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The flow of a planar liquid jet out of an aperture is simulated by solving the unsteady

incompressible Navier-Stokes equations. A convective equation is solved for the level set

to capture the interface of the liquid jet with the gaseous environment. The flows for

different Reynolds numbers and Weber numbers are calculated. Results show that, for

We = ∞, a maximum value of discharge coefficient appears for Re = O(100) . Using

the total-stress criterion for cavitation, the regions that are vulnerable to cavitation are

identified and the results are compared to the solution of viscous potential flow. It is

proved that the inviscid potential flow satisfies the normal stress boundary condition on

free surface of a viscous flow as well. The results are close to viscous potential solution

except inside the boundary layers. Navier-Stokes solution for the axisymmetric aperture

are also presented for two values of Reynolds number. These axisymmetric results are

qualitatively similar to the planar results but have a lower discharge coefficient and less

contraction in terms of transverse length dimension.
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1. Introduction

High-pressure atomizers and spray generators are of great interest in industry and have

many applications such as combustors, drying systems and agricultural sprays.

Although it is known that generally the liquid/air interaction is very important in

the break up of liquid jets, recent experimental studies by Tamaki et al. (1998, 2001)

and Hiroyasu (2000) show that the disturbances inside the nozzle caused by the collapse

of traveling cavitation bubbles make a substantial contribution to the break-up of the

exiting liquid jet. Even with high pressure drops, the main flow of liquid jet does not

atomize greatly when a disturbance caused by cavitation is not present. Nurick (1976)

also observed that the presence of cavitation in nozzle will decrease the uniformity of the

mixing for unlike impinging doublets. He & Ruiz (1995) studied the effect of cavitation

on turbulence in plain orifices flows. In their experiment they measured the velocity field

for both cavitating and noncavitating flow in the same geometry. They observed that

the impingement of the free surface flow onto the orifice wall increases the turbulence

generation behind the cavity. Also, turbulence in the cavitating flow is higher and decays

more slowly than that in the noncavitating flow.

Many numerical studies have been performed on the cavitation inside the orifice flow

(Xu et al. (2004), Chen & Heister (1996), Bunnell & Heister (2000) ). Bunnell et al.

(1999) studied the unsteady cavitating flow in a slot and found that partially cavitated

slots show a periodic oscillation with Strouhal number near unity based on orifice length

and Bernoulli velocity. Different models for two-phase flow and cavitation are used. For

example Kubota et al. (1992) derived a constitutive equation for the pseudo density from

the Rayleigh-Plesset equation for bubble dynamics. These models are based on pressure

and are neglecting the viscous stress effects. In the present work, we consider the effects

of viscous stress in finding the potential regions of cavitation.
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Many experimental studies have been performed on cavitation in orifices as well. Mishra

& Peles (2005a,b) looked at the cavitation in flow through a micro-orifice inside a silicon

microchannel. Payri et al. (2004) studied the influence of cavitation on the internal flow

and the spray characteristics in diesel injection nozzles. Ahn et al. (2006) experimentally

studied the effects of cavitation and hydraulic flip on the breakup of the liquid jet in-

jected perpendicularly in to subsonic crossflow. They showed that cavitation results in

shortening the liquid column breakup length. Jung et al. (2006) considered the breakup

characteristics of liquid sheets formed by a like-doublet injection. They found that liquid

jet turbulence delays sheet breakup and shorten wavelength of both ligaments and sheets.

Ganippa et al. (2004) considered the cavitation growth in the nozzle as they increased

the flow rate. First, traveling bubbles are created. These bubbles are detached from the

wall and move with the stream. By increasing the flow, the unsteady cloud of cavitation

is observed. Further increase of the flow rate caused the non-symmetrical distribution

of cavitation within the nozzle and its extension to the nozzle exit. More atomization

occurs at the side with stronger cavitation.

The dynamics of liquid sheets also has been extensively studied. These sheets are

important in atomization and spray combustion (Lefebvre (1989)) and curtain coating

(Brown (1961)). Jets created by slot atomizers are close to 2-D flows.

Flow through an aperture is a simple example of flow with hydraulic flip that occurs

in nozzles with sharp corners. In the experiments on cavitating orifices, the occurrence of

hydraulic flip coincides with the disappearance of cavitation bubbles and increase in the

breakup length of the jet (e.g. Tamaki et al. (1998)). However, the present work shows

that cavitation is possible in hydraulically flipped flows, especially in the case of low

Reynolds numbers where the viscous stress is significant.
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In this paper, we are interested in the prediction of possibility of cavitation that would

results in the formation of detached vapor bubbles that travel with the liquid.

According to the traditional criterion, cavitation occurs when the pressure drops below

the breaking strength of liquid. This threshold value depends on the type of nucleation.

In the homogeneous nucleation, the nucleation sites are temporary microscopic voids

that are results of the thermal motion within the liquid. In this case, the critical pressure

could be much lower than the vapor pressure. However, in heterogeneous nucleation

which occurs in the most of the engineering situations, rupture occurs at the boundary

between the liquid and solid wall of container or between liquid and small solid particles

suspended in the liquid. In this case, rupture could occur at pressures closer to the vapor

pressure.

Joseph (1998) proposed that the important parameter in cavitation is the total stress

which include both the pressure and viscous stress. Therefore, the cavitation occurs

when the maximum principal stress drops below the breaking strength of liquid. Using

this criterion, Funada et al. (2006) predicted the cavitation of a two-dimensional steady

viscous potential flow through an aperture. Also, for axisymmetric viscous flow through

an orifice, Dabiri et al. (2007) predicted cavitation using Joseph’s total-stress criterion to

post-process the solutions of the Navier-Stokes equations. These papers take a common

approach although the configurations vary widely. Using the new criterion, the likelihood

for cavitation at each point in the field is determined. Of course, if cavitation does

occur, the flow field can be drastically changed. In that sense, the analytical approach is

similar to the approach used in hydrodynamic stability analysis where the field evaluated

for likelihood of instability is very different from the field that occurs in the unstable

situation. A similar approach is used in this paper.

Except for Dabiri et al. (2007), the previous calculations done on the subject of high-
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Figure 1: Geometry of the computational domain.

pressure-nozzle cavitation have used the traditional criterion. The purpose of this paper

is to use the new criterion to study the cavitation in aperture flow.

2. Theoretical Development

2.1. Navier-Stokes flow

In this study, we consider flow of a liquid departing an aperture in a flat plate and

creating a jet in a stagnant gas. The physical problem and the computational domain

is shown in figure 1. In this figure, A is the size of computational domain and L is the

half width of the aperture. The Navier-Stokes equations for an unsteady, incompressible

viscous flow are

ρi

(
∂u
∂t

+ u · ∇u
)

= −∇p +∇ · (2µiD) + σκδ(d)n (2.1)
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D =
1
2

[
(∇u) + (∇u)T

]
(2.2)

∇ · u = 0 (2.3)

where u, ρ and µ are the velocity, density and viscosity of the fluid, respectively.

Subscript i could represent either liquid or gas phase and D is the strain rate tensor. The

last term represents the surface tension as a force concentrated on the interface. Here σ is

the surface tension coefficient, κ is the curvature of interface, δ is the Dirac delta function.

d represents the distance from interface and n corresponds to the unit normal vector at

the interface. The flow is characterized by the gas-to-liquid density ratio, viscosity ratio

and nondimensional parameters: Reynolds number (Re) and Weber number (We) which

are defined as follows:

Re =
ρliqUL

µliq
, We =

ρliqU
2L

σ
, ρ-ratio =

ρgas

ρliq
, µ-ratio =

µgas

µliq
(2.4)

U =

√
2(pu − pd)

ρliq
(2.5)

where L is the half width of the aperture, U is the Bernoulli velocity of jet and pu and

pd are the upstream and downstream pressures respectively.

After finding the velocities and pressure field, one can calculate the stress tensor using

T = µ
[
(∇u) + (∇u)T

]− pI (2.6)

where I is the identity matrix and superscript T refers to transpose of a tensor. In the

planar flow the stress tensor has the following form

T =




T ′11 T ′12 0

T ′21 T ′22 0

0 0 0




(2.7)
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Therefore, the maximum tensile stress, T11 can be calculated using the planar stress

analysis in x− y plane:

T11 = T ′11+T ′22
2 ±

√(
T ′11−T ′22

2

)2

+ T ′212 (2.8)

The new criterion for cavitation proposed by Joseph (1998) is used to find the cavitating

regions in the flow field. According to this criterion, cavitation occurs when the maximum

principal stress exceeds the negative of the critical threshold pressure of liquid at local

temperature. According to the total-stress criterion, the cavitation occurs where:

T11 > −pc (2.9)

The critical threshold pressure pc might be the vapor pressure pv or some other appro-

priate value. The cavitation number, K, defines the critical threshold pressure, pc, in a

nondimensional manner:

K =
pu − pd

pd − pc
(2.10)

2.2. Interface tracking and level set formulation

Several methods have been proposed and implemented to capture the interface and model

the surface tension in a two-phase flow such as the Front-Tracking method by Tryggvason

et al. (2001) and Volume-of-Fluid method by Hirt & Nichols (1981). Also, Popinet &

Zaleski (1999) did an accurate balance of surface tension forces on a finite volume method

by explicit racking of the interface. A review of different methods of interface tracking

and surface tension modeling is done by Scardovelli & Zaleski (1999).

We are considering incompressible flow of two immiscible fluids. The interface between

these fluids moves with the local velocity of flow field. To track the motion of interface

the level set method is used which has been developed by Osher and coworkers (e.g.,

Sussman et al. (1998) and Osher & Fedkiw (2001)). The level set function, denoted by θ,
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is defined as a signed distance function. It has positive values on one side of the interface

(gas phase), and negative values on the other side (liquid phase). The magnitude of the

level set at each point in the computational field is equal to the distance from that point

to interface.

The level set function is being convected by the flow as a passive scalar variable:

∂θ

∂t
+ u · ∇θ = 0 (2.11)

It is obvious that, if the initial distribution of the level-set is a signed distance function,

after a finite time of being convected by a nonuniform velocity field, it will not remain

a distance function. Therefore, we need to re-initialize the level-set function so it will

be a distance function (with property of |∇θ| = 1) without changing the zero level set

(position of the interface).

Suppose θ0(x) is the level-set distribution after some time step and is not exactly a

distance function. This can be reinitialized to a distance function by solving the following

partial differential equation (Sussman et al. (1998)):

∂θ′

∂τ
= sign(θ0)(1− |∇θ′|) (2.12)

with initial conditions:

θ′(x, 0) = θ0(x)

where

sign(θ) =





-1 if θ < 0

0 if θ = 0

1 if θ > 0

(2.13)

and τ is a pseudo time. The steady solution of equation (2.12) is the distance function

with property |∇θ| = 1 and since sign(0)=0, then θ′ has the same zero level set as θ0.
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Now using the level set definition, the fluid properties can be defined as:

ρ = ρliq + (ρgas − ρliq)Hε(θ) (2.14)

µ = µliq + (µgas − µliq)Hε(θ) (2.15)

where Hε is a Heaviside function that is numerically approximated by a smooth jump:

Hε =





0 θ < −ε

(θ + ε)/(2ε) + sin(πθ/ε)/(2π) |θ| 6 ε

1 θ > ε

(2.16)

where ε represents the numerical thickness of the interface and has the value of 1.5 times

is cell size. This Heaviside function corresponds to a delta function that can be used to

evaluate the force caused by surface tension:

δε =





[1 + cos(πθ/ε)]/(2ε) |θ| 6 ε

0 otherwise
(2.17)

The last term in the momentum equation (2.1) includes the normal unity vector and

the curvature of the interface which can be calculated as follows:

n =
∇θ

|∇θ| , κ = −∇ · n (2.18)

expanding the equation (2.18) in Cartesian coordinates leads to the following equation:

κ(θ) =
θ2

yθxx − 2θxθyθxy + θ2
xθyy

(θ2
x + θ2

y)3/2
(2.19)

2.3. Viscous potential flow

The solution of inviscid flow has been used widely in the literature to treat the flow

problems with finite viscosity. For example, Moore (1965) studied the rise of a deformed

bubble in a liquid of small viscosity by calculating the dissipation of an irrotational flow

around the bubble. Also, Joseph & Wang (2004) considered the viscous potential flow

for decay of surface gravity waves. The viscous potential flow solution does satisfy the



10 S. Dabiri, W. A. Sirignano and D. D. Joseph

Navier-Stokes equations but does not satisfy the boundary condition for the tangential

component of the velocity at a rigid surface and the tangential component of shear at a

free surface.

In Appendix A, it is shown that the potential flow solution of flows with free surfaces

satisfies the normal stress boundary condition on the free surface in the case of finite

viscosity as well. Therefore, the viscous potential flow solution will be used here as a

comparison to the Navier-Stokes solution of the aperture problem. The problem of in-

compressible potential flow through an aperture was solved a long time ago. The complex

potential in z-plane for this flow is given implicitly by Currie (1974) (p.129)

f(z) = φ + iψ = −2CcLU

π
ln

{
cosh

[
ln

(
U

dz

df

)]}
− iCcLU (2.20)

where L is half width of the aperture and Cc is the coefficient of contraction. Funada

et al. (2006) has analyzed the viscous potential flow solution of the aperture flow. The

velocity field can be derived from the potential function as follows:

u =
1
2

(
df

dz
+

df

dz

)
, v =

i

2

(
df

dz
− df

dz

)
, (2.21)

and from there the rate of strain tensor can be calculated:

2D =




(
d2f
dz2 + d2f

dz2

)
i
(

d2f
dz2 − d2f

dz2

)

i
(

d2f
dz2 − d2f

dz2

)
−

(
d2f
dz2 + d2f

dz2

)


 (2.22)

To calculate the maximum tension, the principal stresses should be found. The diagonal-

ized rate of strain tensor is

2D =




λ 0

0 −λ


 , λ = 2

∣∣∣∣
d2f

dz2

∣∣∣∣ (2.23)

Therefore, the maximum tension T11 is given by

T11 = −p + µλ = −pu +
ρ

2
(u2 + v2) + µλ (2.24)
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3. Numerical Implementation

The numerical solution of the incompressible unsteady Navier-Stokes equations is per-

formed using the finite-volume method on a staggered grid. The convective term is dis-

cretized using the Quadratic Upwind Interpolation for Convective Kinematics (QUICK)

(Hayase et al. (1992)). The Semi-Implicit Method for Pressure-Linked Equation (SIM-

PLE), developed by Patankar (1980), is used to solve the pressure-velocity coupling. The

time integration is accomplished using the second-order Crank-Nicolson scheme. The cal-

culation is done for different Reynolds-numbers based on orifice diameter and average

velocity at orifice.

The computational domain is shown in figure 1. The size of the domain is A = 20L

and a Cartesian grid with 77924 nodes and 77361 elements is employed. A nonuniform

distribution of grids is used with clustering in the region of rapid velocities near the tip of

the aperture. The size of smallest elements is ∆x/L = 0.001. Figure 2 shows the cartesian

grid used. The following boundary conditions are applied: Γ1 is the axis of symmetry

and the v-velocity is zero also the normal derivative of all other variables vanish. On the

upstream boundary Γ2 the stagnation pressure is specified as the boundary condition.

On the downstream boundary Γ3 the static pressure is specified. On the aperture plate

Γ4 all the velocity components are set to zero.

The dependence of the solution on the size of the domain is investigated. In order to

ensure the accuracy of the constant pressure boundary conditions, a larger domain is

considered with A = 30L. Comparing the results for Re = 100 shows that the difference

in discharge coefficient is below 0.002%. In addition, calculation is done for a finer grid

with the total number of nodes being doubled while keeping the same grid distribution.

Comparison between two calculations for Re = 1000 has shown that discharge coefficient

for the two cases differ by less than a 0.1%.
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Figure 2: Computational domain and the Cartesian grid that is used.

In order to compare the results with the theoretical viscous potential flow solution,

a dynamically inactive environment is required which has been achieved by decreasing

the viscosity and density of the gaseous phase. In the case with ρ-ratio and µ-ratio of

10−4 each, the flow becomes independent of any further decrease in these parameters.

Therefore, the calculations are performed for these ratios.

3.1. Effects of Reynolds number

Figure 3 shows the free streamline (liquid-gas interface) for flows with different Reynolds

numbers. It can be seen that the free streamline leaves the aperture wall at different

angles for different Reynolds numbers. This angle is plotted versus Reynolds number in

figure 4.

Figure 5(a) shows the thickness of jet at a distance of 5L downstream of the aperture.

As Reynolds number decreases the jet thickness increases. This can be explained by the

fact that increasing the thickness of boundary layer and decrease in velocity causes the

flow to change direction faster. For Reynolds number of one the jet expands. Expansion

of Newtonian liquid jets has been observed before, for example by Middleman & Gavis
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Figure 3: Free streamlines from Navier-Stokes solution for Re = 1, 10, 100, 1000 and for

potential flow. ρ-ratio=10−4 and µ-ratio=10−4

(1961). The discharge coefficient of aperture is plotted in figure 5(b). The value of Cd has

a peak for Re = O(100). As the Reynolds number decreases from infinity, the thickness

of jet increases causing an increase in the discharge coefficient. But for very low Reynolds

numbers, the velocity of jet drops, therefore, the discharge coefficient decreases.

Pressure distribution for Navier-Stokes and potential solutions is shown in figure 6 for

different Reynolds numbers. (The potential flow solution for lower values of Re is not

shown to avoid complexity.) For higher Reynolds numbers, the difference between Navier-

Stokes and potential solutions is small but, for lower Reynolds numbers, the pressure field

deviates from potential flow. Figure 7 shows the viscous stress in the flow and compares

it with the viscous potential flow case. There is a good agreement between them for

Re = 1000 except in the wall boundary layer. Comparing figures 6 and 7, one can see

that the viscous stress is two to three orders of magnitude smaller than the local pressure
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Figure 5: (a) Half thickness of the jet normalized by L and (b) the discharge coefficient

for different Reynolds numbers.

drop for the two higher values of Reynolds number. However, for lower Reynolds numbers,

such as Re=10 or 1, the viscous stress is the same order of the local pressure drop.

It is important to note that the Reynolds number in these calculations is based on the
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Bernoulli jet velocity, which is larger than the actual average velocity of the jet, specially

for low Reynolds numbers. For example, for flow with Re=1, the jet velocity is about

%20 of the Bernoulli velocity and this causes the strain rates and therefore the stresses to

be scaled down with the same ratio. This has the significant effect of producing smaller

regions of high stresses in the N-S solution as seen in figure 7(d). This is the reason that

the regions with large stresses are smaller in the N-S solution.

Calculating the total stress and comparing with the threshold stress, the regions in

which the cavitation criterion is satisfied are identified.

The aperture flow is always hydraulically flipped; so, the acceleration of the liquid near

the exit corner is not large and the local pressure drop is not significant. Therefore, the

chance of having cavitation is related to the contribution of viscous stress in the total

stress tensor. Figure 8 shows the regions at risk to cavitation in different flows with the

same Reynolds number and different cavitation numbers, K, corresponding to different

values of critical pressure, pc. Although the existence of cavitation bubbles could change

the flow field, these bubbles cannot persist far downstream from the inception point

where conditions favorable to cavitation have disappeared and the bubbles collapse. We

have shown that aperture flows at low Reynolds numbers may cavitate due to viscous

stresses under conditions, like hydraulic flip, which are unfavorable to cavitation under

the conventional criterion. The experiments on hydraulic flip are done for high Reynolds

numbers; the possible cavitation of flipped flows at low Re, due to viscous stresses has

not been studied before.

Figure 9 shows how the area of the region vulnerable to cavitation will increase as the

cavitation number increases. For a specific value of K, the cavitating domain is larger

for lower Reynolds number because the viscous stress is stronger. This agrees with the
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Figure 6: Contours of (p− pd)/ 1
2ρ

liq
U2 for Navier-Stokes solution (solid lines) compared

to viscous potential flow solution (dashed lines) for ρ-ratio=10−4 and µ-ratio=10−4 (a)

Re=1000, (b) Re=100, (c) Re=10, (d) Re=1 (Potential flow solutions are not shown in

(c) and (d)).

statement by Padrino et al. (2007) about the increase in risk of cavitation for more

viscous fluids.

Another important point about the figure 9 is that, for the larger Reynolds numbers,

the difference between the cavitating domain predicted by N-S solution and VPF solution
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Figure 7: Contours of T11/
1
2ρ

liq
U2 for Navier-Stokes solution (solid lines) compared to

viscous potential flow solution (dashed lines) for ρ-ratio=10−4 and µ-ratio=10−4 (a)

Re=1000, (b) Re=100, (c) Re=10, (d) Re=1

will be greater. That is, for larger Reynolds numbers, the cavitation area is confined to

shear layers and boundary layers which are not present in the potential flow solution.

Calculations were also done for the round aperture assuming axisymmetric flow. A

schematic of the flow is shown in figure 10. Figure The results of these calculations

are shown in figure 11. The pressure contours in the round aperture (figure 11(a)) are

confined to a more compact region than in the planar flow shown in figure 6(b). Flow
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Figure 8: The cavitation threshold curves on which T11 + pc = 0 in different flows with

K = 1, 2, 5, 10, 50. ρ-ratio=10−4 and µ-ratio=10−4 (a) Re=1000, (b) Re=100, (c) Re=10,

(d) Re=1

acceleration occurs in a smaller region and gives rise to a higher strain rate and viscous

stress in the round aperture as shown in the viscous stress plots in figures 11(c) and 7(b).

3.2. Effects of Weber Number

The flows for Weber numbers of 10, 100, 1000 and infinity are calculated and the free

streamlines are shown in figure 12. The flow with Weber number of 1000 is very close
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Figure 10: Schematic of axisymmetric flow through a round aperture.

to the flow with no surface tension, or infinite Weber number. The free stream for these

two cases cannot be distinguished on these figures. As the Weber number decreases, the

jet deviates towards a less contracting jet with smaller curvatures at the interface.

For the flow with Weber number of 10, the potential regions of cavitation is shown
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Figure 11: Axisymmetric aperture flow; Contours of (p− pd)/1
2ρU2 for (a) Re=100, (b)

Re=10, and maximum principal value of viscous stress for (c) Re=100, (d) Re=10, and

the cavitation threshold curves on which T11+pc = 0 in different flows with K = 1, 2, 5, 10

(e) Re=100, (f) Re=10
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Figure 12: The free streamline for flows with different Weber numbers, ρ-ratio=10−4 and

µ-ratio=10−4 (a) Re=1000, (b) Re=100

for Reynolds numbers of 100 and 1000 in figure 13. Comparing these plots with figure

8, reveals a large difference because of surface tension. The pressure on the liquid side

of the interface will be smaller due to the curvature of interface and adding the effect

of shear stress to that causes a larger domain vulnerable to cavitation at lower Weber

numbers. Also, since the boundary layer is larger for the lower Reynolds number, the

regions of possible cavitation will be larger.

4. Conclusions

The Navier-Stokes equations for two-dimensional flow of a liquid through an aperture

in a flat plate is solved numerically for Reynolds numbers between 1 and 1000. The

results are compared to those of the viscous potential flow solution. It is proved that

the constant speed condition on the free surface of a potential flow leads to zero normal

viscous stress on the free surface, hence, it satisfies the boundary condition of viscous flow
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Figure 13: The cavitation threshold curves on which T11 + pc = 0 in different flows with

K = 2, 5, 10. We = 10, ρ-ratio=10−4 and µ-ratio=10−4 (a) Re=1000, (b) Re=100

as well. Using the total-stress criterion for cavitation, the regions vulnerable to cavitation

are found for flows with different Reynolds number and cavitation number.
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Appendix A. Boundary condition on normal stress

Here we shall show that the normal strain rate, the derivative of the normal velocity

in the direction normal to the free streamline, vanishes on the free streamline of the

potential flow solution used by Funada et al. (2006). Therefore, the potential flow with

free stream satisfies the boundary condition of the normal stress on the free surface of a

viscous flow.

We will take the potential function, φ, and stream function, ψ, of the potential flow as

the orthogonal curvilinear coordinates. The velocity field in this coordinates has a simple

form:





x1 = φ

x2 = ψ





u1 = q

u2 = 0
(A1)

where the velocity in complex domain can be written as:

u− iv = qe−iθ (A 2)

In order to evaluate the stresses, first we define the scale factors:

h1 = h2 =
1√

u2 + v2
=

1
q

(A 3)

Calculating the stresses:

T11 = −p + 2µ

[
1
h1

∂u1

∂x1
+

u2

h1h2

∂h1

∂x2
+

u3

h1h3

∂h1

∂x3

]
= −p + 2µq

∂q

∂φ
(A 4)

T22 = −p + 2µ

[
1
h2

∂u2

∂x2
+

u3

h2h3

∂h2

∂x3
+

u1

h2h1

∂h2

∂x1

]
= −p− 2µq

∂q

∂φ
(A 5)
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T12 =µ

[
h2

h1

∂

∂x1

(
u2

h2

)
+

h1

h2

∂

∂x2

(
u1

h1

)]
= 2µq

∂q

∂ψ
(A 6)

Using the Bernoulli equation for viscous potential flow,

pu = p +
1
2
ρq2 (A 7)

Now, we can substitute the pressure back in the equations for normal stresses:

T22 = −pu +
1
2
ρq2 − 2µq

∂q

∂φ
(A 8)

Along a streamline we have dφ = qds, where ds is the distance element along the

streamline.

T22 = −pu +
1
2
ρq2 − 2µ

dq

ds
along a streamline (A 9)

Applying the boundary condition:

T22 = −pd ⇒ dq

ds
=

1
2µ

ρq2 − C

µ
along the free streamline (A 10)

where C = pu − pd is the pressure difference between stagnation pressure of the flow

and ambient pressure.

Now, we show that for the case of a free jet where s is unbounded, the only possible

solution is q = constant. If dq
ds > 0 initially, then q becomes unbounded, and if dq

ds < 0

initially, then q becomes zero and then negative with increasing s. Both of these situations

are non-physical, so the only possible solution happens when dq
ds = 0 initially, which leads

to q = constant. This results in both T11 and T22 to be constant and equal to −p along the

free streamline. Therefore, the irrotational flow with constant pressure at the bounding

streamline satisfies the viscous boundary condition of normal stress on the free interface.

However, it does not satisfy the condition of zero shear stress on the free surface. To
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develop the shear stress more, we consider the irrotationality condition of the flow in

Cartesian coordinates:

(∇× u)3 =
∂v

∂x
− ∂u

∂y
= 0 (A11)

=
(

∂v

∂ψ

∂ψ

∂x
+

∂v

∂φ

∂φ

∂x

)
−

(
∂u

∂ψ

∂ψ

∂y
+

∂u

∂φ

∂φ

∂y

)
(A 12)

Using the velocity field, 



u = q cos θ

v = q sin θ

(A 13)

we get:

(∇× u)3 =− q
∂q

∂ψ
+ q2 ∂θ

∂φ
= 0 (A14)

which results in:

∂q

∂ψ
= q

∂θ

∂φ
(A 15)

Substituting back in equation (A 6) and using dφ = qds along a streamline again,

T12 = 2µq
dθ

ds
= 2µqκ (A 16)

where κ is the curvature of the streamline. So, in a planar irrotational flow, in an

orthogonal coordinates, one of which is parallel to the streamlines, the shear stress is

proportional to magnitude of velocity times the curvature of the streamline.

In conclusion, the irrotational flow satisfies the constant normal stress condition on

the free surface, but does not satisfy the zero shear stress condition on the free surface

and a correction may be necessary.

REFERENCES



26 S. Dabiri, W. A. Sirignano and D. D. Joseph

Ahn, K., Kim, J. & yoon, Y. 2006 Effects of orifice internal flow on transverse injection into

subsonic crossflows: Cavitation and hydraulic flip. Atomization and Sprays 16 (1), 15–34.

Brown, D. R. 1961 A study of the behaviour of a thin sheet of moving liquid. Journal of Fluid

Mechanics 10, 297–305.

Bunnell, R. A. & Heister, S. D. 2000 Three-dimensional unsteady simulation of cavitating

flows in injector passages. J. Fluid Engineering 122 (4), 791–797.

Bunnell, R. A., Heister, S. D., Yen, C. & Collicott, S. H. 1999 Cavitating injector

flows: Validation of numerical models and simulations of pressure atomizers. Atomization

and Sprays 9 (5), 445–465.

Chen, Y. & Heister, S. D. 1996 Modeling cavitating flows in diesel injectors. Atomization

and Sprays 6 (6), 709–726.

Currie, I. G. 1974 Fundamental mechanics of fluids . McGraw-Hill.

Dabiri, S., Sirignano, W. A. & Joseph, D. D. 2007 Cavitation in an orifice flow. Physics of

Fluids In press.

Funada, T., Wang, J. & Joseph, D. D. 2006 Viscous potential flow analysis of stress induced

cavitation in an aperture flow. Atomization and Sprays 16 (7), 763–776.

Ganippa, L. C., Bark, G., Andersson & Chomiak, J. 2004 Cavitation: a contributory factor

in the transition from symmetric to asymmetric jets in cross-flow nozzles. Experiments in

Fluids 36, 627–634.

Hayase, T., Humphrey, J. A. C. & Greif, R. 1992 A consistently formulated quick scheme for

fast and stable convergence using finite-volume iterative calculation procedure. J. Comput.

Phys. 98, 108–118.

He, L. & Ruiz, F. 1995 Effect of cavitation on flow and turbulence in plain orifices for high-speed

atomization. Atomization and Sprays 5 (6), 569–584.

Hiroyasu, H. 2000 Spray breakup mechanism from the hole-type nozzle and its applications.

Atomization and Sprays 10 (3-5), 511–527.

Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (vof) method for the dynamics of free

boundaries. Journal of Computational Physics 39 (1), 201–225.



2-D Viscous Aperture Flow 27

Joseph, D. D. 1998 Cavitation and the state of stress in a flowing liquid. Journal of Fluid

Mechanics 366, 367–376.

Joseph, D. D. & Wang, J. 2004 The dissipation approximation and viscous potential flow. J.

Fluid Mech. 504, 365–377.

Jung, K., Khil, T. & Yoon, Y. 2006 Effects of orifice internal flow on breakup characteristic

of like-doublet injectors. J. Propulsion and Power 22 (3), 653–660.

Kubota, A., Kato, H. & Yamaguchi, H. 1992 A new modeling of cavitating flows - a numerical

study of unsteady cavitation on a hydrofoil. Journal of Fluid Mechanics 240, 59–96.

Lefebvre, A. H. 1989 Atomization and Sprays . Hemisphere.

Middleman, S. & Gavis, J. 1961 Expansion and contraction of capillary jets of newtonian

liquids. Physics of Fluids 4 (3), 355–359.

Mishra, C. & Peles, Y. 2005a Cavitation in flow through a micro-orifice inside a silicon

microchannel. Physics of Fluids Art. No. 013601.

Mishra, C. & Peles, Y. 2005b Flow visualization of cavitating flows through a rectangular

slot micro-orifice ingrained in a microchannel. Physics of Fluids 17 (11), art. No. 113602.

Moore, D. W. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity.

J. Fluid Mech. 23, 749–766.

Nurick, W. H. 1976 Orifice cavitation and its effect on spray mixing. Journal of Fluids Engi-

neering 98 (4), 681–687.

Osher, S. & Fedkiw, R. P. 2001 Level set methods: an overview and some recent results. J.

Comput. Phys. 169, 436.

Padrino, J. C., Joseph, D. D., Funada, T., Wang, J. & Sirignano, W. A. 2007 Stress-

induced cavitation for the streaming motion of a viscous liquid past a sphere. Journal of

Fluid Mechanics 578, 381–411.

Patankar, S. V. 1980 Numerical heat transfer and fluid flow . Hemisphere, Washington,

DC/New York.

Payri, F., Bermudez, V., Payri, R. & Salvador, F. J. 2004 The influence of cavitation on

the internal flow and the spray characteristics in diesel injection nozzles. Fuel 83 (4-5),

419–431.



28 S. Dabiri, W. A. Sirignano and D. D. Joseph

Popinet, S. & Zaleski, S 1999 A front-tracking algorithm for accurate presentation of surface

tension. Int. J. Numer. Meth. Fluids 30, 775–793.

Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial

flow. Annual Review of Fluid Mechanics 31, 567–603.

Sussman, M., Fatemi, E., Smereka, P. & Osher, S. 1998 An improved level set method for

incompressible two-phase flows. Computers and Fluids 27, 663–680.

Tamaki, N., Shimizu, M. & Hiroyasu, H. 2001 Enhancement of the atomization of a liquid

jet by cavitation in a nozzle hole. Atomization and Sprays 11 (2), 125.

Tamaki, N., Shimizu, M., Nishida, K. & Hiroyasu, H. 1998 Effects of cavitation and internal

flow on atomization of a liquid jet. Atomization and Sprays 8 (2), 179–197.

Tryggvason, G., Bunner, B., A. Esmaeeli, D. Juric, Al-Rawahi, N., Tauber, W., Han,

J., Nas, S. & Jan, Y. J. 2001 A front-tracking method for the computations of multiphase

flow. Journal of Computational Physics 169 (2), 708–759.

Xu, C., Heister, S. D. & Blaisdell, G. A. 2004 Simulation of cavitated flow in orifices fed

by a manifold. Atomization and Sprays 14 (1), 37–52.


