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The effects of viscosity on the Kelvin Helmholtz (KH) instability of uniform flow on an unbounded
domain are analyzed using two irrotational theories (VPF), an exact rotational theory (ES) and a
hybrid rotational/irrotational theory (HS). One of the irrotational theories arises from evaluation of
the viscous normal stress on potential flow (VPF1).The second irrotational theory is the dissipation
method here derived specially for the KH problem(VPF2). The two irrotational theories give rise
to different results. The rotational theory can give rise to KH instability if and only if the gas
is inviscid and irrotational (IPF) but the analysis can be extended to account viscous effects by
replacing (IPF) with viscous potential flow. To our knowledge quantitave results for KH instability
of an unbounded domain are unavailable.

I. INTRODUCTION

Purely irrotational flows are those for which the vor-
ticity is identically zero. The velocity is thus given by
the gradient of a harmonic potential. There are two the-
ories of potential flow of a viscous fluid, one labeled here
as “viscous potential flow” (VPF1) and the other labeled
as the “dissipation method” (VPF2). These irrotational
theories are distinct. Viscous potential flow is a theory
appropriate to two-fluid flows in general and works best
for gas-liquid flows. In this theory, the fluids are viscous
and the motion is assumed to be irrotational; in par-
ticular, viscosity enters the analysis through the viscous
irrotational stress in the jump in normal stress across
a fluid-fluid interface. The dissipation method, on the
other hand, is a well known theory which was introduced
by Stokes [1] in his study of the decay of waves. Every
irrotational flow, even those outside boundary layers on
rigid solids, gives rise to a viscous dissipation whose con-
sequences need study. The dissipation method is based
on the fundamental fact that the viscous stresses of the
irrotational flow are self-equilibrated and do not give rise
to forces in the equations but they do work and give rise
to energy and dissipation.
Results of analysis of purely irrotational flow prior to

2007 can be found in the book “Potential flows of vis-
cous and viscoelastic fluids” [2]. These and more re-
cent results are posted as freely downloadable PDF files
at http://www.aem.umn.edu/people/faculty/joseph/Vis
cousPotentialFlow/. Topics of fluid mechanics which
have been studied include cavitation [3–5], capillary
breakup and rupture [6–8], Rayleigh-Taylor [9] and
Kelvin-Helmholtz [10] instabilities, irrotational Faraday
waves on a viscous fluid (Ch. 15 in [2]), phase change
problems involving heat and mass transfer [11, 12], the
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viscous decay of capillary-gravity waves [13], oscillations
on drops and bubbles [14], waves and rupture of moving
thin films [15], Hele-Shaw flows [16], boundary layer the-
ory for flow over rigid solids and flow induced structure
of particles in viscous and viscoelastic fluids (see Chap-
ters 18 and 20 in [2] and references therein), rising of a
spherical cap bubble [17] and Taylor bubbles in round
tubes [18] and other topics.

Which of the two theories is better? We can answer
this question after comparing the results given by each
theory with the exact solutions and experiments, but we
cannot answer this question a priori. To complete our
theory of the effects of viscosity in irrotational flows we
need to answer this question. This is a new question for
fluid mechanics researchers who follow Lamb[19] and the
works of G.I. Taylor. These authors do the dissipation
method VPF2 in some problems of gas-liquid flows but in
most other problems involving gas-liquid surfaces, they
set the viscosity to zero and neglect the effects of the
irrotational viscous normal stress. We think that their
approach is greatly flawed.

To bring home this point strongly, consider Fig. 1.
VPF2 is in better agreement with the exact solution for
progressive waves (long waves) and VPF1 is better for
decaying waves (short waves) which do not oscillate. We
don’t yet know why this is true. The answer is not to
be obtained in the fluid mechanics literature; in fact the
question is not even posed.

The dissipation method is an approximation that is
well known in the fluid mechanics community. It will
come as a great surprise to fluid mechanicians that bet-
ter results than those obtained by VPF2 are frequently
obtained by the simpler method VPF1. We do not know
how to predict which is better a priori. In gas-liquid
flows we may assume that the shear stress in the gas
is negligible so that no condition need be enforced on
the tangential velocity at the free surface, but the shear
stress must be zero. This condition is enforced in VPF2.
On the other hand, no constraint on the shear stress is
invoked for VPF1. In general, one gets an irrotational
shear stress from the irrotational analysis. The discrep-
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FIG. 1. Graphs of (a) dimensionless decay rate −Re[𝜎̃]
and (b) dimensionless frequency −Im[𝜎̃] for capillary-gravity
waves as a function of the dimensionless parameter 𝜃 ≡
𝜈𝑘2/𝜎0, where 𝜈 is the kinematic viscosity of the liquid, 𝜎0

is the inviscid frequency and 𝜎̃ ≡ 𝜎/𝜎0: ▲ for VPF1; □ for
VPF2; solid line for Lamb’s exact solution; dash-dotted line
for Lamb’s dissipation approximation; △ for inviscid poten-
tial flow (IPF) in the figure on the right. Note that Lamb’s
approximation does not give a cut-off value and the frequency
is that for an inviscid liquid. For inviscid flows, the decay rate
is zero. The vertical dotted line indicates the critical cut-off
value predicted by the exact solution (after [13]).

ancy between this shear stress and the zero shear stress
required for exact solutions will generate a vorticity layer.
In many cases this layer is small and its influence on the
bulk motion and on the irrotational effects of viscosity is
minor. In summary, for the irrotational approximation
VPF1 the continuity of the normal velocity component
and the balance of normal stresses by surface tension are
enforced at the interface. For VPF2, in addition to these
two interfacial conditions, continuity of the tangential
stress is satisfied; because one fluid is inviscid, the tan-
gential stress is zero at the interface. In addition to these
three interfacial constraints, the flow of two viscous fluids
satisfying the Navier-Stokes equations would also satisfy
the continuity of tangential velocity components. This
condition is satisfied by neither VPF1 nor VPF2.

Stokes [1] and Lamb [19] used the dissipation method
to study the decay of gravity and capillary waves on plane
surfaces and spheres. They achieved results for the rate
of decay of waves in good agreement with the exact so-
lution in the case of progressive waves. However, their
results for the speed of those waves is not correct since
the exact solution shows that the speed of progressive
waves depends on the viscosity and there is a cut-off
wavenumber above which the speed of the waves goes
to zero and the progressive waves are replaced by stand-
ing waves. When the potential flow solution is carried
out correctly (see [13]) results just like the exact solu-
tion, uniform in the wavenumber are obtained. The pro-
gressive waves, which are associated with long waves, are
given by VPF2 and the standing waves, which are associ-
ated with short waves, where the cut-off wavenumber is a
decreasing function of the viscosity, are given by VPF1.
The exact solution is well approximated by potential flow,
but different potential flow theories are required (Fig. 1).

Another example is the work on capillary instability in
[7, 8] comparing the performance of VPF1, which was
formulated in [6], and VPF2; they concluded that VPF2
predicts the growth rate for the most unstable wave in
better agreement with the exact solution of the linearized
Navier–Stokes equations than VPF1. The approximation
deteriorates if the viscosities of the fluids on each side of
the interface become of the same order of magnitude. It is
also worth mentioning the computation of the drag on a
rising bubble. Moore [20] assumed potential flow around
the bubble and computed the drag by integrating the ir-
rotational normal stress including the viscous component
and obtained 8𝜋𝑈𝜇𝑎, where 𝑎 is the bubble radius, 𝑈 its
rising speed and 𝜇 the liquid viscosity. Levich [21] used
the dissipation method and obtained a drag of 12𝜋𝑈𝜇𝑎.
It is not possible a priori to predict whether the factor
8 or 12 is better, but comparison with experiments and
the boundary layer analysis of Moore [22] favor 12.

A. Self-equilibration of the irrotational viscous
stress

The stress in a Newtonian incompressible fluid is given
by

T = −𝑝1+ 𝜇
(
∇u+ (∇u)

𝑇
)
. (1)

Most flows have an irrotational viscous stress. The
irrotational viscous stress 𝝉𝐼 = 2𝜇∇⊗∇𝜙 does not give
rise to a force density term; it does not enter into the
equations of motion. The divergence of 𝝉𝐼 vanishes on
each and every point in the domain 𝑉 of flow. Even
though an irrotational viscous stress exists, it does not
produce a net force to drive motions. Moreover,∫

𝑉

∇ ⋅ 𝝉𝐼𝑑𝑉 =

∫
𝐴

n ⋅ 𝝉𝐼𝑑𝑆 = 0. (2)

The traction vector n ⋅ 𝝉𝐼 have no net resultant on each
and every closed surface 𝐴 in the domain 𝑉 of flow. We
say that the irrotational viscous stresses, which do not
drive motions, are self-equilibrated. Irrotational viscous
stresses are not equilibrated at boundaries and they may
produce forces there. An implication of (2) is that no
force can be produced on a body in steady flow by the
viscous irrotational stresses. This can be called a gener-
alized D’Alembert Paradox. Irrotational viscous torques
on bodies also vanish because∫

𝐴

𝜖𝑖𝑗𝑘𝑥𝑗𝜏𝑘𝑙𝑛𝑙𝑑𝑆 =

∫
𝑉

∂(𝜖𝑖𝑗𝑘𝑥𝑗𝜏𝑘𝑙)

∂𝑥𝑙
𝑑𝑉 = 0. (3)

The key to understanding purely irrotational flows
is that even though the irrotational stresses are self-
equilibrated the power of these irrotational stress is pos-
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itive, ∫
𝐴

n ⋅ 𝝉𝐼 ⋅ ∇𝜙𝑑𝑉 =

∫
𝐴

𝑛𝑖𝜏𝑖𝑗
∂𝜙

∂𝑥𝑗
𝑑𝑆

=

∫
𝑉

2𝜇
∂2𝜙

∂𝑥𝑖∂𝑥𝑗

∂2𝜙

∂𝑥𝑖∂𝑥𝑗
𝑑𝑉. (4)

From what has just been said, it follows that the
Navier–Stokes equations are not the appropriate start-
ing place for the analysis of purely irrotational effects on
the dissipation of energy. The correct starting place for
this analysis is the energy equation for the Navier–Stokes
equation rather than these equations themselves.

B. The rate of change of kinetic energy is not
Galilean invariant but the mechanical energy

equation is invariant

Consider a free stream of a fluid 1 moving to the right
with velocity 𝑈1 underneath another free stream of a fluid
2 moving to the right with velocity 𝑈2 with respect to the
laboratory frame {𝑥, 𝑡}. Consider the Galilean transfor-
mation,

x̃ = x−V𝑡, (5)

𝑡 = 𝑡. (6)

Hence,

ũ = u−V. (7)

where {𝑥̃, 𝑡} denotes a reference frame moving with con-
stant velocity 𝑉 with respect to the laboratory frame. In
particular, for V = (𝑉, 0, 0) an observer traveling with
the moving frame will see two streams with velocities
𝑈̃1 = 𝑈1 − 𝑉 and 𝑈̃2 = 𝑈2 − 𝑉 , respectively. After ap-
plying the Galilean transformation above to the Navier–
Stokes equations we have that these equations are invari-
ant. This is a manifestation of the fundamental view that
any physical law should take the same form in any iner-
tial frame of reference. Also, the boundary conditions
for the motion at an interface (continuity of tangential
and normal velocity components, continuity of tangen-
tial stresses and balance of normal stresses by surface
tension) are all invariant.
On the other hand, for the rate of change of the kinetic

energy we have

𝑑

𝑑𝑡

∣u∣2
2

= u ⋅ 𝑑u
𝑑𝑡

= (ũ+V) ⋅ 𝑑ũ
𝑑𝑡

=
𝑑

𝑑𝑡

∣ũ∣2
2

+V ⋅ 𝑑ũ
𝑑𝑡

(8)

Therefore, because of the last term in (8), the rate of
change of the kinetic energy is not invariant. However,
the energy equation for

𝜌u ⋅ 𝑑u
𝑑𝑡

= u ⋅ (∇ ⋅T) (9)

is transformed to

𝜌ũ ⋅ 𝑑ũ
𝑑𝑡

+V ⋅ 𝑑ũ
𝑑𝑡

= ũ ⋅
(
∇̃ ⋅ T̃

)
+V ⋅

(
∇̃ ⋅ T̃

)
(10)

where

T = −𝑝1+ 2𝜇D = −𝑝1+ 2𝜇D̃ = T̃. (11)

The symbol “𝑜̃” denotes quantities with respect to the
moving frame. Here, D and D̃ denote the symmetric
part of the velocity gradients ∇u and ∇̃ũ, respectively.
Also, 𝑝 = 𝑝. Because the Navier–Stokes equations are
invariant, we obtain, from (10),

𝜌ũ ⋅ 𝑑ũ
𝑑𝑡

= ũ ⋅
(
∇̃ ⋅ T̃

)
. (12)

Therefore, for a flow that is governed by the incompress-
ible Navier–Stokes equations, its associated energy equa-
tion is also Galilean invariant. Because the velocity is
divergence free, expression (12) may be rewritten as

𝜌ũ ⋅ 𝑑ũ
𝑑𝑡

= 𝜌
𝑑

𝑑𝑡

∣ũ∣
2

2

= ∇̃ ⋅
(
T̃ ⋅ ũ

)
− 2𝜇D̃ : D̃, (13)

where the last term gives the viscous dissipation of en-
ergy.

C. Four theories of the Kelvin-Helmholtz
instability

Two parallel infinite fluid streams of different veloci-
ties give rise to the Kelvin-Helmholtz instability. In the
analysis of this instability, the fluids are usually assumed
to be inviscid because the velocity discontinuity would
be smoothed by viscosity. Viscous effects have been in-
cluded by many authors through empirical correlations
for the interfacial stress. Nevertheless, comparison with
experiments has not been convincing (see the review in
[23]).

To the best of our knowledge, the only work in which
the effects of the viscosity of the fluids on both sides
of the interface on the Kelvin-Helmholtz instability have
been considered is the model by Funada and Joseph [10].
They considered purely irrotational flow above and below
the velocity discontinuity. The only place where viscosity
enters is in the evaluation of the viscous normal stress at
the interface. This analysis has been named “viscous po-
tential flow” (VPF1). It should be mentioned here that
viscous effects on the stability of the flow of two plane-
parallel streams have been investigated using numerical
analysis considering a continuous, smooth variation of
the basic velocity from one value to the other. For in-
stance, [24] considered a velocity variation according to a
hyperbolic tangent law of the spatial coordinate normal
to the interface. However, in these cases the sharp dis-
continuity of the velocity profile is smoothed out. That
is, the velocity profile subject of analysis does not cor-
respond to that of the Kelvin-Helmholtz instability. On
the other hand, in the work by [10], viscosity on both
sides of the interface enters the analysis while the basic
profile remains discontinuous.
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Another approach to the analysis of the Kelvin-
Helmhotlz instability is to consider one fluid as viscous
and the other as inviscid. The advantage of this method
is that it leads to an exact solution (ES) of the Navier–
Stokes equations; hence, vorticity is not zero on the vis-
cous side. This type of analysis has been conducted by
[25] for the case of a viscous film in an inviscid ambient
fluid, and by [26] to model the dynamics of a moving
inviscid fluid sharing an interface with a viscous liquid,
including the effects of heat and mass transfer.
The method described in the previous paragraph can

be generalized by treating both fluids as viscous, con-
straining the flow of one of the fluids to be irrotational
whereas the flow of the other fluid will have vorticity[27].
This simply translates into a modification of the interfa-
cial dynamic conditions: The viscous irrotational stress
will enter the jump of the normal component of the stress
across the interface, and the tangential component will
not vanish at the interface. This analysis is termed here
as the “hybrid method” (HM).
In this work we introduce yet another approach, the

dissipation method (VPF2), to the analysis of the Kelvin-
Helmholtz instability. Unlike previous formulations by
other authors (see below), the analysis of irrotational dis-
sipation leads to a determination of the effects of viscosity
on the wavespeed. The analysis starts from an energy
balance in integral form written for each fluid stream
obtained from the “dot” product of the velocity pertur-
bation with the linearized incompressible Navier–Stokes
equations. As in the exact solution, one fluid is set to be
inviscid and the other viscous, with gravity pointing from
the inviscid to the viscous. The interfacial constraints for
the normal velocity and stress and the tangential stress
satisfied by the exact solution are enforced in the energy
balance. Next, the integrals are evaluated in potential
flow. The analysis yields a dispersion relation for the
growth rate and wave frequency that includes viscous
effects. This dispersion relation is different from that ob-
tained by VPF1. Because for ES and VPF2 the fluid at
the top is assumed to be inviscid, the different methods
considered here are applied to a pair of fluids with a very
small upper-fluid to lower-fluid density ratio. That is,
for gas-liquid flows. Results from ES, HM and VPF2 are
computed for a given velocity profile, neglecting stabiliz-
ing effects of interfacial tension and gravity. Results from
VPF1 by [10] and the classical theory for inviscid fluids
are also given here.

II. ANALYSIS

A. Problem formulation and governing equations

Consider two parallel streams of two different incom-
pressible fluids. Fluid 1 has density 𝜌1 and viscosity 𝜇1

and moves with constant velocity U1 = 𝑈1i. Fluid 2 has
density 𝜌2 and is considered to be inviscid, i.e. 𝜇2 = 0,
and moves with velocity U2 = 𝑈2i also constant. Or-

FIG. 2. Sketch of the geometry of the problem showing two
parallel streams of fluids 1 and 2 having velocities 𝑈1 and 𝑈2,
respectively, and the Cartesian reference frame. Each fluid
has density and viscosity 𝜌𝑗 and 𝜇𝑗 , 𝑗 = 1, 2, and 𝛾 is the
(constant) interfacial tension. The position of the perturbed
interface is denoted by 𝑦 = 𝜂(𝑥, 𝑡). In some cases, the viscosity
𝜇2 = 0.

thogonal unit vectors {i, j} point along the positive 𝑥
and 𝑦 directions, respectively (Fig. 2). The position of
the plane infinite interface separating fluid 1 from fluid
2 is 𝑦 = 0; fluid 1 occupies the 𝑦 < 0 semi-infinite space
and fluid 2 occupies the 𝑦 > 0 semi-infinite space. The
interface is characterized by a constant interfacial tension
𝛾. Gravity 𝑔 acts in the 𝑦-direction and points from fluid
2 to fluid 1. We consider a two-dimensional motion. Sup-
pose now that the interface is slightly perturbed so that
its new position is 𝑦 = 𝜂(𝑥, 𝑡) and let u = 𝑢i + 𝑣j and 𝑝
be the velocity and pressure perturbations, respectively.
The governing equations are the incompressible Navier–
Stokes equations written for each fluid with appropriate
boundary conditions. In the far field, the perturbations
vanish. At the interface, the balance of normal stresses by
interfacial tension effects, continuity of tangential stresses
and normal velocity components are enforced. No con-
dition is imposed on the tangential velocity components,
to allow for the discontinuity in the base velocity across
the interface. This follows the approach in Ref. [26].

Linearization of the governing equations and boundary
conditions, after subtracting the base state, leads to

𝜌

(
∂u

∂𝑡
+U ⋅ ∇u

)
= −∇𝑝+ 𝜇∇2u, (14)

∇ ⋅ u = 0, (15)

for each fluid, with 𝜇2 = 0, together with boundary con-
ditions(

−𝑝1 + 2𝜇1
∂𝑣1
∂𝑦

)
+ 𝑝2 = 𝛾

∂2𝜂

∂𝑥2
− (𝜌1 − 𝜌2)𝑔𝜂, (16)

∂𝑢1

∂𝑦
+

∂𝑣1
∂𝑥

= 0, (17)

𝑣1 =
∂𝜂

∂𝑡
+ 𝑈1

∂𝜂

∂𝑥
and 𝑣2 =

∂𝜂

∂𝑡
+ 𝑈2

∂𝜂

∂𝑥
, (18)
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at 𝑦 = 0 from the balance of the jump in normal stresses
by interfacial tension, continuity of tangential stresses,
and continuity of normal velocity components along with
the kinematic condition, respectively.

B. Exact solution – Inviscid fluid above

Using normal mode expressions for the variables, the
analysis of the linearized governing equations (14)–(18)
described in the A leads to the following dispersion rela-
tion

𝑌 4 + 𝑎2𝑌
2 + 𝑎1𝑌 + 𝑎0 = 0, (19)

where

𝑎0 =2i𝛼2
(𝑈1 − 𝑈2)

𝑘𝜈1
− 𝛼2

(𝑈1 − 𝑈2)
2

𝑘2𝜈21
,

+ (𝛼1 − 𝛼2)𝑄+𝑄1/3𝑆 + 1,

𝑎1 =− 2(𝛼1 − 𝛼2)− 2,

𝑎2 =2(𝛼1 − 𝛼2)− 2i𝛼2
(𝑈1 − 𝑈2)

𝑘𝜈1
,

and

𝑌 =

√
1 +

𝜎 + ı𝑘𝑈1

𝑘2𝜈1
=

𝑞1
𝑘
, so that

𝜎 = 𝑘2𝜈1
(
𝑌 2 − 1

)− ı𝑘𝑈1,

𝛼1 =
𝜌1

𝜌1 + 𝜌2
, 𝛼2 =

𝜌2
𝜌1 + 𝜌2

,

𝑄 =
𝑔

𝑘3𝜈21
, and 𝑄−2/3𝑆 =

𝑘2𝛾

𝑔(𝜌1 + 𝜌2)
.

In writing (19), the term (𝑌 2 − 1) has been factored out
because it gives the root 𝑌 = −1, which is inadmissible,
and the root 𝑌 = 1, which is trivial.
If in the analysis by Ref. [26] heat and mass transfer

are discarded from the model, their (quintic) dispersion
relation (23) reduces to our quartic equation (19) after
the term (𝑌 + 1) is factored out from their formula.
Also, expression (19), with 𝑈1 = 𝑈2 = 0, reduces to

that of [28] (Sec. 94, pp. 443), when we set 𝜇2 = 0
in his formula for the Rayleigh-Taylor instability for two
viscous fluids. In addition, if we set 𝜌2 = 0 in (19), we
obtain the quartic dispersion relation given by [19], in his
study of capillary-gravity waves.

C. Hybrid method – Irrotational flow of a viscous
fluid above

A generalization of the analysis presented in the pre-
vious section can be developed by considering that fluid
2 is viscous and its motion is irrotational. The inter-
facial conditions must be modified accordingly. In the
balance of normal stresses (16) the viscous irrotational

normal stress on the fluid-2 side must be added to the
hydrodynamic pressure. That is,(

−𝑝1 + 2𝜇1
∂𝑣1
∂𝑦

)
−

(
−𝑝2 + 2𝜇2

∂𝑣2
∂𝑦

)
= 𝛾

∂2𝜂

∂𝑥2
− (𝜌1 − 𝜌2)𝑔𝜂. (20)

With respect to the continuity of tangential stresses
across the interface, the tangential component of the (ro-
tational) stress on the fluid-1 side does not vanish; in-
stead, it equals the tangential component of the (irrota-
tional) stress on the fluid-2 side, i.e.

𝜇1

(
∂𝑢1

∂𝑦
+

∂𝑣1
∂𝑥

)
= 𝜇2

(
∂𝑢2

∂𝑦
+

∂𝑣2
∂𝑥

)
. (21)

With these two modifications, following the preceding
analysis leads to the dispersion relation

𝑌 5 + 𝑌 4 + 𝑎3𝑌
3 + 𝑎2𝑌

2 + 𝑎1𝑌 + 𝑎0 = 0, (22)

where

𝑎0 =1 + 2i𝛼2
(𝑈1 − 𝑈2)

𝜈1𝑘
− 𝛼2

(𝑈1 − 𝑈2)
2

𝜈21𝑘
2

− 4𝑚𝛼2 − 4i𝑚𝛼2
(𝑈1 − 𝑈2)

𝜈1𝑘
+ (𝛼1 − 𝛼2)𝑄+𝑄1/3𝑆,

𝑎1 =− 1− 2(𝛼1 − 𝛼2) + 2i𝛼2
(𝑈1 − 𝑈2)

𝜈1𝑘

− 𝛼2
(𝑈1 − 𝑈2)

2

𝜈21𝑘
2

+ (𝛼1 − 𝛼2)𝑄+𝑄1/3𝑆,

𝑎2 =− 2− 2i𝛼2
(𝑈1 − 𝑈2)

𝜈1𝑘
+ 4𝑚𝛼2,

𝑎3 =2(𝛼1 − 𝛼2)− 2i𝛼2
(𝑈1 − 𝑈2)

𝜈1𝑘
,

and 𝑚 = 𝜈2/𝜈1 is the kinematic viscosity ratio. After
setting 𝑚 = 0, the root 𝑌 = −1 (inadmissible) can be
factored out of (22), and this quintic equation reduces to
the quartic equation (19).

D. Dissipation method

The following method for constructing the analysis of
the dissipation of energy was introduced by [13]; unlike
other dissipation approaches found in the fluid mechan-
ics literature, it gives rise to complex eigenvalues, growth
rates and wavespeeds. This method starts with an energy
identity for solutions of the Navier-Stokes equation with-
out assuming anything about irrotationality or vorticity.
Only after a general energy integral relation including
the dissipation integral is obtained, the viscous potential
flow will be used to substitute for the velocity derivatives
in the various integrals.

Taking the “dot” product of the linearized momentum
equation (14) with the complex conjugate of the veloc-
ity perturbation, and integrating this equation for fluid
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1 over volume 𝑉1 ≡ {−∞ < 𝑦 < 0, 𝑥0 < 𝑥 < 𝑥0 + 𝜆} and
that for fluid 2 over volume 𝑉2 ≡ {0 < 𝑦 < ∞, 𝑥0 < 𝑥 <
𝑥0 + 𝜆}, with (𝑥0, 𝑦0) arbitrary, yields a mechanical en-
ergy balance statement for each fluid. Adding the energy
balances for fluids 1 and 2 leads to∫

𝑉1

𝜌1ū1 ⋅
(
∂u1

∂𝑡
+U1 ⋅ ∇u1

)
𝑑𝑉 +

∫
𝑉2

𝜌2ū2 ⋅
(
∂u2

∂𝑡

+U2 ⋅ ∇u2

)
𝑑𝑉 =

∫
𝐴

j ⋅T1 ⋅ ū1𝑑𝐴−
∫
𝐴

j ⋅T2 ⋅ ū2𝑑𝐴

−
∫
𝑉1

2𝜇1D1 : D̄1𝑑𝑉. (23)

Here, e𝑗 = e1 = j for fluid 1 and e𝑗 = e2 = −j for fluid 2;
the stress T = −𝑝1+2𝜇D, and D is the symmetric part
of ∇u. Viscosity 𝜇2 = 0 for fluid 2. Symbol “̄ ” denotes
complex conjugate. The surface integrals over the region
𝐴 of the unperturbed interface are obtained by applying
the divergence theorem, periodicity of the flow in the 𝑥
direction and the vanishing of the velocity perturbation
in the far field. The last term in (23) denotes the energy
viscous dissipation, which only appears for fluid 1. This
form of obtaining an energy balance by using the complex
conjugate of the velocity follows that by [29] (see §6.7.4,
p. 177) in the analysis of the Rayleigh-Taylor instability.
Consider the surface integrals on the right-hand side

of (23). Writing ū in terms of its Cartesian components
ū = 𝑢̄i + 𝑣j and using boundary condition (17) for the
vanishing of the tangential stress (i.e. j ⋅T1 ⋅ i = 0) and
the fact that j ⋅ T2 ⋅ i = 0 for an inviscid fluid, we can
write ∫

𝐴

j ⋅T1 ⋅ ū1𝑑𝐴−
∫
𝐴

j ⋅T2 ⋅ ū2𝑑𝐴

=

∫
𝐴

[j ⋅T1 ⋅ j 𝑣1 − j ⋅T2 ⋅ j 𝑣2] 𝑑𝐴. (24)

With the balance of normal stresses in (16) written as

j ⋅T1 ⋅ j− j ⋅T2 ⋅ j = 𝛾
∂2𝜂

∂𝑥2
− (𝜌1 − 𝜌2)𝑔𝜂, (25)

eliminating 𝑣1 and 𝑣2 with condition (18), and using (25)
to eliminate the normal stress on the viscous side j ⋅T1 ⋅ j
in favor of that on the inviscid side j ⋅ T2 ⋅ j, expression
(24) becomes∫

𝐴

[
j ⋅T1 ⋅ j 𝑣1 − j ⋅T2 ⋅ j 𝑣2

]
𝑑𝐴

=

∫
𝐴

[
𝛾
∂2𝜂

∂𝑥2
− (𝜌1 − 𝜌2)𝑔𝜂

] [∂𝜂
∂𝑡

+ 𝑈1
∂𝜂

∂𝑥

]
𝑑𝐴

+

∫
𝐴

j ⋅T2 ⋅ j (𝑈1 − 𝑈2)
∂𝜂

∂𝑥
𝑑𝐴. (26)

With (26), the boundary conditions satisfied by ES have
also been enforced in the integral balance (26).
From the “exact solution” analysis (ES), we have that

the flow field u2 for the inviscid fluid 2 is irrotational

whereas, for fluid 1, u1 is not. Therefore, we can set
u2 = ∇𝜙2, where 𝜙2 is harmonic. In expression (26),
there is an integral involving j ⋅ T2 ⋅ j = −𝑝2. From the
linearized momentum equation in (14) for fluid 2, we can
integrate and find that

−𝑝2 = 𝜌2

(
∂𝜙2

∂𝑡
+ 𝑈2

∂𝜙2

∂𝑥

)
(27)

up to a function of time. Use of (27) results in no loss of
generality.

So far, we have set no constraint on the vorticity of the
flow. From ES, the flow field for fluid 1 is rotational. In
what follows, the integrals are evaluated in an approxi-
mate manner by neglecting vorticity. Thus, the velocity
field for fluid 1 is approximated as the gradient of a po-
tential, u1 = ∇𝜙1. Letting

𝜙1(𝑥, 𝑦, 𝑡) = 𝐴1 exp(𝑘𝑦) exp(𝜎𝑡+ i𝑘𝑥),

𝜙2(𝑥, 𝑦, 𝑡) = 𝐴2 exp(−𝑘𝑦) exp(𝜎𝑡+ i𝑘𝑥),
(28)

using conditions (18), and expression

𝜂(𝑥, 𝑡) = 𝜂0 exp(𝜎𝑡+ i𝑘𝑥), (29)

for 𝜂 we find

𝑘𝐴1 = (𝜎 + i𝑘𝑈1)𝜂0,

𝑘𝐴2 = −(𝜎 + i𝑘𝑈2)𝜂0.
(30)

For potential flow, after applying the divergence theo-
rem, periodicity of the potential in 𝑥 and the vanishing
of the velocity perturbation in the far field, the left-hand
side of (23) becomes,∫

𝑉1

𝜌1ū1 ⋅
(
∂u1

∂𝑡
+U1 ⋅ ∇u1

)
𝑑𝑉 +

∫
𝑉2

𝜌2ū2 ⋅
(
∂u2

∂𝑡

+U2 ⋅ ∇u2

)
𝑑𝑉 =

∫
𝐴

𝜌1𝑣1

(
∂𝜙1

∂𝑡
+ 𝑈1

∂𝜙1

∂𝑥

)
𝑑𝐴

−
∫
𝐴

𝜌2𝑣2

(
∂𝜙2

∂𝑡
+ 𝑈2

∂𝜙2

∂𝑥

)
𝑑𝐴, (31)

where 𝑣𝑗 = j ⋅ ∇𝜙𝑗 = ∂𝜙𝑗/∂𝑦, with 𝑗 = 1, 2. For the dis-
sipation integral, in potential flow, the following relation
holds,∫

𝑉1

2𝜇1D1 : D̄1𝑑𝑉 =

∫
𝐴

2𝜇1j ⋅D1 ⋅ ū1𝑑𝐴, (32)

and the right-hand side of expression (26) is also evalu-
ated in potential flow.

Evaluating the integrals in (26), (31) and (32), with
the aid of (28)-(30), and substituting back in (23), yields,
after some rearranging,[

𝜌1 (𝜎 + i𝑘𝑈1)
2
+ 𝜌2 (𝜎 + i𝑘𝑈2)

2
+ 𝛾𝑘3 + (𝜌1 − 𝜌2)𝑔𝑘

+4𝜇1𝑘
2 (𝜎 + i𝑘𝑈1)

]
[𝜎̄ − i𝑘𝑈1] = 0. (33)
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Therefore, the dispersion relation from VPF2 may be
written as

𝜌1 (𝜎 + i𝑘𝑈1)
2
+ 𝜌2 (𝜎 + i𝑘𝑈2)

2
+ 𝛾𝑘3 + (𝜌1 − 𝜌2)𝑔𝑘

+4𝜇1𝑘
2 (𝜎 + i𝑘𝑈1) = 0, (34)

which is quadratic, after discarding the neutrally sta-
ble root 𝜎 + i𝑘𝑈1 = 0. When the liquid viscosity 𝜇1 is
set to zero, this dispersion relation reduces to the eigen-
value relation for the classical Kelvin-Helmholtz instabil-
ity (e.g., see [30], pp. 28). On the other hand, if we
set 𝑈1 = 𝑈2 = 0 and set 𝜌2 = 0 for a viscous liquid
in (34), this reduces to the dispersion relation governing
the dynamics of capillary-gravity waves from VPF2 (see
[13]).

E. Viscous potential flow

The VPF1 analysis of the Kelvin-Helmholtz instability
was conducted by [10] (see also Ch. 11 in [2]). There,
irrotational viscous normal stresses are included in the
(pointwise) balance of normal stresses at the interface for
two viscous fluids assuming potential flow. Balance laws
in integral form—which are used in the case of VPF2—
are not considered in VPF1. The dispersion relation from
VPF1 is

𝜌1 (𝜎 + 𝑖𝑘𝑈1)
2
+ 𝜌2 (𝜎 + 𝑖𝑘𝑈2)

2
+ 2𝜇1𝑘

2 (𝜎 + 𝑖𝑘𝑈1)

+ 2𝜇2𝑘
2 (𝜎 + 𝑖𝑘𝑈2) + 𝛾𝑘3 + (𝜌1 − 𝜌2)𝑔𝑘 = 0. (35)

Relation (34) from VPF2 has the same form as the dis-
persion relation from VPF1, except that a factor of two
was obtained from VPF1 for the viscous terms rather
than the factor of four obtained here from VPF2.

III. RESULTS AND DISCUSSION

In this section we present results for the growth rate
and wave frequency from the dispersion relations pre-
sented in the previous section for VPF1, VPF2, ES and
HM. Here, we also include predictions from the classi-
cal theory where both fluids are inviscid, designated as
“inviscid potential flow” (IPF). Instead of applying the
dispersion relations to the original basic velocity pro-
file, we apply them to the profile seen by an observer
moving with the average velocity (𝑈1 + 𝑈2)/2. With re-
spect to this moving frame, fluid 1 moves with velocity
𝑈 = (𝑈1 − 𝑈2)/2 and fluid 2 with velocity −𝑈 . Under a
Galilean transformation, the growth rate is invariant and,
in this case, the wavespeed in the original frame differs
from that in the moving frame by the average velocity.
With no loss of generality, the original basic velocity pro-
file can be set in such a way that 𝑈 > 0.
The results are presented in dimensionless form. The

dimensionless complex growth rate is defined as

𝜎̂ =
𝜎

𝑘𝑈
, (36)

k

kσ
r

10-5 10-4 10-3 10-2 10-1 100 101 102 103
0

0.001

0.002

0.003

IPF
VPF1
VPF2
ES
HM

r=0.001, m=0.1

〈

〈

〈

(a)

k

c

10-5 10-4 10-3 10-2 10-1 100 101 102 103

-1

-0.999

-0.998

-0.997

IPF
VPF1
VPF2
ES
HM

r=0.001, m=0.1
〈

〈

(b)

FIG. 3. Graphs of (a) dimensionless growth rate 𝑘𝜎̂𝑟 and
(b) dimensionless wavespeed 𝑐 vs. dimensionless wavenumber

𝑘 from five methods, namely, IPF, VPF1, VPF2, ES, and
HM, for a pair of fluids with density ratio 𝑟 = 0.001 and
kinematic viscosity ratio𝑚 = 0.1. Surface tension and gravity
are neglected. Only the roots with positive growth rate are
shown here.
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FIG. 4. Graphs of (a) dimensionless growth rate 𝑘𝜎̂𝑟 and
(b) dimensionless wavespeed 𝑐 vs. dimensionless wavenumber

𝑘 from five methods, namely, IPF, VPF1, VPF2, ES, and
HM, for a pair of fluids with density ratio 𝑟 = 0.001 and
kinematic viscosity ratio𝑚 = 1.0. Surface tension and gravity
are neglected. Only the roots with positive growth rate are
shown here.

so that the dimensionless growth rate is 𝜎̂𝑟 = Re[𝜎̂] and
the dimensionless wavespeed is 𝑐 = Im[𝜎̂]. Figs. 3–5

show the variation of the product 𝑘𝜎̂𝑟 and 𝑐 with a di-
mensionless wavenumber defined as

𝑘 =
𝜈1𝑘

𝑈
, (37)

for a fixed density ratio 𝑟 = 0.001, which can be identi-
fied with a liquid-gas system (e.g., water-air) and three
different values of the kinematic viscosity ratio, namely,
𝑚 = 0.1 (e.g., viscous oil-air), 𝑚 = 1, and 𝑚 = 10 (e.g.,
water-air). Even though for a typical gas-liquid system
the dynamic viscosity ratio is in the order of 10−2 or
smaller, depending upon how viscous the liquid can be,
kinematic viscosity ratios in the order of 1 or 10 can be

realized. The product 𝑘𝜎̂𝑟 also designates a dimension-
less growth rate.

From the dispersion relations written in dimension-
less form in the B, the dimensionless growth rate and
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FIG. 5. Graphs of (a) dimensionless growth rate 𝑘𝜎̂𝑟 and (b)

dimensionless wavespeed 𝑐 vs. dimensionless wavenumber 𝑘
from five methods, namely, IPF, VPF1, VPF2, ES, and HM,
for a pair of fluids with density ratio 𝑟 = 0.001 and kinematic
viscosity ratio 𝑚 = 10.0. Surface tension and gravity are
neglected. Only the roots with positive growth rate are shown
here.

wavespeed depends only on the density ratio 𝑟 in the
case of IPF. For VPF2 and ES, they depend on 𝑟 and

the dimensionless wavenumber 𝑘. For VPF1 and HM,

they depend on 𝑘, 𝑟 and the kinematic viscosity ratio 𝑚.

These figures show that 𝑘𝜎̂𝑟 growths unbounded as 𝑘
increases for IPF. According to the classical theory for
inviscid fluids, as explained in the B using definition
(B2), the discontinuous basic flow is Hadamard unsta-
ble because the growth rate increases linearly with the
wavenumber. Therefore, the waves become more unsta-
ble as they become shorter. On the other hand, results
from the theories that account for viscous effects show
that viscosity does not stabilize short waves but the in-
stability is not of the Hadamard type. The numerical
results in Figs. 3–5 and the analytical expressions for

large 𝑘 in the B, demonstrate that the growth rate tends
to an asymptotic value that varies with each theory.
For a kinematic viscosity ratio 𝑚 = 0.1 and 𝑚 =

1, VPF1, ES and HM predict similar results as the
wavenumber increases. The growth rate from VPF2, on
the other hand, is about half of those results [Figs. 3(a)
and 4(a)]. This is in agreement with the analytical re-
sults for the asymptotes, given in the B. For 𝑚 = 10,
the graphs of the growth rate in Fig. 5(a) show that the
differences in the predictions from the various theories
become noticeable as the dimensionless wavenumber in-
creases, a result confirmed by the expressions for large 𝑘
in that Appendix. There, it is shown that discrepancies
between VPF1, ES and HM will be significant only when
𝑚 is large, for fixed 𝑟.
For the wavespeed, for𝑚 =0.1, all viscous theories pro-

duce similar results [Fig. 3(b)]. The wavespeed slightly
increases as the wavelength becomes shorter. In general,
for the wavespeed, VPF1 exhibits the same trend of HM

as 𝑘 changes, whereas VPF2 follows that by ES, as pre-

dicted by the analytic expressions for large 𝑘. For IPF,
the wavespeed is independent of the wavenumber. When
both fluids have the same kinematic viscosity (𝑚 = 1),

VPF1 predicts the same wavespeed as the inviscid theory
for all wavelengths. Moreover, for short waves, HM also
matches the results from the inviscid theory, as shown in
Fig. 4(b) (see also analytical results in B). For 𝑚 = 10,
i.e. when the kinematic viscosity of fluid 2 is larger than
that of fluid 1, VPF1 and HM, which are the two theories
that account for the viscosity of both fluids, predicts that
shorter waves are slower than long waves, contrary to the
trend resulting from VPF2 and ES, the two theories that
consider fluid 2 as inviscid [Fig. 5(b)].

In sum, when the kinematic viscosity on one side is
much smaller than that on the other side, viscous ef-
fects on that side are weak, so that results from HM and
ES agree well. In this particular scenario, these rota-
tional theories seem to be the best possible model of the
Kelvin-Helmholtz instability. With respect to the viscous
irrotational theories, VPF1 shows very good agreement
with the rotational solutions for the interval of wavenum-
bers considered, whereas VPF2 is off the mark in terms
of predicting the growth rate. Discrepancies become sig-
nificant as the kinematic viscosity ratio increases.
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Appendix A: Exact solution

Here, details of the derivation of the dispersion rela-
tion in (19) are presented. Using normal modes, we may
write, for the interface position

𝜂(𝑥, 𝑡) = 𝜂0 exp(𝜎𝑡+ i𝑘𝑥), (A1)

and for the flow field

𝑢(𝑥, 𝑦, 𝑡) = 𝑢̂(𝑦) exp(𝜎𝑡+ i𝑘𝑥), (A2)

𝑣(𝑥, 𝑦, 𝑡) = 𝑣(𝑦) exp(𝜎𝑡+ i𝑘𝑥), (A3)

𝑝(𝑥, 𝑦, 𝑡) = 𝑝(𝑦) exp(𝜎𝑡+ i𝑘𝑥), (A4)

where the actual interface position and pressure fields are
given by the real part of (A1)–(A4).

Substitution of the normal mode expressions (A2)–
(A4) into the linearized governing equations (14)–(15)
gives rise to the following differential equations for the
amplitude of the vertical component of the perturbed
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velocity for each fluid,[
1− 𝜈1

(𝜎 + i𝑘𝑈1)

(
𝑑2

𝑑𝑦2
− 𝑘2

)](
𝑑2

𝑑𝑦2
− 𝑘2

)
𝑣1 = 0,

(A5)
for fluid 1 and, (

𝑑2

𝑑𝑦2
− 𝑘2

)
𝑣2 = 0, (A6)

for fluid 2. Here, 𝜈1 = 𝜇1/𝜌1 denotes the kinematic vis-
cosity. Solutions of (A5) and (A6) that vanish far from
the interface can be written as

𝑣1 = 𝑐11 exp(𝑘𝑦) + 𝑐13 exp(𝑞1𝑦),

𝑣2 = 𝑐22 exp(−𝑘𝑦),
(A7)

where,

𝑞1 =

√
𝑘2 +

𝜎 + i𝑘𝑈1

𝜈1
, (A8)

for wavenumber 𝑘 real and positive and only admitting
solutions for which the real part of 𝑞1 is positive.
Writing the boundary conditions in terms of 𝑣1 and 𝑣2,

the balance of normal stresses (16) at 𝑦 = 0 leads to

𝜇1

𝑘2
𝑑3𝑣1
𝑑𝑦3

−
[
3𝜇1 +

𝜌1(𝜎 + i𝑘𝑈1)

𝑘2

]
𝑑𝑣1
𝑑𝑦

+
𝜌2
𝑘2

(𝜎 + i𝑘𝑈2)
𝑑𝑣2
𝑑𝑦

+
[−𝛾𝑘2 − (𝜌1 − 𝜌2)𝑔

] 𝑣2
(𝜎 + i𝑘𝑈2)

= 0. (A9)

The zero-tangential stress condition (17) yields

𝑑2𝑣1
𝑑𝑦2

+ 𝑘2𝑣1 = 0, (A10)

and the kinematic condition (18) results in

𝑣1
(𝜎 + i𝑘𝑈1)

=
𝑣2

(𝜎 + i𝑘𝑈2)
. (A11)

Substitution of (A7) into (A9)–(A11) leads to a linear
homogeneous system of equations for the unknowns 𝑐11,
𝑐13, 𝑐22. For a nontrivial solution, the dispersion relation
(19) must be satisfied.

Appendix B: Dimensionless form of the dispersion
relations

The dimensionless form of the dispersion relations
given above from the various methods of analysis are
written here in dimensionless form ignoring surface ten-
sion and gravity. In those equations, the velocity of fluid
1 is set equal to 𝑈 and that of fluid 2 to −𝑈 . This rep-
resents no loss of generality as discussed in the “Results
and discussion” section.

The dispersion relation for IPF can be obtained from
(35) by simply setting the viscosities of both fluids to
zero. This yields

𝜌1 (𝜎 + i𝑘𝑈)
2
+ 𝜌2 (𝜎 − i𝑘𝑈)

2
= 0. (B1)

With the dimensionless complex growth rate given by

𝜎̂ =
𝜎

𝑘𝑈
, (B2)

expression (B4) can be written in dimensionless form as

(𝜎̂ + i)
2
+ 𝑟 (𝜎̂ − i)

2
= 0, (B3)

so that the dimensionless growth rate and wavespeed are,
respectively,

𝜎̂𝑟 = 2

√
𝑟

1 + 𝑟
, (B4a)

𝑐 = −1− 𝑟

1 + 𝑟
, (B4b)

where the density ratio 𝑟 = 𝜌2/𝜌1 = 𝛼2/𝛼1 is the only
parameter.

For VPF, the dimensionless form of (35) is

(𝜎̂ + i)
2
+𝑟 (𝜎̂ − i)

2
+2𝑘 (𝜎̂ + i)+2𝑟𝑚𝑘 (𝜎̂ − i) = 0, (B5)

where the dimensionless wavenumber is

𝑘 =
𝜈1𝑘

𝑈
, (B6)

and 𝑚 = 𝜈2/𝜈1. In this case, the dimensionless growth

rate and wavespeed depend on 𝑘, 𝑟 and 𝑚.
For DM, relation (34) becomes

(𝜎̂ + i)
2
+ 𝑟 (𝜎̂ − i)

2
+ 4𝑘 (𝜎̂ + i) = 0. (B7)

Here, 𝜎̂ is determined by 𝑘 and 𝑟.
For ES, the dispersion relation is (19). For this, we

may write

𝑌 =

√
1 +

𝜎̂ + i

𝑘
, (B8)

and the coefficients

𝑎0 = 1 + 4i
𝛼2

𝑘
− 4

𝛼2

𝑘2
,

𝑎1 = −2− 2 (𝛼1 − 𝛼2) ,

𝑎2 = 2(𝛼1 − 𝛼2)− 4i
𝛼2

𝑘
,

where 𝛼1 = 1/(1 + 𝑟) and 𝛼2 = 𝑟/(1 + 𝑟). Also in this

case 𝜎̂ depends upon 𝑘 and 𝑟.
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Finally, for HM, relation (22) holds with

𝑎0 = 1 + 4i
𝛼2

𝑘
− 4

𝛼2

𝑘2
− 4𝑚𝛼2 − 8i𝑚

𝛼2

𝑘
,

𝑎1 = −1− 2 (𝛼1 − 𝛼2) + 4i
𝛼2

𝑘
− 4

𝛼2

𝑘2
,

𝑎2 = −2− 4i
𝛼2

𝑘
+ 4𝑚𝛼2,

𝑎3 = 2 (𝛼1 − 𝛼2)− 4i
𝛼2

𝑘
.

Therefore, the dimensionless growth rate and wavespeed

are determined by 𝑘, 𝑟 and 𝑚 in this case.

To compare the results from IPF with those from the

theories that consider viscous effects in the graphs of 𝑘𝜎̂𝑟

versus 𝑘, both sides of expression (B4a) are multiplied by

𝑘. With 𝜎 = 𝜎̂𝑘𝑈 , the theory for inviscid fluids predicts
that the Kelvin-Helmholtz instability is of the Hadamard
type, as discussed above.

1. Dimensionless growth rate and wavespeed for
long waves

For long waves, i.e. 𝑘 → 0, the leading order terms for
the dimensionless growth rate and wavespeed from the
various viscous theories match the inviscid limit, given
in (B4).

2. Dimensionless growth rate and wavespeed for
short waves

For short waves, i.e. 𝑘 → ∞, the dimensionless growth
rate and wavespeed tend to the following values.

For IPF, the growth rate and wave frequency are given
in (B4) for all wavenumbers.

For VPF:

𝜎̂𝑟 ≈ 2𝑟

𝑘

(1 + 𝑟𝑚2)

(1 + 𝑟𝑚)3
, (B9a)

𝑐 ≈ −1− 𝑟𝑚

1 + 𝑟𝑚
. (B9b)

For DM:

𝜎̂𝑟 ≈ 𝑟

𝑘
, (B10a)

𝑐 ≈ −1. (B10b)

For ES:

𝜎̂𝑟 ≈ 2𝑟

𝑘
, (B11a)

𝑐 ≈ −1. (B11b)
For HM:

𝜎̂𝑟 ≈ 2𝑟

𝑘

(1 + 2𝑟𝑚2)

(1 + 𝑟𝑚)3
, (B12a)

𝑐 ≈ −1− 𝑟𝑚

1 + 𝑟𝑚
. (B12b)
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