Reynolds number R = 2.65.
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Figure 7.  The horizontal component of the pressure and
shear stress shown in Figure 6.  Because of the definition of
θ, negative lateral thrusts point to the right.
The rotation of the particle is associated with the fact that the

positive shear stress on the right side is larger than the negative
shear stress on the left.  Figure 7 shows that the stagnation
pressure controls the sidewise drift, increasing the distance
between repelling particles.  In this figure, we have compared
the side thrusts, p sinθ of the pressure and τ cosθ of the shear
stress on the surface of the particle.  The resultant forces are

F
p
, Fτ[ ]= p sin θ,  τ cos θ[ ]

0

2π

∫ adθ

= 1.602 ×10 −3 ,  8.034 ×10− 4( ) dyne/cm

(6)

The pressure force is larger than the shear stress force, and the
separation of the two particles is therefore determined mainly by
stagnation pressure.
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12. Feng. J., Huang, P.Y. and Joseph, D.D., 1994, “Dynamic
Simulation of the Motion of Capsules in Pipelines,” (in
preparation).

In this paper we report results of two-dimensional
simulations on the motion of elliptic capsules carried
by a Poiseuille flow in a channel.  The numerical
methods allows dynamic computation of the capsule
motion and the fluid flow around the capsule and
accurate evaluation of the lift force and torque on it.
Results show that the motion of a capsule heavier than
the carrying fluid has three stages:  initial lift-off,
transient oscillations and steady flying.  The behavior
of the capsule during initial lift-off and steady flying is
analyzed by studying the pressure and shear stress
distributions on the capsule surface.  The dominant
mechanism for the lift force and torque is identified to
be lubrication or inertia or a combination of the two
under different conditions.  Elliptic capsules seem to
lift off more easily than cylindrical ones.  Numerical
results for the ellipse in two dimensions are compared
with experimental observations of cylindrical capsules
in pipes.  Finally, the mechanisms of lift for capsules
are applied to flying core flows, and it is argued that
inertial forces are responsible for levitating heavy
crude oil cores lubricated by water in a horizontal
pipeline.

13. Hesla, T., Singh, P. and Joseph, D.D., 1994, “The
Dynamical Simulation of Two-Dimensional Fluid/Particle
Systems,” (in preparation).

A new time-stepping finite-element scheme for the
numerical simulation of two-dimensional fluid/particle
systems is presented.  The scheme is based on a
variational equation governing the rate of change of
total system momentum -- fluid plus particles.  This
equation incorporates both the Navier-Stokes and
rigid-body equations and prevents numerical
instability due to coupling between the fluid and
particle momenta.

The efficacy of the new scheme is demonstrated by a
series of benchmark tests in which a single heavy disk
is dropped from rest in a channel of otherwise
quiescent fluid, and the results are  compared with
experiments and with numerically computed drag
coefficients.

The Navier-Stokes solver used in this simulation is based on
the time-dependent code of Bristeau, Glowinski and Periaux
[1987].  Among the problems treated is the problem of evolution
to the equilibrium position of two circular particles in a
Poiseuille flow.  We find that the particles ultimately line up
with the line of centers along the stream at a certain distance
from the wall in agreement with experiments.

CONCLUDING REMARKS
It is our intention to develop numerical methods for direct

simulations of particles in flows of viscoelastic fluids and in
three dimensions.  The force calculation of Feng, Joseph,
Glowinski and Pan [1993] is our first effort in this direction.
The motion of particles in viscoelastic fluids is not at all like the
motions of particles in Newtonian fluids.  In general, particles
aggregate in viscoelastic fluids in situations in which they would
disperse in Newtonian fluids.  Long bodies which turn
broadside-on in Newtonian fluids put their broadside parallel to
the stream in viscoelastic fluids.  One of the mechanisms which
appears to work in producing these maximal differences between
Newtonian and viscoelastic flows is a reversal of the pressure
(actually, the normal stress) at a point of stagnation.  However,
this mechanism does not explain all of the observed features and
more needs to be done.
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