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Viscous potential flow analysis of radial fingering in a Hele-Shaw cell
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The problem of radial fingering in two phase gas/liquid flow in a Hele-Shaw cell under injection of
gas is studied here. The fingers arise as an instability of a time-dependent flow. The instability is
analyzed as a viscous potential flow, in which potential flow analysis of Paterson [L. Paterson, J.
Fluid Mech. 113, 513 (1981)] and others is augmented to account for the effects of viscosity on the
normal stress at the gas/liquid interface. The addition of these new effects brings our theory into a
much better agreement with experiments of Maxworthy [T. Maxworthy, Phys. Rev. A 39, 5863
(1989)] than other theories. © 2009 American Institute of Physics. [DOI: 10.1063/1.3184574]

I. INTRODUCTION Il. GOVERNING EQUATIONS FOR INJECTION

From Paterson,1 the definition of the potential is
¢;=Mp,, vjz—M,-ij:—Vcﬁj, for j=1,2 with the mobility
M;. In a basic state, fluid “1” is inside (0=r<R) and fluid
“2” is outside (R <r< ), where R=R(t). The volume flow

V of fluid 1 is expressed as V= Qb where Q is the circular

A Hele-Shaw cell is a device whose essential features
are two closely spaced parallel plates containing a thin layer
of viscous fluid. The equations governing the flow of the
viscous fluid in the gap are similar to those governing the
flow in a saturated porous medium, but important differences
arise in the case of the equations that must be satisfied at a
free gas/liquid surface and, of course, in the way the nonlin-
ear terms appear in the two problems. This paper focuses on
effects of the viscous normal stress which are neglected in all
works on Hele-Shaw flow in the radial injection of gas into
liquid.l_10 The only mention of the viscous normal stress that
we could find in the literature is in the paper by Pitts,"! p. 60
where he notes that “If we ignore the contribution to the
normal stress arising from the viscosity and velocity gradient
(this can be shown to be small compared to the curvature in
the x, y plane) we obtain for the pressure p, at the origin....”
We do not wish to evaluate this statement for the Saffman—
Taylor experiment studied by Pitts,"" but it is not correct for

area velocity and b the width of two plates. Integration of V
with respect to time ¢ gives

V—VoszZb—ngszbHRz\/QHRE), (1)
T

where R, is the initial radius of the interface. For injection
with O>0, R increases from R,. For withdrawal with
0<0, R decreases from R, and is terminated at r=¢, for
which Qr,+mR5=0. Withdrawal is easily obtained from in-
jection and will not be discussed further.

The velocity potential ¢; for j=1,2 satisfies the equation
of continuity

the case of radial fingering studied by Paterson,' as we shall FPd. 19d: 1P
gerng y T Lod 1T 2)
show here. o2 T oor 12 o

Under constant injection of gas, the volume of gas in the

cell must continuously increase at a constant rate. In the
basic state, the volume of gas increases in a circular disk
which at some radius R(z) nucleates into fingers. After this,
the increasing gas volume is achieved by the growth of
fingers.
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and pressure is given by p;=¢;/ M. The kinematic condition
and the normal stress balance are required. The kinematic
condition at the interface r=R+a(t, 0) is expressed as

dr-R-a) c?_(ﬁl-&(r—R—a) <l%>lﬁ(r—R—a)_0
at T oor ar “\rao/r a0 -
3)

The normal stress balance at r=R(f)+a(z, 6) is expressed as
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where o is the surface tension coefficient and the unit normal
vector is n; the normal viscous stress is taken into account in
the normal stress balance.

A. Basic flow

Let the velocity potential ¢;=¢y;+ ¢;; where ¢; for ba-
sic and ¢,; for perturbed flow of gas/liquid interface. For
basic flow, the interface is given by r=R(z), where the mean
radius R(7) satisfies 7R(f)*= 7TR%+ Qt. The velocity potential
satisfies Laplace’s equation and is given by

M
Boi(r.) == [n() = (R - =L+, (5)
2
Do) == 2-[in0) = In(R()] - = (©)
The kinematic condition at the interface is given by
JR J JR J
el ), 7
t ar r=R Jat ar r=R

Then the pressure is given by pg(r,t)=¢y,(r.1)/M; where
j=1,2. And, the normal stress balance follows is given by

P o, (r,
Poi1(R,1) + 2#1(%) — PR, 1)
r r=R
a2¢oz(r,t)) ~ (g 1 )
- 21“’2( (9}"2 ’:R_ g b + R(t) ’ (8)

which provides c(7):
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cw (2 1)y 0o
M1_0<b+R(t))+7TR(t)2(’ul #a) =0. ©

The first part is the pressure difference, the second the sur-
face tension, and the third is due to viscous normal stress.
The effect of the viscous normal stress on the evaluation of
the forces acting on the perturbed interface was neglected by
all previous authors.

B. Perturbed flow

The perturbed interface is given by r=R(t)+al(z, 0), for
which the interface displacement with azimuthal mode n

may be expressed as a(t,0)=Ayf(r)exp(in)+c.c., whence
the volume is given, for the small disturbance, by
27T b
V= f —[R(t) + a(t,0)]°d6
0 2
277 b
= f E[R(t)2+2R(t)a(t, 0)]d6= mR(t)*b. (10)
0

The velocity potentials are given by

ro\ED!
b1(r.1,0) = (= 1Y Age™ (R()>

x[ 0f (1)

R ()} =12
k) Tl @ Fees J=12,

(1

which satisfy the kinematic condition at the interface
r=R(t)+al(t, 0)

da P b, ay,
—=—(—¢2°l) a—(ﬂi> . =12, (12)
ot ore J,—p or /,.-g

and the pressures are expressed as py(r,t,0)

=¢1j(r,t,0)/Mj
The normal stress balance for the perturbed field at
r=R+a(t, 0) is given by

a2(r2501 (92¢’ (92¢ &2¢12
Por+2m—5 —\P+2m 5 |+Pn +2M1 —\pat+2u—>"
ar? art or
0 526502 3 ¢01 & o2
=|pnt+2m—> —|Po+t 2#2 - P01 +2u1—5 —\Po+2m—> a
ar* ar ar* ar —R

S|

Py, (92¢>12 _
+| P+ 2m P Piat 2> a2 =
r=R

{Z TR0 T RW? T R aE)

1 a 1 &Za} (13)
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which is then arranged, after using Eq. (8), as

J +2 (72¢01_< +2 ‘"72¢02) 4
ar Poi My a7 Po2 T M2 a7 .

7 7
+{P11+2M1 &rzu_ D2+ 21, arzlz
r=R

(:L_Lﬁgﬂ 4
TNRO: TR0 T (14)

The normal stress difference of the basic field in Eq. (14) is
expanded as

d P o ( & ¢02>
— +2u—— — + 2,
{ or {Pm M1 a2 Po2 M2 P r:Ra

an[4
© 2@R(>)

1 1 )
(/.L] - IUQ) + — = _:|Aoem0+ C.C.
R(1)? M, M,

(15)

Thus, the normal stress balance for the perturbed field Eq.
(14) is given by

Py, Py
Put2u—%5 —\pt+2u
r=R

ar ar’

{JL_Lﬁﬂ
T RO T RGY 06
2
:{_ (- I)Uf(t)—Q[(n_ DIRICRSIV

R(1)? mR(1)?

M, +M, 0}[mewn
* 2M,M2n7TR(t)ft | MM
2(n = Dpy +2(n+ Dpy
R(1)

]f’(t)}AOei”0+ c.c.
(16)

With w,=b%/(12M,) and u,=b>/(12M,), Eq. (13) is given
as

~ (n*- 1)0'_ bAM(n—1)+My(n+1)]

R(1)? 12M M, 7R(1)*
Ml(l’l— 1) —M2(I1+ 1)
2M1M2n7TR(t)
4EWMAHMWMJmem%ﬂﬂ
6M,M,R(t) M \M,n fl
(17)

If [M,(n—1)-M,(n+1)] is positive for n>1, it causes
instability, but the viscous term due to viscous potential flow
(VPF) and the surface tension act as stabilizing. Also, Eq.
(17) with b*=0 goes to Eq. (10) of Paterson.'

To investigate the effects of VPF terms proportional to
b2, consider the case =0 when the finger number n> 1. In
this case

Phys. Fluids 21, 074106 (2009)

[(0) DM+ M) + 6n(My— My)R(1)
()~ BPRA(My+ M) + 6(M, + My)R(1)?

X Q .
2R (1)?

(18)

When n— oo,

g 0
[ 27R(1)*

(19)

and the VPF terms are stabilizing. On the other hand, when
b*=0

£ =)0
1) (M + M \)27R(1)?

0, (20)

so that large finger numbers are unstable and since f'/f>n,
they are Hadamard unstable; large finger numbers grow with
n without limit for any time no matter how small, as n— .

lll. DISPERSION RELATION IN DIMENSIONLESS
FORM

The scales for time and length are put as

b

(t,R)=(T7,b§), with T:2Q ) (21)

The dimensionless parameters are defined as

_Ru,

M
__Zzﬂ Ng, = o (22)

My oy

where R is the velocity of the interface. Also for the capillary
number N,, this can be divided by two dimensionless pa-
rameters as

mho

with P= s
601,

Nc, = L (23)
<7 12pg
and P is a more appropriate parameter than the capillary
number N, because it depends only on prescribed param-
eters and not on the solution.
For injection, the conservation of the volume flow is
&=&+27 and the dispersion relation is given by

(n’=1) mn+1)+n-1 mn+1)-n+1
- P -
& 68 né
B m(n—1)+n+1+(m+1)§ f(7

= 6¢ n A 24)

We may define the growth rate a=f"(7)/f(7) as a function
of 7 and B is the left-hand side of Eq. (24). The cutoff is
given by B=0 in place of a=0, since the coefficient of
S (7)1f(7) is positive for n>1.
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A. Critical condition

From Eq. (24), we have B at n=1 and 2 as

5 m 2m 0
1=~ 53" £ >
3
n=13 ¢ ¢ (25)
PR
P=" >
L &
p
P 3P 3m+1 3m-1
2ET 2 T T 3 T 5
6 2
e (26)
3 __EP_?)m—l
| 2P — §2 2§

It is noted that 8; <0 gives a; <0. Paterson’s case is given

by Bip and B,p. The mode n=1 is marginally stable and

leads to a shift of the center of the circular interface and

stable. Instabilities may arise for n>1. It is expected that

instability first arises at n=2, for which 8,>0 gives a,>0.
When m=0, we have

_f'() _ 6Pén’ + (m+ Dn® ~ [6E(P + &) —m(68 + 1) + L]n+ 6(m + )&
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_L( 2 6P l)
,320—2§3 &- §—3 ,
(27)

1
(&€ -6P%).

BZOP = 2_53

The equation 3,,=0 gives one solution

/ 1 1
£=3P=* 9P2+§~>§=3P+ 9P2+§E§C. (28)

The equation [3,yp=0 for Paterson’ case gives one solution
E=6P=¢,. For given values of P, a necessary condition for
instability is denoted as £> £.. For given values of &, a nec-
essary condition for instability is denoted as P<<£/6. The
critical condition shows that the flow is stable, no fingers
form until the circle radius grows to a certain radius. This
can be called a critical radius &,. In fact, & changes with time
7, which means a critical time 7.. In 0 <7<, there are no
fingers, but fingers arise and grow for 7. <.

B. Maximum growth rate

From Eq. (24), the time-dependent growth rate is

T T

E(m+1Dn*—(m-1Dn+6(m+1)&]

(29)

After extending « to continuous rather than discrete n, we find Eq. (30) from the condition da/dn=0. Thus

3(m+1)Pént, —6(m—1)Pén’

max

+68m+D[3(m-1)&-3P¢+(m-1)]=0,

3 = m+1D[Bm-1)E-3PE188 + 1)+ (m—1)]n?

max

(30)

where n,,,, is the finger number for which « is maximum and is the only one positive real-valued solution of Eq. (30). Then,

the P for n,,, is expressed as

(m? = 1)(n}, — 6E)(3E +1)

P=

and especially for m=0, the capillary number N, in Eq. (23)
will be given as

nto+2n (188 + 1)n?  — 68
4(n*, -6)3BE+1) ' (32)

max

Ney=-

IV. COMPARISON WITH EXPERIMENTS
OF MAXWORTHY (REF. 12)

In gas/liquid displacement, we can put m=0 with only a
very small error. P, rather than N,, is constant, as is shown
in Eq. (23), when the gas flow rate Q is constant.

In the abstract of Maxworthy12 on radial injection, he
referred that

“Experiments on the stability of the circular interface
formed in a Hele-Shaw cell when air displaces a vis-

_1)’

312 [ (g = 1)+ (e + 121+ 188 (m + 1) (3n2

@31

cous oil have shown that available theories underes-
timate the wavelength of the most unstable wave
when the capillary number (N,) is large. Apparently
this is caused by a modification of the interface
boundary condition by three-dimensional effects. At
small values of N, the results overlap several of the
theories and we are unable to choose among them on
the basis of the present experiments.”

Maxworthy12 discussed the theories of Paterson,1
Chouke et al. ,4 Park and Homsy,6 and Schwartz.” The only
calculations for radial fingering are Paterson' and now, VPF.
The other calculations are for channel flow where the maxi-
mum growth rate is determined by maximizing the growth
rate over a continuum of wavenumbers defined by perturba-
tions of a flat interface. Channel fingering is rather different
than radial fingering because the important time dependence
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———————————————————————————————— 2.26
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FIG. 1. Modified wave number for the most unstable wave vs capillary
number. The experimental points are from Maxworthy (Ref. 12) and for
values of b and w equal to: (O) 0.034 cm, 1.17 P; (V) 0.065 cm, 1.17 P; (A)
0.128 cm, 1.17 P; (0J) 0.191 cm, 1.17 P; (@) 0.0153 cm, 0.061 P; (M) 0.065
cm, 9.95 P; (#) 0.128 cm, 9.95 P;. The point A corresponds to the case
shown in Fig. 3 in Maxworthy (Ref. 12). The calculation of VPF theory,
shown as very dark lines is based in Eq. (30) with R=7.5 c¢cm and é=R/b.
VPF overestimates the modified wavenumber A, for most data point but is
the only theory that represents the trend of results for large N, (large b
or w).

of the basic flow in Eq. (1) is absent and the action of surface
tension in radial fingering is unlike that at plane interface.
The comparisons of theories for channel fingering with
Maxworthy’s12 experiments are at least one step away from
direct. He plotted

loglO NCu Vs Amux = bkmax/\/lv_Cu’ (33)
where
Kinax = Nmax/R (34)

and found that A,,=2 for Chouke et al.,* 2.26 for Park and
Homsy6 and Schwartz’ accounted for wetting effects. His
results are compared to others and with experiments in Fig. 2
of Maxworthy;]2 he writes

“An initially circular interface of large diameter, ap-
proximately 15 cm, was formed by injecting air very
slowly into the central supply hole. the inflow veloc-
ity was sufficiently slow that no unstable waves were
formed. At the initiation of an experiment the flow
rate was suddenly increased to a larger constant
value, the interface velocity V increased, a thicker
layer of oil was left on the plates, and after a short
time instability waves appeared and grew on the in-
terface (Fig. 3). The values of b, u, and V used were
such that at least 30 waves were always formed, so
that enough waves were generated to give a good
average value for the wave number of maximum
growth rate.”

Phys. Fluids 21, 074106 (2009)

£=20
VPF /
—=a&—— Paterson /
—— — Schwartz /
—--—&—--— Schwartz with wetting /
—5—— Chouke
Park and Homsy

-1 0 1
log, N

0" “ca

FIG. 2. Maximum wavenumber &, vs capillary number with £é&=20. When
Nc, is large, the difference between the wavenumber k,, for maximum
growth between VPF and other theories is large because VPF takes into
account the effects of the viscous normal stress.

The results of our potential flow theory (VPF) are com-
pared to experiments by Maxworthy12 and theoretical results
of other authors in Figs. 1-3. In Fig. 1, the VPF results are
computed from Egs. (33) and (34) for given values of
&=R/b, R=7.5 cm, b and N, is given by Eq. (32). The
inclusion of the viscous normal stress results in a longer
wavelength.

Substitute Egs. (23), (33), and (34) to Eq. (31) with
m=0, the relation between A, .., N¢,, and & is expressed as

2.2
____________ 2
Q
18 %
E
i
T,
a, Paterson, £=5 <E
— —&— — b, Paterson, £&=400 -11.6
—=a—— ¢, VPR, &=5
——~—— 4, VPF, £=10 4
— ¢ VPF, £=20
— < VPR, E=30 d14
— — — - g VPF,&=50 :
————— h, VPF, £=100
— —a— — i, VPF, £&=400 7
| | |
1.2
-3 -2 -1 0
logIONca

FIG. 3. Comparison of growth rate curves for radial fingering computed
from Paterson (Ref. 1) and VPF. For any given value of ¢, A, for VPF lies
below A, for Paterson, well below when N, is large.
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3ENLAL  +6ENIAD

Ca“**max
+ 38N [ANc,(B3E +1) + (188 + 1)]A2

— 18&[4N,(38 + 1)+ 1]=0. (35)

Using the scaling of order parameter to obtain the relation of
Ao and high N,(>1), the modified wavenumber A,,, can
be established as

6
Amax = V -~
NCa

V. EXPLICIT FORMULA FOR THE PERTURBED
INTERFACE AND THE CASCADE
TO HIGHER-ORDER MODES

3E2V6¢+ 1)

INEGEA ) (36)

In the theory of linear instability of steady flows, we
consider disturbance amplitudes proportional to exp(ar) with
growth rate «. For the radial injection problem, the basic

0 Ry Ry

2moM M,(n® - n)

- bQ\"/(M1 + Mz)[Mz(”l2 -n)+ Ml(n2 +n)]/6

M2(l’l+ 1)+M1(l’l— 1)

Phys. Fluids 21, 074106 (2009)

flow Eq. (1) depends on time and will not admit exponential
growth. The analog of exp(ar) is f(r) and f'/f is the analog
of a.

In linear theories of stability of steady flow, exp(ar)
tends to infinity with time 7 and « is bounded and it’s the
same in the radial injection problem. In the unstable case
f(t)— o as t—o0 and f'/f is bounded. Of course, the ampli-
tudes do not grow to the sky before they are saturated by
nonlinear effects.

Referring to Eq. (17), we note that a(t)=f"/f(¢) can be
expressed in terms of R alone where R(z) is related to 7 by
mR?>= R} + Q1.

We may write

L dft) 1 dRdf(r) 1 QO df(R)
foy dr

f(1) dt dR ~ f(R)2@R dR

a(R(1) = ,

(37

and the form of explicit formula is shown in Eq. (38).

! k@) dt R(®) 27R
J a(R(t))dt = f a(R(t))EdR= f a(R(t))?dRﬂn[f(R)/f(Ro)]

l \’6(M1 +M2)R :|
arctan| —
bVM,(n> = n) + M,(n* + n)

J6(M, + MR, ”

— arctan 7 5 >
b\M,(n~—n) + M(n” +n)

M (n+2)(n—1)=2M,Mn — M5(n—2)(n+1)

CMy(n-1)+M,(n+1)

In[R/R,]

2(M +My)((n—1)My+ (n+ 1)M,)

It follows from Eq. (38) that

f(R) =f(Ro)eXPlf adl}

0

20 (RO
= f(Ry)exp 0 f a(R(1))RdR |, (39)

Ry

where a=f"/f given by Eq. (17) depends on R(¢) and n and
not explicitly on t or R,,.

Equations (38) and (39) depend on the initial values R(0)
and R(7). As R(r) increases, the spectrum of unstable waves
increases, more and more fingers nucleate. How may this
global property be interpreted?

Let us suppose, as is shown in the experiments of
Maxworthy,12 that at a certain radius, say R=7.5 cm, 33 fin-
gers nucleate. The plot of f(R) where R(0)=7.5 cm and
R=8.0 cm is shown in Fig. 4(a). As time goes on, the radius
at the tip of the finger increases to a radius where more
fingers would nucleate if the radius R were not disturbed.

[ 6(M, + M)R? + b [My(n* — n) + My(n* +n)] }
6(M, + My)Ry+ b [My(n*> —n) + My (n*+n)] |
(38)

Cardoso and Woods® called this a cascade to higher-order
modes.

How is this cascade realized when fingers have already
nucleated? Obviously we get new fingers on the old fingers
[see Fig. 4(b)]. Such a process could be called tip splitting
with the caveat that at this stage it is probable that nonlinear
effects would come into play and the fingers would split at
the sides as well as tips. This kind of dynamics could lead to
the fractal-like structures seen in fingering experiments.

VI. DISCUSSION AND CONCLUSIONS

We found that when the volume flow rate Q is constant,
P given by Eq. (23) is constant but the capillary number N,
depends on R(t). P, rather than Nc,, is the primary parameter
for radial fingering.

The discrepancy between previous theories of fingering
in radial injection of gas into liquid at large capillary num-
bers and the experiments of Maxworthy12 has been removed
by analysis using viscous potential flow. This method has
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=

—_

b)

FIG. 4. (a) Finger patterns computed from Egs. (38) and (39) for n=8 for
water-air case (Q=0.01 m?/s, b=0.034 cm, Ry=7.5, and R=8 cm). (b)
Cartoon of tip splitting induced by the linear spreading of unstable waves as
R increases. Waves form at R=R;; at R=R,, two new waves nucleate at the
tips. Actually the number of waves that would nucleate would be larger than
8 but less than 16. This means that tip splitting due to the nucleation of new
waves as R increases would be irregular resembling strongly the configura-
tion of waves shown in Fig. 1 of Paterson (Ref. 1) and Figs. 2 and 3 of Chen
(Ref. 13).

been shown to introduce effects of the viscous normal stress
at the free surface neglected by all other authors.

The maximum growth rate a,,,, of VPF can arise at k,,,
which we could compare as A, in Fig. 1 with experiment
of Maxworthy.12 The a,,,, and k,,, of VPF are both smaller
than those of Paterson' which cannot arise for smaller A ax
and larger Nc,, being Hadamard unstable.

We have conjectured that the cascade to higher-order
modes as R increases, as predicted by the linear theory, will
lead to repeated splitting of fingers which have already
nucleated. The precise description of such splitting dynamics
is at present not understood.

Our analysis, like Paterson,’ is restricted to purely irro-
tational motions. Though Paterson’s flow depends physically
on viscosity, the mathematical formulation is precisely that
appropriate to the potential flow of an inviscid fluid in which
the pressure balances the surface tension as is done in nearly
all classical solutions studied by Lamb, Taylor and many
other authors. As is true for many of these classical solutions,
the addition of an irrotational viscous normal stress brings
these classical solutions into a better agreement with experi-
ments and exact analysis.

Phys. Fluids 21, 074106 (2009)
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APPENDIX: COMMENTS ON BOUNDARY CONDITIONS
AND INSTABILITY MECHANISMS

The authors of Kim ef al. shared their manuscript with
me in advance of its submission to Physics of Fluids, after
which the editor invited me to contribute an Appendix. Ac-
cordingly, the purpose of this Appendix is to make some
general comments about paper, to provide some justification
for their use of approximate boundary conditions, and to dis-
cuss the physical mechanism of wave number selection.

1. Comments

Viscous fingering in Hele-Shaw cells is often analyzed
using depth-averaged quantities, averaged over the thin di-
mension, b. This results in a set of equations analogous to
Darcy’s law in which the pressure is a potential for the two-
dimensional velocity field, with the coefficients in these
equations computed assuming that the flow is a Poiseuille
flow in the thin dimension. Two issues then arise: (i) what is
the justification for assuming these equations hold at an in-
terface (where the assumption of Poiseuille flow must neces-
sarily break down), and (ii) since the depth-averaged equa-
tions are lower order than the (Navier—) Stokes equations,
what are the boundary conditions to be applied to solutions
of these equations? The resolution of such issues has been
the subject of many investigeuionsé’12’14_18 with the general
result that the fields computed from the depth-averaged
equations (henceforth referred to as the “outer solutions” of
the “outer equations™) are subject to corrections within a dis-
tance of O(b) of the interface, and that the smooth but rapid
variation in pressure can be replaced by a jump condition at
the interfacial position, projected onto the bounding plane of
the Hele-Shaw cell. These jump conditions are derived in the
spirit of matched expansions, where “inner” solutions valid
near the interface are matched asymptotically to the outer
solutions. Dimensional analysis and scaling indicate that (in
addition to the viscosity and density ratios), two parameters
govern the problem: an aspect ratio of macroscopic length
gap width, (é£=R/b in the present context), and a capillary
number, Ca=uU/o. When both Ca and 1/ are small, they
combine to form the “modified capillary number,”
Ca’' =& Ca, yielding the so-called Hele-Shaw equations.15 In
particular, the pressure jump at the interface, computed from
the outer solutions, satisfies

[p]= o cos(6)/b+ f(6)a/R + O(Ca*?), (A1)

where [ ] notation denotes a jump condition and f(6) is a
function of the contact angle.16 [Both cos(6) and f(6) are
taken, somewhat inconsistently, to be unity by Kim er al.]
The correction terms have been computed for wetting fluids
through a Bretherton-type analysis6’17 for small Ca, and nu-
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merically otherwise.'* There are similar correction terms for
the kinematic condition that take into account the small jump
in the average velocity due to some of the displaced fluid
being left on the walls. Taking only the lowest order terms,
linear stability theory predicts that the wavelength of the
maximum linear instability growth scales as

\ ~ b(Ca)™"2. (A2)

These predictions are in disagreement with experiments for
large modified capillary number. In particular the experi-
ments of Maxworthy12 show that for radial injection,

N=5b, Ca' >1, (A3)

i.e., the fingering is on the scale of the gap width. This dis-
crepancy is usually attributed to “three-dimensional effects,”
but attempts to explain it by including correction terms
in Eq. (A2) and in the kinematic condition have proven
unsuccessful.

The paper by Kim e al. advances a totally new approach
toward resolving the discrepancy, which is to consider the
total normal stress (rather than only the pressure) in formu-
lating jump conditions. They further take the bold step of
evaluating the viscous normal stress from the outer solutions
for the velocity field. The result is to bring theory and ex-
periment into much better agreement: in particular, they find
that the normal viscous stress, as evaluated from the outer
solution, is capable of providing a cutoff of small scale in-
stabilities, with the result that for the conditions of Maxwor-
thy’s experiments, their Eq. (35) is equivalent to

\ ~ 2.6b. (A4)

This is the only theoretical result providing this level of
agreement, which is remarkable and certainly worthy of fur-
ther discussion, explanation, and justification.

The analysis of Kim et al. applies boundary conditions at
the interface evaluated using the depth-averaged outer fields,
their Eq. (4). All else follows from this equation, which begs
two important questions: (i) what are the approximations in-
volved in computing the viscous normal stress from the
outer, depth-averaged fields, and can they be justified, and
(ii) what is the physical mechanism responsible for the result
in Eq. (A4)?

2. Justification of approximate boundary conditions

Justification for the computation of the normal viscous
stress at the interface from the outer flow fields requires
some thinking about the details of the flow in the thin gap.
Two distinct situations may be identified. The first, not of
relevance to the experiments of Maxworthy, is when the flu-
ids are partially wetting so that dynamic contact lines are
present. The correct computation of the normal viscous stress
involves the solution of the Stokes or Navier—Stokes equa-
tions, something that to my knowledge has been achieved
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only for the special case of 90° contact angle in tube flow.'®

What can be stated in general is that the apparent contact
angle differs from the static value by a term of O(Ca), lead-
ing to a small, O(Ca) correction to Eq. (Al).

The second situation, relevant here, is for wetting fluids
such as silicone oils used by Maxworthy in which there is a
thin layer of the viscous fluid left on the walls of the Hele-
Shaw cell. The thickness of this layer is known to be small
for small Ca. The meniscus shape in the thin gap is similarly
known to be approximately cylindrical in this limit. Since the
meniscus is moving with a steady speed, the instantaneous
streamlines in the laboratory frame are horizontal near the
centerline while away from it they must bend (i) because of
the shape of the meniscus, (ii) in order to accommodate the
effect of the wetting layer and (iii) in order to adjust to a
Poiseuille profile far from the interface. The effective perme-
ability relating the velocity to the pressure will vary with
axial position, reflecting the variation with distance from the
nose of the shape of the velocity profile in the thin dimen-
sion. Since this affects only constants of proportionality be-
tween the pressure and velocity, the depth-averaged normal
viscous traction vector 2ue;n;, where e;; is the rate of strain
tensor, is given correctly in order of magnitude by the poten-
tial flow.

The computation by Kim et al. of the normal viscous
stress as if it were acting on a vertical interface is clearly an
additional approximation: a more refined calculation will not
alter the basic physical mechanisms and scalings discussed
in more detail in the next section, but it will change the
numerical coefficients. It remains an open question as to
whether accounting for the bending of the streamlines and
the resolution of the normal stress along the direction of
propagation of the interface will improve the numerical
agreement between Egs. (A3) and (A4).

3. Mechanism

The question naturally arises as to how the viscous nor-
mal stress is responsible for stabilization of short waves lead-
ing to the result, Eq. (A4), in the absence of the usual stabi-
lization due to the capillary pressure produced by the
transverse curvature. Of course the answer is embodied in
Egs. (28) and (29) but in an opaque way. A simple approxi-
mate analysis in the limit of large azimuthal wave number, n,
small but fixed b, large viscosity contrast, and negligible
surface tension gives considerable insight.

Since the bulk dynamics are quasistatic, the kinematic
condition, Eq. (12), governs the time dependence of small
perturbations. Using the expression for ¢, it is easy to show
that the first two terms of Eq. (12) [taking a time scaling for
which Q/(27)=1 for simplicity], give

daldt=—alR*. (A5)
Equation (A5) is equivalent to the author’s Eq. (19) and in-
dicates that for unit viscosity ratio, the interface is stable.
Therefore the expression for the perturbation normal velocity
—(¢y)), is at the heart of the issue as it gives the potential for
instability. This quantity is determined by the normal stress
balance, Eq. (14).
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It is easy to show that the viscous normal stress of the
base state is insignificant in influencing the growth rate. A
simple calculation shows that the first bracketed term in
Eq. (14),

[(po +2b0.1) dr=r = (2 = 1) (12/(L°R) + 4/R?).

Since £=(R/b)> 1, the contribution of the normal viscous
stress to the destabilizing terms is negligible and the desta-
bilizing term is identical to that which obtains in the absence
of the viscous normal stress, i.e.,

[(pO + 2:u“¢0,rr)r] = 12(#2 - ,LL])/(bZR) .

The influence of the viscous normal stress therefore arises
primarily from the dynamics of the perturbations. The full
numerical results of Kim ef al. show that when surface ten-
sion is negligible the instability is characterized by a very
large azimuthal wave number, n. Inserting the expressions
for the potentials for the perturbation flow, Eq. (11), into the
normal stress balance, and taking the limits n>1, b fixed,
=0, and u,> u, (appropriate to the experiments) one finds
that the normal viscous stress exerted by the more viscous
fluid dominates the pressure of the perturbation flow due to
the higher order of differentiation with respect to r. In this
limit, the normal stress balance requires that the viscous nor-
mal stress balances the destabilizing term, Eq. (A7), with the
result that

(A6)

(A7)

&1, =— 6al(b°n?). (A8)
Then, the dynamic equation becomes
daldt=alR¥-1+6R*(b*n?)}, n>1, b fixed.
(A9)

The second (destabilizing) term arises from the balance of
the destabilizing pressure gradient in the base flow with the
normal viscous stress of the perturbation flow. The result, Eq.
(A9) is incapable of making predictions of the wave number
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of maximum growth rate, as it is asymptotic for very large n,
but it is easy to see that the cutoff value of n is O(R/b)>1,
with the result that

N ~b. (A10)
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