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The non-linear deformation and break-up of a bubble or drop immersed in a uniax-
ial extensional flow of an incompressible viscous fluid is analyzed by means of viscous
potential flow. In this approximation, the flow field is irrotational and viscosity enters
through the balance of normal stresses at the interface. The governing equations are
solved numerically to track the motion of the interface by coupling a boundary-element
method with a time-integration routine. When break-up occurs, the break-up time com-
puted here is compared with results obtained elsewhere from numerical simulations of
the Navier–Stokes equations, which thus keeps vorticity in the analysis, for several com-
binations of the relevant dimensionless parameters of the problem [Revuelta et al. (2006),
J. Fluid Mech., 551, 175]. For the bubble, for Weber numbers 3 ⩽ 𝑊𝑒 ⩽ 6, predictions
from viscous potential flow shows good agreement with the results from the Navier–Stokes
equations for the bubble break-up time, whereas for larger 𝑊𝑒, the former under-predicts
the results given by the latter. When viscosity is included, larger break-up times are pre-
dicted with respect to the inviscid case for the same 𝑊𝑒. For the drop and considering
moderate Reynolds numbers, 𝑅𝑒, increasing the viscous effects of the irrotational motion
produces large, elongated drops that take longer to break up in comparison with results
for inviscid fluids. For larger 𝑅𝑒, it comes as a surprise that break-up times smaller than
the inviscid limit are obtained. Unfortunately, results from numerical analyses of the
incompressible, unsteady Navier–Stokes equations for the case of a drop have not been
presented in the literature, to the best of our knowledge; hence comparison with the
viscous irrotational analysis is not possible.
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1. Introduction

The break-up of bubbles and drops by a turbulent immiscible flow plays a key role in
transfer phenomena occurring in engineering applications and natural settings. The rate
of mass, heat and momentum transfer between a dispersed phase and a continuous phase
strongly depends on the existing contact or interfacial area, which in turn is determined
by the deformation and break-up of the fluid particles. For instance, this is of paramount
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importance for the performance of gas-liquid and liquid-liquid chemical reactors and sep-
arators. Also, the exchange of carbon dioxide, water vapor and other species between the
oceans and the atmosphere, which has large-scale environmental implications, is known
to be associated with the bubble size distribution resulting from interaction of the tur-
bulence within the bulk of the water with the air entrained by the dynamics of sea waves
(Melville 1996; Mart́ınez-Bazán, Montanes & Lasheras 1999a,b, and references therein).
Therefore, an understanding of the mechanism of turbulent break-up of bubbles or drops
has been central to developing predictive models applicable to these and many other
processes. In particular, the particle break-up time is an essential parameter in the de-
scription of these phenomena.
After the pioneering works of Kolmogorov (1949) and later of Hinze (1955), it has

been established that turbulent break-up of a fluid particle result as a consequence of the
overcoming of the shape-preserving surface tension forces by the pressure fluctuations
acting on the particle. Moreover, it has been ascertained that characterizing the local
turbulent fluid dynamics prevailing around the bubble or drop suffices to describe the
changes in its morphology. Another break-up mechanism, first described by Risso & Fabre
(1998) and known as subcritical break-up, in opposition to the supercritical mechanism
just presented, consists in the occurrence of bubble resonance with a series of consecutive,
subcritical (i.e. moderate) turbulent eddies that lead to large oscillations and eventual
break-up of the bubble.
After examining available experimental data obtained by Rodŕıguez-Rodŕıguez (2004)

and Eastwood, Armi & Lasheras (2004) for the break-up of bubbles and drops, respec-
tively, in a turbulent water stream, and by performing numerical simulations, Rodŕıguez-
Rodŕıguez, Gordillo &Mart́ınez-Bazán (2006) (hereinafter RDZ) have convincingly shown
that this phenomenon can be modeled, as a first approximation, by considering a bubble
or drop, initially spherical, immersed in a uniaxial straining flow of an incompressible
fluid, using a reference frame that moves with the mean velocity of the background
flow. Although simple, this model retains the most relevant features of the process, thus
avoiding expensive three-dimensional numerical computations involving the tracking of
deforming interfaces in a turbulent flow characterized by unsteady structures with var-
ious length scales. Indeed, the images observed by RDZ revealed that the bubbles or
drops follow a “cigar-shape” elongation leading to break-up that is nearly axisymmetric.
Moreover, their observations suggest that a single turbulent eddy is the cause of break-
age and “whose characteristic turnover time is larger than the break-up time”, thereby
justifying the assumption of a steady flow in the far field (i.e. fluctuations are discarded
as the cause of break-up). Indeed, Risso & Fabre (1998) observed in experiments that an
initially non-deformed bubble may be deformed and broken by turbulent eddies strong
enough to generate abrupt break-up. RDZ further assume that the particle character-
istic size falls within the inertial subrange of the turbulent energy spectrum, hence the
fluids are considered inviscid. In their simulations, the velocity field is irrotational. The
numerical simulations are carried out by RDZ using the boundary element method and
the bubble or drop break-up time is predicted as a function of the Weber number, which
measures the relative importance of the outer flow inertia versus the force due to surface
tension, and the inner to outer density ratio. Thus, values of the Weber number and
density ratio must be entered before running a simulation. To be able to specify a Weber
number representative of the characteristics of the turbulent flow, RDZ derived a formula
that links the magnitude of the Weber number to the dissipation rate of turbulent ki-
netic energy per unit mass. Their simulations result in particle break-up when the actual
Weber number is larger than a critical Weber number; otherwise, the bubble or drop
oscillates and does not break-up in agreement with experimental evidence. For the case
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of the bubble, binary break-up is predicted, that is, the bubble breaks into two equal
pieces in accord with experiments (Mart́ınez-Bazán et al. 1999b; Rodŕıguez-Rodŕıguez
et al. 2003; Andersson & Andersson 2006); the computed break-up time also agrees with
experimental measurements by Mart́ınez-Bazán et al. (1999a) and Rodŕıguez-Rodŕıguez
(2004).
On the other hand, in the case of the drop, the break-up is tertiary (e.g., Andersson

& Andersson 2006) as two symmetric daughter drops are formed at both ends of an
intermediate ligament that becomes slender, with length larger than the initial drop
radius for large Weber numbers, as the inner to outer density ratio becomes of order
one. For Weber numbers close to the critical value, the central satellite drop is small in
volume. In this case, RDZ point out that predictions for the break-up time and critical
Weber number do not agree with the experimental measurements. They assert that this
discrepancy results because the drop takes the form of a long ligament with a length much
larger than the size of the breaking eddy. The elongated drop thus turns around itself as
observed in the experiments. Therefore, the approximation of the local fluid motion as an
axisymmetric straining motion is no longer valid. Beyond this weakness, those authors
state that the simple model is able to qualitatively describe important features of the
process as the tertiary break-up and the size of the intermediate ligament.
Revuelta, Rodŕıguez-Rodŕıguez & Mart́ınez-Bazán (2006) (hereinafter REV) add a

viscous correction to the inviscid break-up time predicted by RDZ by solving the unsteady
incompressible Navier–Stokes equations for a bubble immersed in the uniaxial extensional
flow of a liquid using a level set method on a fixed mesh. Since viscosity enters the analysis,
two additional dimensionless parameters appear in the formulation, namely, the inner
to outer viscosity ratio and a Reynolds number based upon the liquid properties, the
bubble initial radius and the principal strain rate. In terms of this Reynolds number, the
correction to the break-up time is 𝑂(𝑅𝑒−1). They found that for a fixed Weber number,
the smaller the Reynolds number, the longer takes the bubble to break up. Therefore,
the break-up time computed for inviscid fluids, i.e. 𝑅𝑒 → ∞, determines a lower bound.
Moreover, they obtained that for a fixed Reynolds number, the break-up time reaches a
plateau as the Weber number increases. They also found that the critical Weber number
𝑊𝑒𝑐 = 2.22 ± 0.005, which is almost the same as that found by RDZ, is independent
of the Reynolds number for 𝑅𝑒 ⩾ 20. In addition, REV also considered a fluctuating
principal strain rate in the far field to model the mechanism of resonance of the bubble
with passing turbulent structures, a process that has been described above.
A relevant antecedent of Revuelta’s work is the paper by Kang & Leal (1987) on the

dynamics of a bubble in a uniaxial extensional flow with a steady strain rate. They
focused on finding the maximum critical Weber number for which a steady solution ex-
ists by solving the unsteady incompressible Navier–Stokes equations for the outer liquid.
However, they do not present results on either the break-up time or the bubble mor-
phology in an event of break-up. Kang & Leal (1990) also studied the bubble dynamics
when the uniaxial straining motion in the far field is time-periodic. In the case of a drop
in a uniaxial extensional flow of another liquid, the literature search revealed, surpris-
ingly, that the numerical solution of the incompressible Navier–Stokes equations has been
carried out only by Ramaswamy & Leal (1997) dropping the unsteady term. Therefore,
information on the drop break-up time is not provided and their results are concerned
with the critical Weber number below which a steady shape exists. The vast majority of
the computational work for the transient of this flow configuration has been conducted
neglecting inertia in the limit of Stokes flow as shown, for example, in the review paper
by Guido & Greco (2004).
The theories of potential flow of viscous fluids, i.e. viscous potential flow and the dissi-
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pation method, which is based upon the mechanical energy equation, have been applied
to problems of linear stability analysis of diverse origin, as well as to problems of small
wave dynamics on an interface or free surface (Joseph, Funada & Wang 2007). Results
from these analyses have shown that excellent to reasonable agreement can be obtained
with exact solutions from the linearized Navier–Stokes equations, which retain the effects
of vorticity, or with experimental data. The question of to what extent the viscous irrota-
tional theories, in particular, viscous potential flow, can be used to predict the nonlinear
motion of an interface is the subject of this investigation, which is conducted for the
particular case of the deformation of a bubble or drop in a uniaxial straining flow.
In this work, the dynamics of the interface of a bubble or drop of an incompressible

fluid immersed in another incompressible fluid subjected to a uniaxial extensional flow is
studied. The fluids in this system are viscous and the motion is assumed to be irrotational
for all time. For the bubble, the inner to outer fluid density ratio is set to be very small
in comparison to unity and, for the case of the drop, this ratio is of order one. The
solution of the governing equations is sought through a numerical method that couples
a boundary integral formulation with a time integration scheme following the algorithm
proposed by RDZ. In a sense, this is an extension of the work of RDZ for inviscid fluids
to include the viscous effects of the irrotational motion via the dynamic balance at the
interface that contains the viscous normal stresses. The main objective is the comparison
of the interfacial shapes as time advances and the break-up time computed using the
viscous irrotational approximation with published results obtained from the solution
of the incompressible fully-viscous Navier–Stokes equations, which keep the rotational
component of the flow field, for the case of the bubble (REV). For the case of the drop,
we present numerical results from the viscous potential flow theory; however, we are not
able to compare with results from a transient analysis of a Navier–Stokes flow because,
as mentioned above and to the best of our knowledge, no works have been presented in
the literature in which these computations have been performed.
This paper is organized as follows. This section is followed by a brief literature review

on the boundary element method applied to the problem of interfacial flows for viscous
fluids. Next, in §3 the problem formulation and the numerical method are described in
detail. In §4, the validation of the numerical method (§4.1) and the results for the non-
linear deformation of a bubble (§4.2) and drop (§4.3) with viscous effects are presented
and discussed. Finally, concluding remarks are given in §5.

2. Boundary integral methods for viscous potential flow

In the vast majority of the cases, boundary integral formulations based on the poten-
tial theory have been implemented to compute interfacial flows of inviscid, irrotational
flows. Only in a few cases, this method has been applied to analyze the interfacial flow of
viscous fluids, the reason being that the effect of vorticity generated at interfaces or solid
boundaries cannot be accounted for. A viscous potential flow analysis of the deformation
of a rising three-dimensional bubble was presented by Miksis, Vanden-Broeck & Keller
(1982). They converted their problem into a system of integro-differential equations which
they solved under the conditions of small Weber numbers and large Reynolds numbers.
The boundary element method for the potential problem has been extended to accommo-
date the effects of viscosity in a purely irrotational flow by Georgescu, Achard & Canot
(2002) to study a gas bubble bursting at a free surface and by Canot et al. (2003) in
their numerical simulation of the buoyancy-driven bouncing of a two-dimensional bubble
at a horizontal wall using the direct formulation. Very recently, Gordillo (2008) stud-
ied the necking and break-up of a bubble under the action of gravity generated from a
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submerged vertical nozzle by modifying the code of RDZ for inviscid fluids to include
the viscous effects of the irrotational motion of the liquid through the viscous normal
stress at the interface, whereas the rotational effects in the gas (vorticity) are retained
through a mechanistic model based upon the incompressible Navier–Stokes equations
assuming a slender neck region that splits the gas pressure as an inviscid plus a viscous
contribution. Predictions of the instantaneous position of the interface from this code are
compared with those from a set of two-dimensional Rayleigh-like equations, deduced with
the assumption that the liquid velocity field is irrotational, and excellent agreement was
found. These Rayleigh-like equations were used later by Bolanos-Jiménez et al. (2009)
to study bubble pinch-off in liquids more viscous than water and good agreement with
their experimental data was reported. They justified the hypothesis of an irrotational
liquid velocity field by stating that “the velocities induced by any of the possible sources
of vorticity in our setup, i.e., the boundary layer at the needle wall and the interface
curvature, are much smaller than the typical radial velocities associated to the collapse
of the neck.”
Lundgren & Mansour (1988) also included the effect of a small viscosity by decompos-

ing the velocity field into the sum of an irrotational and a rotational velocity, in which
the former is expressed as the gradient of a potential and the latter is written as the curl
of a vector potential. Substitution of this decomposition into the incompressible Navier–
Stokes equations and applying order-of-magnitude arguments under the assumption of a
thin vortical layer at the free surface of the drop yields a new set of differential equations
for the potentials. These equations carry weak viscous effects and are coupled with the
boundary integral formulation for potential flow based on the vortex method.

3. Problem formulation and numerical method

In what follows, we adopt the notation used in the inviscid analysis by RDZ for the
most part. Differences with their formulation arise with the inclusion here of the viscous
effects of the irrotational motion, which are not considered in their work. Regarding the
numerical method, the algorithm we applied in this work follows the major steps of the
algorithm presented by those authors. However, the numerical techniques applied here
in the implementation of several of these steps differ from those employed by RDZ.

3.1. Statement of the problem

Consider a bubble or drop initially of spherical shape with radius 𝑎 containing an incom-
pressible Newtonian fluid of density 𝜌𝑖 and viscosity 𝜇𝑖 and immersed in an unbounded
incompressible Newtonian fluid of density 𝜌𝑒 and viscosity 𝜇𝑒. The entire smooth inter-
face 𝒮 is characterized by a uniform interfacial tension 𝛾. It will be assumed that the
bubble or drop moves with the mean velocity of the flow. With respect to a reference
frame that moves with this mean velocity, we will describe the evolution of the bubble
or drop interface as a result of a steady uniaxial extensional flow. That is, far away from
the interface, the following velocity potential is prescribed

𝜙∞ =
𝑀

𝑎

(
2𝑧2 − 𝑟2

)
, (3.1)

and the corresponding (irrotational) velocity field is û∞ = ∇̂𝜙∞. We adopt a cylindrical
coordinate system (𝑧, 𝑟, 𝜁), in which the 𝑧-axis is coincident with the axis of symmetry of

the motion and 𝜁 is the azimuthal angle about the 𝑧-axis (figure 1). From the potential

in (3.1), the strain rate along the 𝑧-direction, which is a principal direction, is ∂2𝜙/∂𝑧2 =
4𝑀/𝑎, whereas the stain rates along the other two principal axes are the same and equal
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Figure 1. Two-phase flow system considered in this study: A bubble or drop of an incompressible
fluid being deformed by an axially symmetric extensional incompressible flow. The shape of the
interface is initially spherical.

Figure 2. Sketch of the axially symmetric domain showing the cylindrical coordinate system
(𝑧, 𝑟, 𝜁) and the local orthogonal curvilinear coordinate system (𝑛𝑖, 𝑠, 𝜁). Curve Γ represents the
intersection of the axisymmetric interface 𝒮 with a plane containing the 𝑧-axis. The material
properties of the inner and outer fluids, as defined in §3.1, are included.

to −2𝑀/𝑎 . Thus, the parameter 𝑀 determines the magnitude of the principal strain
rates. In formulating the problem, we also make the usual assumption of neglecting the
effects of gravity including those associated with the variation of the hydrostatic pressure.
This is a necessary condition for the interface deformation to be axisymmetric as discussed
in Ramaswamy & Leal (1997). In order to write the governing equations in dimensionless
form, the magnitudes 𝑎, 𝑎/(8𝑀) and 𝜌𝑒(8𝑀)2 are adopted as the characteristic length,
time and pressure scales, respectively.
We will also assumed that the inner and outer velocity fields are irrotational for all

times. Hence, conservation of mass leads to a pair of Laplace’s equations

∇2𝜙𝑖 = 0, ∇2𝜙𝑒 = 0, (3.2)
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where the subscripts 𝑖 and 𝑒 denote the inner and outer fluids, respectively. Dimension-
less variables are written with no “̂ ”. For the irrotational motion of a viscous fluid,
conservation of linear momentum is given by the Bernoulli’s equation

Λ

(
∂𝜙𝑖

∂𝑡
+

∣∇𝜙𝑖∣2
2

)
+ 𝑝𝑖 = 0,

∂𝜙𝑒

∂𝑡
+

∣∇𝜙𝑒∣2
2

+ 𝑝𝑒 = 0, (3.3)

for the inner and outer flows, respectively, and Λ = 𝜌𝑖/𝜌𝑒. The solution of (3.2) and (3.3)
must satisfy the following boundary conditions for points at the interface

∂𝜙𝑖

∂𝑛𝑖
= −∂𝜙𝑒

∂𝑛𝑒
, (3.4)

[
−𝑝𝑒 +

2

Re

∂2𝜙𝑒

∂𝑛2
𝑖

]
−

[
−𝑝𝑖 +

2𝛽

𝑅𝑒

∂2𝜙𝑖

∂𝑛2
𝑖

]
=

1

𝑊𝑒
∇∥ ⋅ n𝑖, (3.5)

where the former establishes continuity of the normal velocity across the interface and the
latter expresses that the jump of normal stresses across the interface is balanced by sur-
face tension forces. Here, 𝛽 = 𝜇𝑖/𝜇𝑒, and the dimensionless numbers 𝑅𝑒 = 𝜌𝑒(8𝑀)𝑎/𝜇𝑒

and 𝑊𝑒 = 𝜌𝑒(8𝑀)2𝑎/𝛾 are the Reynolds and Weber numbers, respectively. The first
number represents the ratio of inertia to viscous forces and the second represents the
ratio of inertia to surface tension forces. In equations (3.4) and (3.5), n𝑖 is the unit vec-
tor normal to the interface pointing away from the inner fluid and n𝑒 is the unit vector
normal to the interface pointing towards the inner fluid, thus n𝑖 = −n𝑒 (figure 2). More-
over, 𝑛𝑖 (𝑛𝑒) is the dimensionless coordinate along and increasing in the direction of n𝑖

(n𝑒). Notice that the term added to the pressure within the brackets corresponds to the
viscous normal stress on this or that side of interface 𝒮. Obviously, these terms, which
account for the viscous effects of the irrotational motion, were not considered in the in-
viscid analysis by RDZ. By introducing a local orthogonal coordinate system (𝑛𝑖, 𝑠, 𝜑),
where 𝑠 is the arc-length of the plane curve Γ representing the interface increasing coun-
terclockwise, and 𝑛𝑖 and 𝜑 have been already defined, we write expressions in Appendix
A for the viscous normal stress and the mean curvature both needed in (3.5).
Turning now to the evolution of the interface, let u𝒮 = dx/d𝑡 be the velocity of the

interface 𝒮 at point x. With u𝒮 ⋅ n𝑖 = ∂𝜙/∂𝑛𝑖 = ∂𝜙𝑖/∂𝑛𝑖 = ∂𝜙𝑒/∂𝑛𝑖 by continuity of
the normal velocity component, and setting u𝒮 ⋅ t = 0 arbitrarily because this tangential
component is irrelevant in tracking the motion of the interface (Joseph et al. 2007), t
being the unit vector tangential to 𝒮 along the 𝑠 direction, the position of the surface
can be obtained from the equation

dx

d𝑡
=

∂𝜙

∂𝑛𝑖
n𝑖, x ∈ 𝒮. (3.6)

Therefore, points at the interface evolved in time by moving them normal to the interface.
Other choices are found in the literature for the tangential velocity u𝒮 ⋅ t. For instance,
Heister (1997) set this value equal to the tangential velocity of the inner fluid at the
boundary, whereas Leppinen & Lister (2003) used the average of the inner and outer
fluid tangential velocities. For irrotational motion, continuity of tangential velocities and
stresses cannot be enforced.
Finally, in the far field ∣x∣ → ∞,

𝜙𝑒 → 𝜙∞(𝑧, 𝑟) =
𝑧2

4
− 𝑟2

8
. (3.7)

The set of equations (3.2)-(3.3), together with boundary conditions (3.4),(3.5), (3.6) and
(3.7) describe the evolution of the interface of the bubble or drop starting from an initial
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state that has 𝒮 as a sphere of unit radius. The prescription of the initial conditions
is discussed below. Notice that the dimensionless parameters governing the problem are
the Reynolds number 𝑅𝑒, the Weber number 𝑊𝑒, and the density and viscosity ratios,
Λ and 𝛽, respectively, and need to be prescribed.
We may write two scalar equations resulting from the projection of the kinematic

condition (3.6) onto the axial and radial directions, respectively. This leads to

d𝑧

d𝑡
= 𝑛𝑧

𝑖

∂𝜙

∂𝑛𝑖
,

d𝑟

d𝑡
= 𝑛𝑟

𝑖

∂𝜙

∂𝑛𝑖
. (3.8)

To track the time evolution of a scalar field defined on points moving with the interface,
let us consider 𝑓 to be any smooth field defined on a domain enclosing the entire interface
𝒮. If x is a point on the interface, differentiation of 𝑓(x(𝑡), 𝑡) with respect to time yields

d𝑓

d𝑡
=

∂𝑓

∂𝑡
+ u𝒮 ⋅ ∇𝑓 =

∂𝑓

∂𝑡
+ (u𝒮 ⋅ n𝑖)n𝑖 ⋅ ∇𝑓 =

∂𝑓

∂𝑡
+

∂𝜙

∂𝑛𝑖

∂𝑓

∂𝑛𝑖
, (3.9)

Expression (3.9) establishes that quantities for points at the interface are advected by
the normal component of the velocity.
Suppose now that velocity potentials 𝜙(𝑖,𝑒) both belong to the same class of functions

as 𝑓 . Therefore, by expression (3.9) and continuity of normal velocities, we can write

d𝜙(𝑖,𝑒)

d𝑡
=

∂𝜙(𝑖,𝑒)

∂𝑡
+

(
∂𝜙

∂𝑛𝑖

)2

. (3.10)

Introducing the difference function,

𝜑 ≡ 𝜙𝑒 − Λ𝜙𝑖, (3.11)

and eliminating the pressures in (3.5) by used of Bernoulli’s equations (3.3), we find,
after rearranging terms using (3.10),

d𝜑

d𝑡
=

1

𝑊𝑒
∇∥ ⋅ n𝑖 +

1

2
(1− Λ)

(
∂𝜙

∂𝑛𝑖

)2

− 1

2

[(
∂𝜙𝑒

∂𝑠

)2

− Λ

(
∂𝜙𝑖

∂𝑠

)2
]

− 2

𝑅𝑒

[
∂2𝜙𝑒

∂𝑛2
𝑖

− 𝛽
∂2𝜙𝑖

∂𝑛2
𝑖

]
, (3.12)

for the rate of change of 𝜑 for points on the interface that advance in time according to
(3.8).
Integration of the set of differential equations (3.8) and (3.12) gives the shape of the

interface after start-up. In order to solve this system of equations, we prescribe an initial
shape and the distribution of 𝜑 on the interface. Initially, we consider the bubble (drop)
to have a spherical interface. For 𝜑, we choose

𝜑 = 0. (3.13)

To justify this choice, consider a spherical bubble (drop) immersed in an unbounded
incompressible fluid and assume that the inner and outer fluids are at rest with respect
to a frame that moves with the mean velocity of the flow (see §3.1). In the absence of
gravity, this is a stable condition, in the sense that it will not change with time. It is also
an irrotational solution of the Navier–Stokes equations. The velocity potentials 𝜙𝑖 and
𝜙𝑒 can take each the value of an arbitrary constant. Therefore, according to (3.11), 𝜑 will
be constant over the spherical interface. In order to modify this state, an external agent
must act. Consider that this state of rest is the state of the system for time 𝑡 < 0, say,
where 𝑡 = 0 is an arbitrary reference time. If at time 𝑡 = 0, a steady uniaxial extensional
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flow suddenly starts in the far field producing a step change in the velocity potential there
according to expression (3.1), the bubble (drop) will begin to deform. It is reasonable to
assume a continuous variation of 𝜑 with time across the instant of start-up 𝑡 = 0. We
have said that 𝜑 is a constant for 𝑡 < 0. With this criterion and because the choice for
the constant is arbitrary, we choose (3.13) as the initial condition (𝑡 = 0) for all points
over the (spherical) boundary. Notice that with (3.13) prescribed, ∂𝜙(𝑖,𝑒)/∂𝑛𝑖 cannot be
zero everywhere on the interface at 𝑡 = 0 immediately after start-up since the velocity
potential 𝜙𝑒 is governed by Laplace’s equation and must tend to 𝜙∞ in the far field.

The set of equations (3.8) and (3.12) can be integrated numerically with initial condi-
tion (3.13) and the boundary points (𝑧, 𝑟) starting from the semicircumference 𝑧2+𝑟2 = 1,
𝑟 ⩾ 0, to track the deformation of the interface as time advances. To compute the right-
hand side of (3.8) and (3.12), the distribution of the potentials 𝜙𝑖 and 𝜙𝑒, and the normal
derivative ∂𝜙/∂𝑛𝑖 are needed. This motivates the reformulation of Laplace’s equations
(3.2) as boundary integral equations using Green’s representation formula for both the
inner and outer domains. These integral equations involve information only at the bound-
ary an therefore reduce the dimensionality of the problem. For expressions (3.2), with
boundary conditions (3.4) and (3.7), and considering the axial symmetry of the prob-
lem, the boundary integral equations have been presented in RDZ and hence are not
written here. Knowing the position of the boundary and the distribution of 𝜑 on it, at
a given time, suffices to determine, via the boundary integral equations, the distribution
of potentials and their normal derivative for points on the boundary.

3.2. Numerical method

Considering that the bubble or drop will undergo large deformations depicting somewhat
complex shapes driven by the uniaxial extensional flow imposed in the far field, the
solution of the system of equations established in §§3.1 must be sought by numerical
means. In this section, we describe how the approximate solution methods for these
equations may be implemented in a computer program. This program will perform three
major tasks, namely,

(i) Implementation of the boundary element method to solve the system of integral
equations for the fluids normal velocity component at the interface and potentials on
both sides of the interface at a given time. This requires discretization of the interface
by dividing it into segments joined by nodal points; interpolation of the geometry, po-
tential and normal derivative of the potential; numerical evaluation of the integrals, and
assembling and solution of two linear systems of algebraic equations obtained with the
collocation method.

(ii) Numerical integration of the system of differential equations governing the time
evolution of discrete points on the interface to obtain its position at discrete times. A
Runge–Kutta fourth order scheme with adaptive time stepping is implemented in this
stage.
(iii) Refinement and smoothing of the grid to improve resolution in regions of the curve

approaching the axis of symmetry when pinch-off is imminent and to avoid interfacial
instabilities of numerical origin.

These stages are coupled. The solution of the potential problem as described in the first
task must be accomplished for each time step. Its results are used in the time integration
procedure to march to the next time level. Then, the updated boundary position and
potential distribution are inputs for the potential problem solver to perform again and
a cycle is established. Refinement and smoothing of the mesh does not necessarily occur
after each time step.
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Here, we adopt the general algorithm originally presented by RDZ with several modi-
fications in the details of its implementation. In various parts of the procedure, we make
choices of numerical methods that differ from those selected by those authors. The reader
is referred to Padrino (2010) where the complete details on the implementation of the
stages listed above are described.
To compute the integrals arising in the boundary element method, the potential and

normal derivative are assumed to vary linearly within an element with the arc-length
coordinate, 𝑠. Quintic splines are used to interpolate the spatial coordinates. The sum of
the distance between consecutive nodes is used as spline parameter. Four end conditions
are required to compute the splines: The 𝑧-coordinate must satisfy d𝑧/dℓ = d3𝑧/dℓ3 = 0
at both ends, whereas, for the 𝑟-coordinate, d2𝑟/dℓ2 = d4𝑟/dℓ4 = 0. Here, ℓ denotes
the spline parameter. A linear system of equations is formed by applying the collocation
method. Well-known fits for the complete elliptic integral appearing in the axisymmetric
kernels of the boundary integral equations are employed (Abramowitz & Stegun 1964).
When the collocation point belongs to the element over which the integration is being car-
ried out, a weak (logarithmic) singularity arises from the complete elliptic integral of the
first kind. These singular integrals are computed with the special logarithmic quadrature
using six points (Stroud & Secrest 1966). For the nonsingular (regular) integrals, stan-
dard Gauss-Legendre quadrature with six points is applied. Since the matrices appearing
in the boundary element method are fully populated, the linear systems are solved using
LU decomposition. The derivatives of the potential needed in (3.8) and (3.12) are com-
puted using a quintic spline interpolation with end conditions as for the 𝑧-coordinate.
Rodŕıguez-Rodŕıguez et al. (2006) reported the use of quartic splines for interpolation
and the singularity substraction technique for the weakly singular integrals.
Due to the initial shape and the boundary conditions satisfied by the solution of the

problem subject of analysis, the flow field is symmetric with respect to the plane 𝑧 = 0.
Therefore, one can substantially reduce the computational effort needed in the solution
of the linear systems by enforcing equatorial symmetry in the geometry coordinates,
potentials 𝜙(𝑖,𝑒) and normal velocity ∂𝜙/∂𝑛𝑖. In this work we have two versions of the
boundary element method algorithm, namely, one in which equatorial symmetry is not
assumed and another in which equatorial symmetry is enforced (see also the discussion
below).
The time step is dynamically modified in order to properly resolve the shape of the

interface when approaching pinch-off and its value is found by requiring that no nodal
point will move beyond a fraction of the smallest element size. This time step cannot
be larger than the time step needed to resolve inviscid capillary waves with the smallest
grid dimension (Leppinen & Lister 2003).
It is desirable to have grid refinement by having shorter separation between nodes in

particular regions of the boundary. This allows for greater detail in the resolution of the
shape of the boundary at the instants before pinch-off. In the present computations, we
adopt a refinement scheme similar to the one by Leppinen & Lister (2003). Interpolating
the coordinates of the nodes on the boundary using quintic splines, the separation be-
tween adjacent nodal points {x𝑗 ,x𝑗+1} was set to 0.1𝐷, where 𝐷 is the distance between
point x𝑗 and the point (𝑧min, 0), where (𝑧min, 𝑟min) are the coordinates of the nodal point
on the interface with the minimum radius in the neck region, that is, the node closest to
the axis of symmetry in the neck, when this region appears. In this notation, the index
𝑗 = 1 corresponds to the node with coordinates (𝑧min, 𝑟min) and increases towards both
ends of the boundary. This grid spacing was restricted to be no larger than an upper
bound defined as an input to the code. This grid refinement strategy was applied in the
version of the code for which equatorial symmetry was considered in the solution of the
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discrete boundary integral equation. This version of the code is used in the case of a
drop, where break-up takes place, because of symmetry, simultaneously at two different
points away from the plane 𝑧 = 0 in the cases considered in this work. The algorithm
just described also works when the node with minimum neck radius lies on the plane
𝑧 = 0. In the version of the code that does not enforce equatorial symmetry, the grid
refinement strategy described above is modified by setting 𝑧min = 0 for all times, this
abscissa being associated with the node 𝑁/2 + 1, with 𝑁 being the (even) total number
of elements. This version of the code is used to simulate the deformation of a bubble, i.e.
small Λ, in which case the minimum radius of the neck occurs at 𝑧min = 0, in the cases
considered here, or, if a (small) satellite bubble is formed, the actual 𝑧-coordinates for
the (two) nodes with the minimum neck radius will not be zero but in the neighborhood
of 𝑧 = 0, and therefore the level of grid refinement will also be satisfactory around those
points.
In our code, this grid refinement method has been combined with the smoothing strat-

egy of node staggering in a manner similar to that implemented by Oguz & Prosperetti
(1990). The staggering technique is applied to prevent the development of “zig-zag” insta-
bilities on the interface when simulations run for relatively long time intervals (Longuet-
Higgins & Cokelet 1976; Lundgren & Mansour 1988; Hilbing et al. 1995; Heister 1997).
Filtering schemes have also been used, as in the case of RDZ, based upon the fast Fourier
transform of the discrete boundary functions and the elimination of the high-frequency
components. This type of filtering scheme is not employed in our algorithm.

4. Results and discussion

The problem described in §§3.1 is solved numerically using the procedure detailed in
§3.2. Here, we present and discuss the results of the simulations for the case of a bubble,
for which the density ratio is very small, and for the case of a drop, for which the density
ratio is 𝑂(1). Before doing so, we discuss the validation stage for the numerical method
employed.

4.1. Validation of the numerical set-up

The validation of the axisymmetric solver is carried out first by comparing its predictions
with analytic results for the small oscillations of a bubble or drop about the spherical
shape from both inviscid (Lamb 1932) and viscous potential flow (Joseph et al. 2007;
Padrino et al. 2008). In this case the motion is driven by capillary forces as a result of
an initial deformation imposed on the interface in the absence of any prescribed flow
in the far field. The dimensionless equations presented in §3.1 are still valid for this
setting. However, since the flow strength 𝑀 = 0 in the far field, one must choose a
different velocity scale,

√
𝛾/(𝜌𝑒𝑎) in this case, so that the Weber number is now fixed,

𝑊𝑒 = 1, and the Reynolds number is 𝑅𝑒 =
√
𝜌𝑒𝛾𝑎/𝜇𝑒, which is simply 𝑂ℎ−1

𝑒 , where 𝑂ℎ𝑒

is the Ohnesorge number for the exterior fluid. Two independent modes of oscillation are
considered, namely, the second and fourth modes, which are set by an initial interfacial
shape of the form 1+𝜖𝑃𝑛(cos 𝜃) with 𝑛 = 2 and 4, respectively, and 𝜖 is a “small” number;
𝑃𝑛 are the Legendre polynomials of order 𝑛. With these modes, equatorial symmetry of
the evolved interface is guaranteed.
Figure 3 shows the variation with time of the normalized amplitude of the right end

of the bubble or drop obtained with the numerical method presented above for both
inviscid and viscous fluids and 128 elements. In the latter case, we chose 𝑅𝑒 = 100 and
a viscosity ratio 𝛽 = 0.01 for the bubble and 𝛽 = 0.1 for the drop. These choices give a
decay rate such that the interface oscillates over several time periods without decaying
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too fast, thereby allowing the analysis of the signal. Figures 3(a) and 3(b) correspond to
the second mode and 𝜖 = 0.05, whereas figures 3(c) and 3(d) correspond to the fourth
mode and 𝜖 = −0.05. Density ratio in these cases is Λ = 0.0012 (bubble case). The
frequency of oscillations increases by increasing 𝑛. In the inviscid case (figure 3(a) and
3(c)), non-linear effects can presumably be observed as the amplitude of the oscillations
slightly deviates from a constant value. In figures 3(e) through 3(f) the initial deviation
of the bubble interface is reduced (in absolute value) to 𝜖 = −0.005. By comparing (c)
and (e), one can notice that the amplitude of the oscillations tend to a constant value as
𝜖 becomes smaller in the inviscid case. Finally, figures 3(g) and 3(h) show the change in
amplitude for a drop (Λ = 0.8), 𝑛 = 4 and 𝜖 = −0.005. Results for a drop and 𝜖 = −0.05
were also obtained but are not shown here as they conform to those results already
depicted. In all the cases, the frequency of the oscillations shows excellent agreement
with the theoretical results obtained in the linearized case by Lamb (1932) for fluids
with zero viscosity and by Joseph et al. (2007) for two viscous fluids (see Padrino et al.
2008). The relative error in all the cases lies within 0.4%. In the viscous case, figure 3
also demonstrates very good match between the theoretical and numerical results for the
decay rate of the oscillations.
This is perhaps the first time in which the linear viscous potential flow theory for the

small oscillations of a bubble or drop is used to validate a numerical method developed
to solve the non-linear deformation of an interface shared by two viscous fluids whose
motion is assumed to be irrotational. The linear inviscid theoretical result by Lamb
(1932) has been used elsewhere to validate, in the small deformation case, algorithms
solving boundary integral equations to simulate the inviscid motion of an interface or
free surface (Hilbing et al. 1995,RDZ). It should also be mentioned that the boundary
integral formulation of Lundgren & Mansour (1988) used to study the oscillations of
a drop with “weak” viscous effects, which is different from the viscous potential flow
approach followed here, was validated using the result from Lamb’s viscous dissipation
approximation. The viscous dissipation approximation differs from the linearized viscous
potential flow method employed in the present validation, and therefore, one should not
expect agreement between their results for all cases.
Non-linear (large) deformations of a bubble (Λ = 0.0012) or a drop (Λ = 0.8) in a

uniaxial extensional motion according to the problem formulation in §3.1 for inviscid
fluids are computed with the algorithm described here and compared in Appendix B
with results obtained by RDZ, where excellent agreement is shown. In figure 4 we show
the variation of the minimum neck radius 𝑟min with the time to break-up 𝜏 = 𝑡𝑏 − 𝑡
for a bubble neglecting the fluids viscosity; here, 𝑡𝑏 is the break-up time. The fitting of
the law 𝑟min ∼ 𝜏𝛼, where 𝛼 is an effective exponent, gives rise to values of 𝛼 somewhat
larger than 0.5, as expected (Gordillo et al. 2005), and closer to values determined from
experimental data for a bubble detaching from a nozzle due to gravity (𝛼 = 0.56 by
Keim et al. (2006), and 𝛼 = 0.57 by Thoroddsen et al. (2007)). The slight difference with
our results may be due to the fact that their experimental setting is different from the
configuration studied here, as the precise value of 𝛼 depends on the initial and boundary
conditions, and also, perhaps, to the range of 𝑟min fitted in these graphs. We note that
the ranges plotted here for 𝜏 and 𝑟min are similar to the ones used by Gordillo et al.
(2005).
The evolution of the neck minimum radius 𝑟min as pinch-off is approached for a drop

(Λ = 0.8) is shown to follow the law 𝑟min = 𝜏2/3 in figure 5 for both Weber numbers
𝑊𝑒 = 3 and 10 in agreement with analyses and numerical predictions (Keller & Miksis
1983; Chen & Steen 1997; Day et al. 1998; Leppinen & Lister 2003). Here, we show only
the cone to the right of the equatorial plane 𝑧 = 0. For a drop and 𝑊𝑒 = 3, figure
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Figure 3. Amplitude of the right end of the bubble or drop 𝑧end(𝑡) =∣ xend(𝑡) ∣, where
xend(𝑡) = (𝑧(𝑡), 0), as a function of time. This amplitude is presented in normalized fashion,
(𝑧end(𝑡) − 1)/𝜖. The motion of the system is due to an initial perturbation of the spherical in-
terface of unit radius given by ∣x(0)∣= 1 + 𝜖𝑃𝑛(cos 𝜃), where 𝑃𝑛 are the Legendre polynomials
of order either 𝑛 = 2 or 4, and 𝜃 is the polar angle. The fluid is at rest in the far field. The
figures on the left correspond to inviscid potential flow, whereas the figures on the right result
from viscous potential flow simulations with a Reynolds number 𝑅𝑒 = 100. Figures (a) and (b)
are obtained with 𝑛 = 2, 𝜖 = 0.05 and density ratio Λ = 0.0012 (bubble). For figures (c) and
(d), 𝑛 = 4, 𝜖 = −0.05 and Λ = 0.0012, whereas for figures (e) and (f), 𝑛 = 4, a much smaller (in
absolute value) deviation 𝜖 = −0.005 and Λ = 0.0012. Figures (g) and (h) results from 𝑛 = 4,
𝜖 = −0.005 and Λ = 0.8 (drop). The frequency and decay rate of the oscillations are compared
with the linear, viscous potential flow theory, from which the dashed lines shown in the figures
on the right are obtained.
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Figure 4. Minimum neck radius 𝑟min as a function of the time to break-up 𝜏 = 𝑡𝑏 − 𝑡 for a
bubble in uniaxial straining motion; the density ratio Λ = 0.0012 and the fluids are inviscid.
For the interval shown the fit of the scaling 𝑟min ∼ 𝜏𝛼 is presented, where 𝛼 is an “effective”
exponent. The thin solid line corresponds to a Weber number 𝑊𝑒 = 10 and the dashed line
corresponds to 𝑊𝑒 → ∞.

6(a) shows the evolution of the interface in the neck region as it approaches pinch-off.
Notice that the interface overturned before breaking up and so both the steep and shallow
parts of the interface being connected by the necking region depict negative slopes with
respect to the reference frame shown. As time progresses, the interface tend to attain a
cone shape about the minimum radius and 𝑟min → 0 in a finite time creating a kink. Also
notice the dense grid for the last instant included in the figure, for which the interface
is discretized by 605 nodal points (initially we set 129 nodes) and the final (adaptive)
time steps are of order 3× 10−9. In figure 6(b), we present the scaled profiles near drop
pinch-off 𝑟𝑠 versus 𝑧𝑠 using the coordinates of the neck (𝑧min, 𝑟min) as indicated in the
figure’s caption at each instant depicted. With this new set of coordinates the profiles
show a clear tendency to collapse onto a single smooth curve as the time to break-up 𝜏
and thus 𝑟min both go to zero; therefore, in this scaled set of coordinates, this inviscid
break-up process is self-similar, as expected (Leppinen & Lister 2003).

4.2. Bubble - Viscous analysis

In this section, the time evolution of the interface of a bubble in a uniaxial extensional
flow is computed using the numerical method described in §3.2 considering irrotational
motion and the inner and outer fluids to be viscous. The goal is to compare the results
obtained here under these assumptions with the results given very recently by REV
from the numerical solution of the incompressible, fully viscous Navier–Stokes equations
using a projection method with suitable spatial and time discretizations of the various
terms combined with a level set method to track the evolution of the interface. They
dimensionalized their governing equations with the same scales as those used in §3.1.
In their numerical study, the initially spherical bubble starts from rest, the density and
viscosity ratios Λ = 0.001 and 𝛽 = 0.01 and the remaining controlling parameters, i.e.
the Reynolds and Weber numbers, as defined in §3.1, take different values. REV point
out that the errors in the computation of the (bubble) mass were within 1%, except for
high Reynolds numbers and low Weber numbers, where the errors where within 3%.
In figure 7, the change of the total axial dimension of the bubble 𝐷 with time is

presented for five different values of 𝑅𝑒 and also for the inviscid case, 𝑅𝑒 → ∞, for a
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(a) 𝑊𝑒 = 3 and (b) 𝑊𝑒 = 10. The figures show that the minimum neck radius approaches

pinch-off following the scaling 𝑟min ∼ 𝜏2/3 as the time to pinch-off 𝜏 = 𝑡𝑏 − 𝑡 → 0.
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Figure 6. Interface shapes for various times approaching pinch-off for a drop of an inviscid fluid
in another inviscid liquid; the density ratio is Λ = 0.8 and the Weber number is 𝑊𝑒 = 3. In
figure (a) the coordinates 𝑟 vs. 𝑧 are shown; for the last instant, the node distribution over the
interface is depicted, highlighting the high nodal density of the grid around the neck region. In
figure (b) the shapes tend to collapse onto a conical shape when rescaled with the minimum neck
radius 𝑟min and centered on 𝑧min, i.e., 𝑧𝑠 = (𝑧 − 𝑧min)/𝑟min and 𝑟𝑠 = 𝑟/𝑟min, thereby suggesting
self-similarity. Two decades of variation of 𝑟min with time are shown in the legend.

fixed 𝑊𝑒 = 1.5. This magnitude is lower than the critical Weber number 𝑊𝑒𝑐 above
which inertia effects are strong enough to overcome the surface tension effects that tend
to preserve the integrity of the bubble, thereby leading to break-up. REV found 𝑊𝑒𝑐 ≈
2.22 ± 0.005 and independent of 𝑅𝑒 for 𝑅𝑒 ⩾ 20. Therefore, for 𝑊𝑒 = 1.5, the bubble
does not break up. It is shown that the oscillations are more rapidly attenuated as the
Reynolds number decreases as a result of viscous dissipation and the bubble shape quickly
reaches steady state. The figures show very good agreement between the calculations from
the potential flow of viscous fluids of the present work (solid lines) and the fully viscous
Navier–Stokes equations by REV (symbols) for up to 𝑡 ≈ 8, indicating that viscous
effects are mostly associated with the irrotational motion during this stage. Because the
initial condition is irrotational, the viscous results for the largest Reynolds numbers, i.e.
𝑅𝑒 = 200, 500 and 1000, match the inviscid solution, at least for the first cycle, as in
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the case of 𝑅𝑒 = 200. This is not the case for the smallest values of 𝑅𝑒 considered,
𝑅𝑒 = 20 and 50, for which discrepancies with the inviscid results are evident almost from
the start. Finally, note that the results from the fully viscous Navier–Stokes equations
seem to get damped abruptly, especially for the largest 𝑅𝑒, a phenomenon that may be
regarded as unexpected and it is not discussed by REV. In our numerical solutions for
the sub-critical cases, the maximum error in the computation of the volume of the bubble
lies within 0.02%. For the set of values of 𝑅𝑒 mentioned above, we conducted tests with
our code and found about the same critical value 𝑊𝑒𝑐 as that reported by REV, with a
very weak dependence on 𝑅𝑒.
In passing, it should be mentioned that bubble break-up still may take place for sub-

critical 𝑊𝑒 < 𝑊𝑒𝑐 if the strength 𝑀 of the extensional flow in the far field is set to
fluctuate and a mechanism of resonance occurs with the bubble oscillations (see Kang &
Leal 1990, REV); however, this case is out of the scope of this research as the strength 𝑀
does not change with time in the present analysis. Note also that REV predict that 𝑊𝑒𝑐
decreases towards zero as 𝑅𝑒 → 0. In comparing their critical values for 𝑊𝑒 with those
reported by Kang & Leal (1990) for intermediate and large 𝑅𝑒, substantial discrepancies
are obtained. REV explained these differences arguing that the initial conditions that
they imposed and the criterion used to determine 𝑊𝑒𝑐 are not the same as those used
by Kang & Leal (1990).
Turning now our attention to the case of supercritical Weber numbers, figure 8 shows

the break-up time 𝑡𝑏 as a function of the Weber number 𝑊𝑒 for several magnitudes of
the Reynolds number 𝑅𝑒 obtained from the viscous potential flow computations. These
predictions are compared with results from the solution of the fully-viscous Navier–Stokes
equations. In addition, results for inviscid fluids are also included. The vertical dashed-
dotted line corresponds to the critical value reported by REV (𝑊𝑒𝑐 = 2.22). As explained
above, for higher values of 𝑊𝑒 the bubble breaks up. For 3 ⩽ 𝑊𝑒 ⩽ 6, predictions from
both theories show very good agreement. This result is important because it is known
(RDZ) that 𝑊𝑒 of order 5 are found in practical applications (e.g., atomization). On the
other hand, for 𝑊𝑒 > 6, discrepancies become noticeable, with the largest differences
found to be of 13% for 𝑅𝑒 = 20, the smallest value used in the analysis, as expected.
For the largest 𝑅𝑒, differences between viscous potential theory and the results from the
Navier–Stokes equations are small. Note that viscous potential flow under-predicts the
break-up time, that is, the bubble breaks up in shorter time for viscous potential flow
than for the Navier–Stokes motion. Thus, as 𝑅𝑒 decreases and 𝑊𝑒 increases, rotational
effects (vorticity) generated at the interface become influential in the dynamics. From
this figure, it is also evident that the break-up time increases as 𝑊𝑒 decreases for fixed
𝑅𝑒. Examining REV’s results one can notice that for the smallest 𝑅𝑒 considered in their
work, a plateau is obtained in the graphs of break-up time versus 𝑊𝑒. That is, for fixed
𝑅𝑒, there exists certain 𝑊𝑒 above which break-up time becomes almost independent of
the Weber number. This trend is not reproduced by the viscous potential flow results. It
should be mentioned that the break-up time in most of the simulations presented in this
work is obtained by stopping the computations when the minimum radius in the neck
region reaches 𝑟min < 2×10−3 or, in some cases, 10−4. For a typical initial bubble radius
in the order of 1 mm, this criterion establishes a neck dimension smaller than 2 𝜇m to
stop the computations. The time for which the bubble or drop actually breaks up will
be very shortly after the value determined by the criterion, because one expects the time
to break-up to be of the order of the minimum radius. In other words, continuing the
computations beyond the aforementioned limit will not significantly modify the break-up
time reported in the figures.
The time evolution of the bubble interface for different combinations of 𝑅𝑒 and 𝑊𝑒
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Figure 7. Total bubble axial dimension 𝐷 as a function of time for various Reynolds numbers
𝑅𝑒 and a sub-critical Weber number, 𝑊𝑒 = 1.5. Here, the density ratio Λ = 0.001 and viscosity
ratio 𝛽 = 0.01. The bubble shows an oscillatory motion with large amplitude. Decreasing the
Reynolds number significantly damps the amplitude of the oscillations until steady state is
reached. Therefore, the bubble reaches steady state faster for the lowest 𝑅𝑒. Solid line, viscous
potential flow results from the present work; dotted line, inviscid potential flow results from the
present work; symbols, results from simulations of the fully viscous Navier–Stokes equations by
REV, where ▲ corresponds to the highest 𝑅𝑒 and □ to the smallest. Very good agreement is
observed between these two approaches.

obtained with the method presented here is compared to the profiles presented by REV
in figure 9. For the latter, three instants before pinch-off are presented. It should be
mentioned that REV did not show the bubble interface at the instant of pinch-off, but
before and after pinch-off (the latter is not reproduced here). Overall, the predictions
from the boundary element formulation for viscous potential flow agrees well with the
profiles given by the level set method used by REV coupled with a Navier–Stokes solver.
In particular, the match is very good for the instants well before pinch-off as the effects of
the vorticity created at the interface are still inconsequential. For cases (a), (b) and (c),
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Figure 8. Bubble break-up time 𝑡𝑏 as a function of the Weber number 𝑊𝑒 for various Reynolds
numbers 𝑅𝑒. Here, the density ratio Λ = 0.001 and viscosity ratio 𝛽 = 0.01. Solid line, viscous
potential flow results from the present work; dashed line, inviscid potential flow results from the
present work; symbols, results from simulations of the fully viscous Navier–Stokes equations by
REV, where ▲ corresponds to 𝑅𝑒 = 20, △ to 𝑅𝑒 = 50, ▼ to 𝑅𝑒 = 200, and ▽ to 𝑅𝑒 = 500.
The vertical dashed line represents the cross-over from a subcritical condition (no break-up) to
a super-critical condition (break-up).

our irrotational solution clearly underpredicts the break-up time; case (a), i.e. 𝑅𝑒 = 50
and 𝑊𝑒 = 50, shows the most conspicuous difference since we predict 𝑡𝑏 = 1.235 whereas
computations by REV result in 1.32 < 𝑡𝑏 < 1.4. For case (d), however, the present
computation predicts a larger break-up time 𝑡𝑏 = 2.78, whereas REV indicate 2.65 <
𝑡𝑏 < 2.72. This is evidence that for supercritical 𝑊𝑒 close to the critical value, there
exists discrepancies between the viscous potential flow and the Navier–Stokes results.
These differences are difficult to appreciate in figure 8.

In figure 10, graphs of minimum neck radius 𝑟min as function of 𝜏 are shown when the
interface approaches pinch-off for four cases corresponding to super-critical conditions
that combine the values 𝑅𝑒 = 50 and 𝑅𝑒 = 500, with 𝑊𝑒 = 2.4 and 𝑊𝑒 = 50. For the
interval plotted, a fit of the relation 𝑟min ∼ 𝜏𝛼 is shown, with the “effective” coefficient
𝛼 ranging between 0.52 and 0.65. For 𝑊𝑒 = 50, when 𝑅𝑒 decreases from 500 to 50 (i.e.,
increasing liquid viscosity with everything else fixed, including interfacial tension), the
exponent increases from 𝛼 = 0.60 to 0.65, a result that follows a tendency observed
in numerical simulations performed for a bubble detaching from a nozzle due to gravity
(Quan & Hua 2008). Although we are comparing different physical settings, the exponents
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Figure 9. Bubble break-up profiles with density ratio Λ = 0.001, viscosity ratio 𝛽 = 0.01,
Reynolds numbers 𝑅𝑒 = 50 and 500, and Weber numbers 𝑊𝑒 = 2.4 and 50. The solid lines
represent results from the viscous potential flow analysis of the present work. Symbols correspond
to results from simulations of the fully viscous Navier–Stokes equations given by REV. The
profiles by REV for the last instant shown in the figures, and denoted by ▼, do not correspond
to the instant of break-up.

𝛼 follow a similar tendency here and there. In any case, as mentioned above, 𝛼 depends
on the initial and boundary conditions (Bolanos-Jiménez et al. 2009). The increment of 𝛼
with liquid viscosity has been obtained in experiments for a bubble coming out of a nozzle
(Burton et al. 2005; Thoroddsen et al. 2007; Bolanos-Jiménez et al. 2009), even though
in this case surface tension might vary as the liquids are changed to modify the viscosity.
In contrast, for 𝑊𝑒 = 2.4, decreasing 𝑅𝑒 also reduces the exponent 𝛼; we argue that this
trend is due to the fact that this 𝑊𝑒 is close to the critical value and thus the break-up
times are longer (see figure 8 and figure 9), and the effects of the vorticity generated at
the interface might therefore become important. Notice also that when the strain rate,
fluid densities and viscosities, and bubble initial radius are held fixed and surface tension
decreases, 𝑊𝑒 increases with 𝑅𝑒 fixed and our model predicts an increment in 𝛼, a trend
that agrees with previous numerical results for the collapse of a bubble coming out of a
nozzle (Quan & Hua 2008).

4.3. Drop - Viscous analysis

In this section we present results for the deformation of a drop in the uniaxial straining
flow of a liquid. In this case, we set Λ = 0.8. The results discussed here are obtained from
the viscous potential flow approach and the numerical method of §3.2. No comparison
is presented for the evolution of the drop interface computed here with profiles result-
ing from numerical solutions of the unsteady incompressible Navier–Stokes equations,
since, unexpectedly, this type of computations have not been found in the literature, as
commented in §1.
Figure 11 shows the interface profiles for a drop in a uniaxial extensional flow according

to the numerical results from the viscous potential flow theory, with density ratio Λ = 0.8,
viscosity ratios 𝛽 = 0.1 and 𝛽 = 1, Reynolds numbers 𝑅𝑒 = 20 and 𝑅𝑒 = 200, and Weber
number 𝑊𝑒 = 3. We have chosen these values of Weber and Reynolds numbers because
they are in the same order as those used for the bubble. In particular, 𝑅𝑒 = 20 should
correspond to a regime in which both inertia and viscosity affect the flow dynamics.
First, one notices that, as in the inviscid case for the drop, the break-up is tertiary.
Comparing cases (a) and (b) for 𝑅𝑒 = 200 and cases (c) and (d) for 𝑅𝑒 = 20 indicates
that increasing the viscosity ratio from 𝛽 = 0.1 to 1 increases the break-up time, a result
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Figure 10. Minimum neck radius 𝑟min as a function of the time to break-up 𝜏 = 𝑡𝑏 − 𝑡 for a
bubble in uniaxial straining motion; the density ratio Λ = 0.001 and the fluids are viscous with
viscosity ratio 𝛽 = 0.01. For the interval considered in the figure, the fit of the scaling 𝑟min ∼ 𝜏𝛼

is shown, where 𝛼 is an “effective” exponent. The thin solid line corresponds to a Reynolds
number 𝑅𝑒 = 50 and Weber number 𝑊𝑒 = 2.4; for the dashed line, 𝑅𝑒 = 50 and 𝑊𝑒 = 50; for
the dash-dotted line, 𝑅𝑒 = 500 and 𝑊𝑒 = 2.4, and the thick solid line corresponds to 𝑅𝑒 = 500
and 𝑊𝑒 = 50.

that can be anticipated because of the resistance that a more viscous liquid offers to
motion. In addition, for a fixed 𝛽, decreasing 𝑅𝑒, e.g., increasing the viscous effects in
the flow, leads to higher break-up times and much more elongated drops; in particular,
the length of the intermediate satellite drop considerably increases and the size of the
daughter drops on the sides, which are large for 𝑅𝑒 = 200, substantially diminishes. A
comparison between cases (a) and (b) reveals that for 𝑅𝑒 = 200 changing 𝛽 from 0.1
to 1 is of little consequence for the drop morphology, whereas for 𝑅𝑒 = 20 the final
length of the drop increases in a rather noticeable amount, although the overall shapes
are similar. Contrasting with the inviscid case of figure 16(a) of Appendix B, adding the
viscous effects of the irrotational motion for 𝑅𝑒 = 200 in figure 11(a) and (b), yields a
stretching of the axial drop dimension and, in particular, the intermediate satellite drop
stretches about 26% at the time of break-up. Surprisingly, for 𝑅𝑒 = 200, cases (a) and
(b), the drops break-up in a shorter time than for the inviscid case (𝑡𝑏 = 7.425). This is
contrary to the bubble case in which the break-up time for the inviscid system is a lower
bound for the viscous system (see figure 8). Performing computations with 𝑅𝑒 > 200, for
𝑊𝑒 = 30 and Λ = 0.8 (not shown here), we obtained break-up times increasing with 𝑅𝑒
towards the inviscid limit. This result, that the break-up time is shorter than the time
for the inviscid case for 𝑅𝑒 = 200 whereas it is longer for 𝑅𝑒 = 20, perhaps has to do
with the unequal distribution of the liquid in the drop: For 𝑅𝑒 = 200, it mostly occupies
two big lateral drops each of them having similar axial length as the slender satellite
drop bridging them. On the other hand, for 𝑅𝑒 = 20, cases (c) and (d), the drops attain
large elongations of about four times those attained in the case of 𝑅𝑒 = 200, hence the
process of deformation takes longer before pinch-off in comparison with the inviscid case
of figure 16(a) and the viscous case of 𝑅𝑒 = 200. Finally, the volume changes in the drop
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Figure 11. Deformation of a drop in a uniaxial straining flow from a viscous potential flow
analysis with density ratio Λ = 0.8, Weber number 𝑊𝑒 = 3.0 and (a) 𝛽 = 0.1 and 𝑅𝑒 = 200,
(b) 𝛽 = 1.0 and 𝑅𝑒 = 200, (c) 𝛽 = 0.1 and 𝑅𝑒 = 20, and (d) 𝛽 = 1.0 and 𝑅𝑒 = 20.

during the entire deformation resulting from the numerical solutions are within 0.07%
for all the cases presented in figure 11.
As discussed by RDZ for the inviscid case, extremely elongated drops, as those depicted

in figure 11 (c) and (d) for 𝑅𝑒 = 20, become of the same size as the eddy that tend to
break them up and, therefore, the axisymmetric configuration is not preserved as the
ligament is bent by the action of the background flow and the model assumed in this
work does not longer hold on quantitative terms. However, some relevant features of the
drop shape are still reproduced, i.e. the drop length and tertiary break-up pattern.
The evolution of the drop minimum neck radius 𝑟min with time when the interface

approaches pinch-off is plotted in figure 12 for 𝑊𝑒 = 3, 𝛽 = 0.1 and two values 𝑅𝑒 = 20
and 200. Figure 12(b) shows that 𝑟min ∼ 𝜏2/3 for 𝑅𝑒 = 200, in agreement with the
inviscid potential regime (Leppinen & Lister 2003), as expected for such a large value of
the Reynolds number. This scaling law is governed by inertia and surface tension. On the
other hand, in figure 12(a), obtained for 𝑅𝑒 = 20, a transition is observed as 𝑟min → 0 and
𝜏 = 𝑡𝑏 − 𝑡 → 0 from the inviscid scaling to the scaling 𝑟min ∼ 𝜏 , which corresponds to a
regime where viscous effects are significant for the dynamics of the interface (Eggers 1993;
Lister & Stone 1998). The transition to this regime occurs for 𝑟min ≈ 3× 10−3 as shown
in the insert of figure 12(a). This insert also shows that the change in 𝑟min unexpectedly
starts to deviate from the latter scaling at about 𝑟min ≈ 10−3 as 𝜏 → 0, a response that
may be explained by the next figure. In figure 13(a), we plot interface profiles for various
times approaching pinch-off for 𝑅𝑒 = 20, 𝑊𝑒 = 3, Λ = 0.8 and 𝛽 = 0.1. We notice
that as 𝑟min → 0, the interface develops a cylindrical section whose length increases with
time; this cylinder seems to start forming at about 𝑟min = 1.5 × 10−3 in accord with
the deviation depicted in the insert of plot 12(a). In figure 13(b), we observe that the
scaled profiles 𝑟𝑠 vs. 𝑧𝑠 do not tend to collapse as 𝜏 → 0, and hence are not self-similar
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Figure 12. Power of the minimum neck radius 𝑟
3/2
min as a function of time 𝑡 approaching pinch-off

for an viscous drop within another viscous liquid with density ratio Λ = 0.8, Weber number
𝑊𝑒 = 3, viscosity ratio 𝛽 = 0.1 and Reynolds number (a) 𝑅𝑒 = 20 and (b) 𝑅𝑒 = 200. The figures

show that the minimum neck radius approaches pinch-off following the scaling 𝑟min ∼ 𝜏2/3 as
the time to pinch-off 𝜏 = 𝑡𝑏 − 𝑡 → 0. In figure (a) a change to the scaling 𝑟min ∼ 𝜏 occurs when
rupture is imminent.

with respect to this scaling, as the necking region adopts the shape of a cylindrical
thread. This behavior is in contrast with the tendencies described in figure 6 for the
inviscid case, in which the interface forms cones with an apex-like necking region and
the scaled coordinates evolve in a self-similar manner towards pinch-off. Experiments
by Cohen et al. (1999) for a viscous drop dripping through another viscous liquid and
simulations by Sierou & Lister (2003) for a large range of viscosity ratios have shown self-
similar behavior for the drop pinch-off; however, in their studies, the limit of no inertia
(i.e. Stokes flow) is guaranteed even at macroscopic scales, and thus their conditions
differ from those in our simulations. On the other hand, Doshi et al. (2003) conducted
experiments for a water drop dripping through a very viscous liquid such that 𝛽 = 10−4,
which is much lower than the value used here, and they observed the formation of a long
thread bridging two conical sections of the drop. Another difference between the results
of this work and the experiments of Cohen et al. (1999) and Doshi et al. (2003) is that
in those experiments, overturning of the steep side of the interface around the neck does
not occur when the thread is formed and its slope remains lower than 90𝑜 measured from
the positive 𝑧-semi-axis. In sum, we do not know whether the predicted formation of a
cylindrical necking section for 𝛽 = 0.1 is physically realizable or it is an artifact resulting
from the lack of vorticity in our model.
In addition, we performed simulations with 𝛽 = 1 and found (not plotted here) that,

after transitioning from the inviscid scaling, the linear scaling region 𝑟min ∼ 𝜏 persists
all the way towards the last instant considered in the simulations, for which 𝑟min =
1.8× 10−3; this value of 𝑟min is about an order of magnitude higher than the final 𝑟min

for 𝛽 = 0.1 (see figure 13(b)). Perhaps, continuing the computations would have revealed
the formation of a cylindrical neck section; unfortunately, continuing the simulation was
impractical for this case. The point of transition to the linear scaling is observed at
𝑟min ≈ 8 × 10−3 in agreement with the predictions of the theory 𝑟min ∼ 𝛽−1𝑂ℎ2

𝑖 Lister
& Stone (1998), obtained from scaling arguments that takes into account viscous effects
of the inner and outer fluids, and valid when both fluids have comparable viscosities
or the inner fluid is more viscous than the outer fluid. Here, 𝑂ℎ𝑖 ≡ 𝜇𝑖/

√
𝜌𝑖𝛾𝑎 is the
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Figure 13. Interface shapes for various times approaching pinch-off for a drop of a viscous
liquid in another viscous liquid computed with the viscous potential flow approach; the density
ratio is Λ = 0.8, the viscosity ratio is 𝛽 = 0.1, the Reynolds number is 𝑅𝑒 = 20 and the Weber
number is 𝑊𝑒 = 3. In figure (a) the coordinates 𝑟 vs. 𝑧 are shown; for the last instant, the
node distribution over the interface is depicted, highlighting the high density of the grid around
the neck region. In figure (b) the shapes are rescaled with the minimum neck radius 𝑟min and
centered on 𝑧min, i.e., 𝑧𝑠 = (𝑧−𝑧min)/𝑟min and 𝑟𝑠 = 𝑟/𝑟min but they do not tend to collapse and
the formation of a cylindrical section is predicted. Two decades of variation of 𝑟min with time
are shown in the legend.

Ohnesorge number based upon the properties of the inner fluid, which can be easily
computed combining 𝑊𝑒, 𝑅𝑒, Λ and 𝛽 to eliminate parameter 𝑀 . With 𝛽 = 1 and the
other parameters known as well (𝑊𝑒 = 3, 𝑅𝑒 = 20, Λ = 0.8), we have 𝑂ℎ𝑖 = 0.097 and
𝑟min = 9× 10−3.
Even though data for the transient of interface deformation from the solution of the

unsteady incompressible Navier–Stokes equations have not been found for the problem
considered here, comparison with data from computations of rotational flows is still
possible in the case of steady shapes, since Ramaswamy & Leal (1997) obtained numerical
solutions for those equations, dropping the unsteady terms, for the case of a drop in a
uniaxial extensional flow for a wide range of density and viscosity ratios, varying the
Weber number, and considering several values of the Reynolds number. They presented
the results in terms of the deformation parameter, 𝐷𝑓 ≡ (𝑙𝑧 − 𝑙𝑟)/(𝑙𝑧 + 𝑙𝑟), where 𝑙𝑧 and
𝑙𝑟 are half the dimension of the drop measured on the 𝑧-axis and on the 𝑟-axis (plane
𝑧=0), respectively (see figure 2); 𝐷𝑓 is identically zero for a spherical interface. Results
assuming the potential flow of viscous fluids for Λ = 1, 𝛽 = 1 lead to 𝐷𝑓 = 0.13 for the
pair (𝑅𝑒,𝑊𝑒) = (10, 1),𝐷𝑓 = 0.05 for (100, 2), and𝐷𝑓 = 0.07 for (100, 2.4), whereas they
reported, 𝐷𝑓 = 0.16 for (10, 1), 𝐷𝑓 = 0.09 for (100, 2), and 𝐷𝑓 = 0.12 for (100, 2.4), using
our notation. Therefore, although qualitatively our predictions follow the trend of their
results, large quantitative differences are appreciated and their results are underpredicted
by ours. Because a very long time period passes between start-up and the reaching of the
steady state in comparison with typical break-up times in the super-critical conditions
(steady state is reached in time periods about an order of magnitude longer than typical
drop break-up times, roughly), diffusion of vorticity in the actual flow away from the
interface where it is generated produces strong deviations of the actual velocity field
from irrotationality. In fact, for a steady interface, the fluid is at rest everywhere within
the drop from the potential flow solution, whereas the outer flow slips at the interface. On
the other hand, when vorticity is allowed, the non-slip condition at the boundary drives
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the motion of the inner fluid. Based on the prediction of the deformation parameter for
a steady drop, viscous potential flow turns out to be an inadequate approximation for
the cases considered in this exercise.

5. Concluding remarks

The deformation of a bubble or drop in a uniaxial extensional flow starting from a
spherical shape is studied in this work. Based on experimental and numerical evidence,
this model has been regarded as a suitable first approximation to the phenomenon of
bubble break-up in a turbulent flow; for drop break-up, although quantitatively has not
been satisfactory, qualitatively it does describe the main features of the deformation.
The problem formulation adopted here assumes the potential flow of two viscous, in-
compressible fluids; hence, the effects of the vorticity, which is generated at a fluid-fluid
interface in an actual fluid motion due to continuity of the tangential components of
velocity and stresses, are neglected in this approximation. Viscosity enters the analysis
via the balance of normal stresses at the interface which includes capillary forces. The
parameters governing the bubble or drop break-up process studied here are the ratios of
inner to outer fluids density and viscosity, Λ and 𝛽, respectively, and the Reynolds and
Weber numbers, 𝑅𝑒 and 𝑊𝑒, respectively, defined in terms of the outer fluid properties
and the principal strain rate in the far field. We aimed to evaluate the performance of
the viscous irrotational approximation by comparing with solutions of the fully-viscous
Navier–Stokes equations, where available.
Due to the irrotational assumption, a boundary integral method for axisymmetric

potential problems on both interior and exterior domains with appropriate constraints at
the interface was chosen. Perhaps, for the first time, the viscous effects of the irrotational
motion for the fluids on both sides of the interface are considered in a problem in which
the boundary integral method is applied to compute the interface dynamics. This set of
equations is solved adopting the numerical method proposed by RDZ, who considered
the same physical setup although for the flow of inviscid fluids. Different validation steps
were carried out for the code developed in this work.
We presented the comparison of the results obtained here for the bubble with results

from computations involving the unsteady, incompressible Navier–Stokes equations car-
ried out by REV using a level-set method. Such a comparison was not possible for the
drop, since numerical works of this class have not been reported in the literature known
to us. From the analysis of the results presented in this work, the following conclusions
can be drawn. First, for the case of the bubble for which the density and viscosity ratios
Λ ≪ 1 and 𝛽 ≪ 1, we have,

(i) Two different paths for the evolution of the bubble interface were distinguished in
our simulations in agreement with the patterns described in the literature: If the Weber
number is larger than a critical value, 𝑊𝑒𝑐 = 2.22 for the bubble, independent of the
Reynolds number for 𝑅𝑒 ⩾ 20 (REV), for fixed ratios of density and viscosity, the bubble
breaks up at a finite time into two symmetric pieces. If the Weber number is smaller
than a critical value, the bubble undergoes nonlinear oscillations and does not break up,
eventually reaching a steady-state shape as a consequence of viscous damping.

(ii) For the sub-critical condition,𝑊𝑒 < 𝑊𝑒𝑐, the results from the viscous irrotational
solution show good agreement with the predictions from the Navier–Stokes solver for the
time variation of the bubble axial dimension and during various cycles of oscillations,
not only for the largest Reynolds numbers considered, i.e. 𝑅𝑒 = 200, 500 and 1000, but
also for 𝑅𝑒 = 20 and 𝑅𝑒 = 50, for which the amplitude of the oscillations are rapidly
damped. This tendency is a consequence of the irrotational initial condition.
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(iii) For the super-critical condition, the viscous potential flow computations result in
interface shapes evolving towards pinch-off that are very similar to the bubble shapes
obtained from the solution of the Navier–Stokes equations. For a fixed Reynolds number,
the break-up time decreases as the Weber number increases. For a set of intermediate
and large Reynolds numbers, the break-up time computed here shows good agreement
with Revuelta’s predictions in the interval 3 ⩽ 𝑊𝑒 ⩽ 6. For 𝑊𝑒 > 6 and up to the
maximum value considered in this study (𝑊𝑒 = 100), viscous potential flow tends to
underpredict the break-up time, especially for the lowest Reynolds numbers considered,
namely,𝑅𝑒 = 20 and𝑅𝑒 = 50. Moreover, for these values of𝑅𝑒, the Navier–Stokes motion
gives rise to a plateau in the break-up time for 𝑊𝑒 ≳ 𝑂(10) that is not predicted by the
viscous irrotational solution. For the largest 𝑅𝑒, differences are relatively small between
the irrotational and rotational theories. The predictions from the inviscid theory provide
a lower bound for the break-up time, which decreases with increasing 𝑅𝑒 for fixed 𝑊𝑒.
In the interval 𝑊𝑒𝑐 < 𝑊𝑒 < 3, discrepancies between both theories become noteworthy.
The evolution of the minimum neck radius towards pinch-off is fitted by scalings with
time to pinch-off similar to those reported from experiments and numerical simulations.
In the case of the drop, with density ratio Λ = 0.8, we highlight the following findings

from the computations performed considering potential flow of two viscous fluids,
(i) For the cases presented in this work, the drop deforms and breaks up into three

daughter drops, where the intermediate drop takes a slender form, and the deformation
pattern exhibits reflectional symmetry, which is a consequence of the initial and boundary
conditions.

(ii) From the evolution of the shape of a drop computed for a Reynolds number
𝑅𝑒 = 200, viscosity ratios 𝛽 = 0.1 and 1 and Weber number 𝑊𝑒 = 3, the morphology
and length scales are similar to those for the inviscid case. Decreasing to 𝑅𝑒 = 20
renders totally different shapes: Approaching pinch-off, the drop becomes very elongated
and slender, with lateral daughter drops having a much smaller volume than the much
larger intermediate cylindrical daughter drop. For these elongated drops with 𝑅𝑒 = 20,
the break-up time is longer than for the 𝑅𝑒 = 200 case. Unexpectedly, the break-up time
for 𝑅𝑒 = 200 was shorter than for the inviscid case, contrary to the more viscous case of
𝑅𝑒 = 20. Increasing the viscosity ratio from 𝛽 = 0.1 to 1 makes the drop length slightly
larger, especially for the intermediate Reynolds numbers, i.e. 𝑅𝑒 = 20.
(iii) The deformation parameter, which gives a measure of the degree of deformation

suffered by the fluid particle, is computed for a drop that has reached a steady shape
for sub-critical conditions, several values of 𝑅𝑒 and viscosity ratio 𝛽 = 1, and compared
with results given in the literature from numerical solutions of the steady, incompressible
Navier–Stokes equations and large discrepancies are encountered. This indicates that the
performance of the viscous potential flow approximation in predicting the deformation
parameter is unsatisfactory. According to the potential flow result, the inner fluid is at
rest when the interface is not moving, whereas in the actual flow, non-slip produces
rotational flow on both sides of the interface.

(iv) Even though our focus here was in the macroscopic morphology of the deformation
of a drop or bubble from the undeformed state up to break-up, we plotted the interface
shapes in the necking region for several times and the evolution of the minimum radius
approaching pinch-off. For the two cases determined by 𝑅𝑒 = 20 and 𝑅𝑒 = 200, 𝑊𝑒 = 3,
Λ = 0.8 and 𝛽 = 0.1, the neck minimum radius evolves with time towards pinch-off as
𝑟min ∼ 𝜏2/3 following the inviscid scale; however, for 𝑅𝑒 = 20, a transition occurs to the
scaling 𝑟min ∼ 𝜏 , for which viscous effects become relevant for the interface motion. As
the motion proceeds, the change in the neck radius deviates from this linear variation
presumably because of the formation of a cylindrical thread. Finally, for 𝑅𝑒 = 20, rescaled
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interface shapes with the coordinates of the point for which the neck radius is minimum
were plotted for various times and their approach to pinch-off was not self-similar.
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Appendix A. Normal component of strain-rate and mean curvature

The notation used in (3.5) for the normal component of the viscous stress comes from
standard vector differential formulae presented in terms of a local orthogonal curvilinear
coordinate system that describes the position of points on the interface and includes
coordinate 𝑛𝑖 as defined above (see Batchelor 1967, Appendix 2). With this aid, one can
readily show that the normal component of the dimensionless strain rate at points on
the interface can be written as

n𝑖 ⋅ ∇ ⊗∇𝜙(𝑖,𝑒) ⋅ n𝑖 =
∂2𝜙(𝑖,𝑒)

∂𝑛2
𝑖

(A 1)

and the two subscripts 𝑖 and 𝑒 are needed because this quantity, in general, is discontin-
uous across the interface (see below). This identity has been used in (3.5).

For an axisymmetric problem, it is convenient to introduce the set of local orthogonal
curvilinear coordinates (𝑛𝑖, 𝑠, 𝜁), where 𝑛𝑖 and 𝜁 have been defined above and 𝑠 is the
(dimensionless) arc length measured on a meridian curve Γ that results from the inter-
section of the surface 𝒮 representing the interface with a plane containing the axis of
symmetry (𝑧-axis); 𝑠 increases in the counterclockwise direction according to figure 2.
Because ∂( )/∂𝜁 = 0, and using Laplace’s equations for the potentials 𝜙(𝑖,𝑒) written in
terms of these curvilinear coordinates, one can show that

n𝑖 ⋅ ∇ ⊗∇𝜙 ⋅ n𝑖 =
∂2𝜙

∂𝑛2
𝑖

= −∂2𝜙

∂𝑠2
+ 2𝜅

∂𝜙

∂𝑛𝑖
− 1

𝑟

∂𝑟

∂𝑠

∂𝜙

∂𝑠
, for 𝑟 > 0, and (A 2a)

n𝑖 ⋅ ∇ ⊗∇𝜙 ⋅ n𝑖 =
∂2𝜙

∂𝑛2
𝑖

= −2
∂2𝜙

∂𝑠2
+ 2𝜅

∂𝜙

∂𝑛𝑖
, for 𝑟 = 0, (A 2b)

where 𝜅 denotes the mean curvature of the interface (see below). For simplicity, 𝜙 is
written in (A 2) without subscripts (𝑖, 𝑒). Notice that even though ∂𝜙/∂𝑛𝑖 is continuous
across the interface by condition (3.4), the second derivatives ∂2𝜙𝑖/∂𝑛

2
𝑖 ∕= ∂2𝜙𝑒/∂𝑛

2
𝑖 ,

in general, because tangential derivatives ∂𝜙/∂𝑠 and ∂2𝜙/∂𝑠2 are discontinuous as a
consequence of the jump in potential 𝜙.

Regarding the surface tension term in the right-hand side of (3.5), the term −∇∥ ⋅ n𝑖

equals twice the mean curvature 𝜅 of the surface at a point, where ∇∥( ) is the surface
gradient operator,∇∥ = ∇−n(n⋅∇) (Joseph & Renardy 1993). Notice that∇∥⋅n𝑖 = ∇⋅n𝑖.
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By using the set of orthogonal coordinates (𝑛𝑖, 𝑠, 𝜁), we have

−∇∥ ⋅ n𝑖 = 2𝜅 = −∂𝑧

∂𝑠

∂2𝑟

∂𝑠2
+

∂𝑟

∂𝑠

∂2𝑧

∂𝑠2
+

1

𝑟

∂𝑧

∂𝑠
, for 𝑟 > 0, and (A3a)

−∇∥ ⋅ n𝑖 = 2𝜅 = 2
∂2𝑧

∂𝑠2
, for 𝑟 = 0, (A 3b)

where the latter expression is obtained by recognizing that ∂𝑧/∂𝑠 = 0 and ∂𝑟/∂𝑠 = 1 at
𝑟 = 0. Similar expressions to those in (A 2) and (A 3) have been presented by Georgescu
et al. (2002).

Appendix B. Additional validation steps

Results for the time evolution of a bubble or drop in a uniaxial straining flow from
boundary integrals simulations by RDZ considering inviscid fluids are used to further
validate our code in the case of large deformations. They considered that initially the
interface is spherical. If the viscosity is set to zero, the parameters controlling the dy-
namics are the Weber number and the density ratio. Their results indicate that above a
certain critical value of 𝑊𝑒, the bubble breaks up, whereas for values of 𝑊𝑒 below that
threshold, the bubble undergoes large oscillations without breaking up. For the purpose
of comparison, we have chosen some of the cases considered by RDZ. First, we consider
a bubble with density ratio Λ = 0.0012 and Weber numbers 𝑊𝑒 = 1.0, 2.19, 10.0 and
𝑊𝑒 → ∞; the first two values correspond to subcritical conditions and the last two cases
result in break-up. RDZ have found a critical Weber number 𝑊𝑒𝑐 = 2.3. Figure 14 shows
our numerical simulations using the numerical method presented in §3.2 for various times.
For the final time in each case, the predictions by RDZ are shown with symbols and the
agreement is excellent. It should also be mentioned that the final time 𝑡𝑏 from our simu-
lations agree very well with their final time, except for case (c), for which our 𝑡𝑏 = 1.221
and theirs 𝑡𝑏 = 1.230, which amount to a discrepancy of −0.7% that we consider satisfac-
tory. Since the fluids are incompressible, the volume of the bubble or drop must remain
constant; by numerical integration of a body of revolution around the 𝑧-axis, this volume
has been computed after every time step and errors within 0.02%† where obtained for
the four cases shown in figure 14. This demonstrates the mass preserving attribute of the
numerical scheme used in this work.
The results shown in figure 14 were computed using 128 elements, with node stagger-

ing and grid refinement. Because of the latter feature, the number of elements increased
with time leading to a number of elements in the order of 350 at the last instant of the
computations. Test computations with double the initial number of elements lead to the
same profiles as those shown here. In addition, using a maximum allowable time step of
10−5 (recall that we are using an adaptive time stepping) instead of our standard maxi-
mum of 10−4 did not render significant changes either. Similar tests were also conducted
for a few of the cases reported below for the inviscid drop as well as for the calculations
concerning the irrotational motion of viscous fluids, and the results presented here show
insignificant variation with both the increment of the number of elements at start-up and
the reduction of the maximum time-step size.
Due to the symmetry imposed by the initial and boundary conditions, the deformed

interface shows reflectional symmetry and the minimum radius is attained at the equato-
rial plane when the necking region develops in the cases considered here for the bubble.

† As a reference, with 129 nodes, the relative error (%) in the computation of the volume for
the initial sphere is about 2× 10−12.
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Figure 14. Deformation of a bubble in a uniaxial straining flow from an inviscid potential
flow analysis with density ratio Λ = 0.0012 and different Weber numbers. (a) 𝑊𝑒 = 1.0, (b)
𝑊𝑒 = 2.19, (c) 𝑊𝑒 = 10.0 and (d) 𝑊𝑒 → ∞. The solid lines represent the results from the
present work and the △ denotes results from RDZ. This comparison is part of the validation
stage of the computational code developed in this work.

If the coordinates of the interface are normalized by the minimum radius 𝑟min (figure
15), the normalized profile becomes slender as time progresses, since the length scale in
the radial direction decreases faster than the scale along the axial direction, as reported
by Gordillo et al. (2005). A parabolic function fits these curves very well.
Figure 16 depicts the time evolution of the interface for a drop with a density ratio

Λ = 0.8 and two different Weber numbers. In contrast to the case of a bubble where
break-up has been observed to be binary in experiments, for the case of a drop the
tertiary break-up has been reported (see §1). This is reproduced by the simulations. For
the smallest 𝑊𝑒 = 3, the slender satellite drop and the two large droplets on the sides
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Figure 15. Normalized bubble profile approaching pinch-off for a Weber number 𝑊𝑒 = 10.0,
density ratio Λ = 0.0012 and inviscid fluids. Here, 𝑟min denotes the minimum radius of the bubble
neck. The various curves are very well fitted by the parabolic profile 𝑧/𝑟min = 1 + 𝑎𝑟2/𝑟2min,
where 𝑟min = 0.220 and 𝑎 = 0.152 for 𝑡 = 1.095; 𝑟min = 0.035 and 𝑎 = 0.060 for 𝑡 = 1.216, and
𝑟min = 0.002 and 𝑎 = 0.016 for 𝑡 = 1.221.
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Figure 16. Deformation of a drop in a uniaxial straining flow from an inviscid potential flow
analysis with density ratio Λ = 0.8 and Weber numbers (a) 𝑊𝑒 = 3.0 and (b) 𝑊𝑒 = 10. The
solid lines represent the results from the present work and the △ denotes results from RDZ. This
comparison is part of the validation stage of the computational code developed in this work.

have similar axial length scales. On the other hand, for the largest 𝑊𝑒 = 10 considered,
a central elongated ligament is formed with axial length of about 12 times the initial
drop length, and break-up occurs near the ends of the slender drop. Also, the break-up
time is larger than those observed for the bubble. Comparison of the shapes predicted by
our code with those by RDZ (symbols) for 𝑊𝑒 = 3 demonstrate very good agreement,
which is also obtained for the break-up time. For 𝑊𝑒 = 10, the drop shape predicted
with viscous potential flow is similar to that by Rodŕıguez-Rodŕıguez et al.; however,
discrepancies arise in the neck region (pinch-off area) and in the shape of the daughter
drops at the tips. This is because we implemented grid refinement in our simulations,
whereas Rodŕıguez-Rodŕıguez et al. did not. Indeed, when we disable grid refinement
and enforce equally spaced nodes, our result with 513 nodes (not shown) and the one by
RDZ coincide in shape. We also highlight that volume is preserved in the simulations for
the drop up to the final time within 0.09%, even in the case where the axial length scale
changes so dramatically (𝑊𝑒 = 10).
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