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In this study, we present experimental results on particle-wall collision in viscoelastic
fluids. A sphere is released in a tank filled with poly(ethylene-oxide) (PEO) mixed with
water with varying concentrations up to 1.5 %. The effect of Stokes and Deborah
numbers on the rebound velocity of a spherical particle colliding onto a wall is
considered. It has been observed that the slope at which the coefficient of restitution
increases with Stokes number is smaller for higher Deborah numbers. Higher rebound
occurs for higher PEO concentration at the same stokes number. However, the results
for the coefficient of restitution in polymeric liquids can be collapsed together with
the Newtonian fluid behaviour if one defines the Stokes number based on the local
strain rate.

1. Introduction
Particle–particle and particle-wall collisions occur in many natural and industrial

applications such as sedimentation, agglomeration, granular flows and, in general,
any multi-phase flow application involving particles. To accurately predict the
behaviour of particulate flows, fundamental knowledge of the mechanisms of single-
particle collision is required. More specifically, the study of particle-wall collisions
provides deeper insight into modelling particle-laden flow when particle interaction
is important. However, almost all of the existing studies on particle collision focus
on Newtonian fluids. In this paper, we experimentally study particle-wall collision in
viscoelastic liquids.

Several studies on the rebound of colliding particles in Newtonian fluids have been
conducted during the last three decades. Davis, Serayssol & Hinch (1986) employed
an elastohydrodynamic model for collision between particles suspended in a liquid.
Throughout these collisions, the particles are separated by a viscous liquid film.
The pressure force in this lubrication film is sufficiently large to cause the particles
to deform and rebound without making solid-body contact. It was shown that the
pertinent parameter for collision in the fluid is not the Reynolds number Re but
the Stokes number St =(1/9)(ρ

p
/ρ

f
)Re where ρ

p
and ρ

f
are the particle and fluid

densities, respectively. No rebound occurs for St lower than a critical value due to
the fact that the elastic energy stored by the particle deformation is dissipated in the
fluid. It has been shown that the coefficient of restitution normalized by that for a dry
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collision depends strongly on the impact Stokes number and weakly on the elastic
properties of the particle, where the Stokes number is defined using the approaching
velocity of the particle. It has been shown that below a St of 10, no rebound occurs
(e.g. Gondret et al. 1999; Joseph et al. 2001; Gondret, Lance & Petit 2002). For impact
Stokes numbers larger than 500 the coefficient of restitution asymptotes to that for
a dry collision. Davis et al. (1986) concluded that the Stokes number dependence is
due to the drainage of the liquid film formed between the particle and the wall as
noted by Legendre et al. (2006). Barnocky & Davis (1989) considered the variation
of the density and viscosity with pressure. The increase in viscosity and density with
pressure leads to solidification of the fluid in the contact region which affects the
rebound. However, they concluded that the effect of the increase in viscosity on the
normal collision behaviour is small (noted by Joseph & Hunt 2004). Davis et al.
(1986) showed that the elasticity parameter ε = (4θμVia

3/2)/h5/2 affects the rebound
velocity of particles, where h is the gap between the two approaching surfaces and
the relative velocity is Vi; θ =(1 − ν2

1 )/πE1 + (1 − ν2
2 )/πE2 and ν1, ν2 and E1, E2 are

the Poisson’s ratios and Young’s moduli of elasticity for the particle and the wall
respectively; a = d/2 is the particle radius.

Surface roughness has a significant effect on rebound velocity because the
lubrication layer between two colliding objects is very small and may be of the same
order as the surface roughness. Consequently, contact may occur through microscopic
surface imperfections, as noted by Smart & Leighton (1989). Davis (1987) developed
a theory for collision of rough surfaces with small bumps with dilute surface coverage.
He showed that the surface roughness has negligible effect on the viscous force until
the gap between the smooth surfaces becomes equal to the size of largest roughness
element. At this time, the bumps make physical contact due to the discrete molecular
nature of the fluid and/or attractive London–van der Waals forces. Further approach
is thereby prevented and solid-solid contact occurs. Ardekani & Rangel (2008) recently
studied the effects of surface roughness and Stokes number on the rebound velocity
of a bouncing particle on a wall in a viscous fluid. Their numerical results agree with
the experimental results by Gondret, Lance & Petit (2002). Their method has been
extended to include multi-particle collision and the collision of general shape objects
(Ardekani, Dabiri & Rangel 2008a).

Whereas several experimental studies have been conducted of the influence of
the Newtonian fluid properties on collision processes, only a few studies address
particle collision in viscoelastic fluids. Stocchino & Guala (2005) studied particle-wall
collision in a shear-thinning fluid and observed that the coefficient of restitution
in the case of non-Newtonian fluids (aqueous solution of carboxymethyl cellulose)
is higher compared to the Newtonian case for the same Stokes number. Guala &
Stocchino (2007) provided particle image velocimetry measurements of the velocity
field during rebound of steel particles in the same liquid and concluded that at low
Deborah numbers, which represents the ratio between a characteristic relaxation time
and the characteristic time scale of the experiment, the shear-thinning character of
the non-Newtonian fluid is dominant with respect to its viscoelasticity. Ardekani,
Rangel & Joseph (2007) studied the normal motion of a spherical particle towards a
wall in a second-order fluid and observed that the contribution of the second-order
fluid to the overall force applied to the particle is an attractive force towards the
wall. For a particle moving towards a wall in a second-order fluid of both Stokes and
slow potential flows, a smaller drag force is experienced by the particle as compared
to the Newtonian case. Ardekani, Rangel & Joseph (2008b)’s interpretations of
the aggregation of particles in viscoelastic fluids rest on three pillars. The first is the
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No. Material d (mm) ρ
p

(g cm−3) m (gr) E (Gpa) ν

1 Steel 2.381 7.67 0.054 203 0.29
2 Steel 3.175 7.67 0.128 203 0.29
3 Steel 4.762 7.67 0.434 203 0.29
4 Steel 6.350 7.67 1.03 203 0.29
5 Steel 7.936 7.67 2.01 203 0.29
6 Steel 9.525 7.67 3.47 203 0.29
7 Steel 12.700 7.67 8.22 203 0.29
8 Steel 19.050 7.67 27.753 203 0.29
9 Lucite (bottom wall) 50.8 (thickness) 1.18 – 2.93 0.35–0.4

Table 1. Particle and the wall properties.

existence of a viscoelastic ‘pressure’ generated by normal stresses due to shear. Second,
the total time derivative of pressure is an important factor in the force applied to
a moving particle. The third is associated with a change in the sign of the normal
stress at points of stagnation. This is a purely extensional effect unrelated to shearing.
These interpretations are suggested by analysis of a second-order fluid which arises
asymptotically for motions which are slow and slowly varying.

In this study, the particle-wall interaction in viscoelastic fluids is experimentally
studied. The motion of particles in a viscoelastic liquid can be expressed in terms of
the Reynolds Re and Deborah De numbers. The Reynolds number is given by

Re =
ρ

f
V d

μ
, (1.1)

where V is the terminal velocity of the particle and d is the particle diameter. The
Deborah number is defined as

De =
λ0V

d
, (1.2)

where λ0 is the relaxation time. The relaxation time λ0 = μ0/ρf
c2 is taken from a

wave-speed measurement where c is the shear wave speed (Joseph, Riccius & Arney
1986; Riccius, Joseph & Arney 1987). For particle-wall collision in a viscoelastic fluid,
the important parameters are the Stokes and Deborah numbers based on impact
velocity rather than particle terminal velocity. The main purpose of the present
work is to study whether the viscoelastic properties of the liquid may influence the
measured coefficient of restitution. The experimental set-up is described in § 2 and the
experimental results are discussed in § 3.

2. Experimental set-up
In this experiment, spherical particles are dropped in a liquid-filled tank. The

spheres are released by means of a magnetic device located in the fluid approximately
15 cm above the bottom of the tank similarly to the experiment by Stocchino & Guala
(2005) (their figure 1). The particle parameters are shown in table 1. The container
is a hexagonal perspex tank with an edge length of 11 cm. The dimensions of the
tank are such to avoid any influence of the sidewalls. A block of lucite with 50.8 mm
thickness is used as the bottom wall of the tank. The temperature of the room is
24 ± 1 ◦C.
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No. φ (%) T (◦C) n1 (g cm−1) c (cm s−1) μ0 (poise) k n λ0 (s)

1 0.5 24 124 9.05 5.2 5.17 0.537 0.06
2 0.6 24 162 10.0 7.43 6.76 0.503 0.07
3 0.75 24 208 11.9 25.2 20.3 0.463 0.18
4 1 24 360 14.0 76.5 39.7 0.419 0.39

1 35 360 – – – – –
1 45 321 – – – – –
1 54 301 – – – – –

5 1.5 24 440 20.3 204 101 0.378 0.5

Table 2. Physical properties of aqueous Polyox (WSR-301, molecular weight 4 × 106) by
Liu & Joseph (1993).
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Figure 1. Collision of a 12.7 mm particle onto a wall in 1 % poly(ethylene-oxide) (PEO).

A mixture of up to 80 % glycerol in water and up to 1.5 % aqueous solution of
poly(ethylene-oxide) (PEO) Polyox WSR-301 is used as the fluid for the experiments.
The concentration (φ) by weight of the polymer was varied from 0.5 %–1.5 %. The
liquid parameters, such as the zero shear value of the first normal stress coefficient n1,
the shear wave speed c from which relaxation time can be calculated, the zero shear
rate viscosity μ0 and the power law constant k and n are given in table 2. From the
power law equation we have μ = kγ̇ n−1 where γ̇ is the shear rate.

The motion of the sphere is captured using a high-speed digital camera (HCC-
1000 512MB) with framing rates up to 2000 frames per second (f.p.s.). Most of the
experiments carried out in this paper are captured at 912 f.p.s.. The digital images
are processed to determine the position of the centroid of the sphere in each frame.
The overall image size is 1024 × 256 pixels. The precision of the position can be
determined within 0.7 % of particle diameter, corresponding to a resolution of one
pixel. Figure 1 shows the trajectory and velocity of a sphere sedimenting in a 1 %
Polyox solution during successive rebounds. Here, h is the separation distance between
the surface of the particle and the wall. Two lines are drawn through the five data
points before and after collision as done by Joseph et al. (2001). The slope of the
fitted lines correspond to Vi and Vr , the impact and rebound velocity, respectively.
The coefficient of restitution is defined as e = −Vr/Vi .
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Figure 2. Coefficient of restitution normalized by that for dry collision as a function of St .
Present results are shown by solid symbols. Experimental measurements for different materials
by Gondret et al. (2002) are shown by open symbols. Lubrication theory of Davis et al. (1986)
(−).

The coefficient of restitution corresponding to the collision of steel spheres onto a
lucite wall in air edry is 0.93 ± 0.02. Surface roughness also has an important effect
on rebound velocity as studied earlier by Joseph et al. (2001); Ardekani & Rangel
(2008). Experimental results by Joseph et al. (2001) indicated that the characteristic
variance observed in measurement of the coefficient of restitution is of the order of the
experimental uncertainty for smooth particles and considerably larger for the rough
particles. In this experiment, the particle roughness height is small as determined by
scanning electron micrographs of the spheres at a few random spots showing that the
particle roughness is smaller than 0.5 μm.

3. Experimental results and discussion
Figure 2(a) shows the coefficient of restitution for rebounding spheres in the

Newtonian fluids listed in table 3. The results are compared with those by Gondret
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Fluid ρ
f

(g cm−3) μ (g cm−1s−1)

Air 1.2 × 10−3 1.85 × 10−4

Water 1.0 0.00897
50 wt % glycerol 1.1 0.0432
80 wt % glycerol 1.18 0.369
Glycerol 1.26 7.140

Table 3. Physical properties of Newtonian liquids at 25◦C by Shankar & Kumar (1994).

Fluid d (mm) St De e/edry Fluid d (mm) St De e/edry

1.5 % PEO 19.05 8.62 16 0.87 0.6 % PEO 9.52 95 6.7 0.94
1.5 % PEO 19.05 8.84 16 0.89 0.6 % PEO 7.94 62 6.4 0.89
1.5 % PEO 19.05 9.09 17 0.87 0.6 % PEO 6.35 28.2 5.1 0.91
1.5 % PEO 12.70 0.47 4.4 0.37 0.6 % PEO 4.76 2.28 1.4 0.54
1.5 % PEO 12.70 0.54 4.8 0.37 0.6 % PEO 3.17 1.31 1.6 0.00
1.5 % PEO 9.52 0.04 1.3 0.00 0.6 % PEO 12.7 90 4.4 0.93
1 % PEO 19.05 35.3 19 0.91 0.6 % PEO 9.52 61.6 5.0 0.92
1 % PEO 12.70 13.6 17 0.88 0.6 % PEO 7.94 51.46 5.6 0.88
1 % PEO 9.52 0.59 3.4 0.37 0.6 % PEO 6.35 34.4 5.8 0.84
1 % PEO 7.94 0.62 4.4 0.18 0.6 % PEO 4.76 12.5 4.3 0.72
0.75 % PEO 19.05 59.1 8.6 0.92 0.6 % PEO 3.17 2.01 2.2 0.25
0.75 % PEO 12.70 35.5 10 0.94 0.5 % PEO 19.05 234 3.8 0.90
0.75 % PEO 9.52 18.1 9.8 0.92 0.5 % PEO 12.70 165 5.2 0.92
0.75 % PEO 7.94 6.92 6.7 0.83 0.5 % PEO 9.52 118 6.1 0.91
0.75 % PEO 6.35 1.73 3.6 0.54 0.5 % PEO 7.94 90 6.5 0.95
0.75 % PEO 4.76 0.25 1.5 0.17 0.5 % PEO 6.35 71 7.5 0.90
0.75 % PEO 3.17 0.22 2.3 0.00 0.5 % PEO 4.76 16.5 4.1 0.83
0.6 % PEO 19.05 200 4.3 0.91 0.5 % PEO 3.17 3.43 2.4 0.32
0.6 % PEO 12.70 140 5.9 0.91 0.5 % PEO 2.38 1.31 1.9 0.19

Table 4. Coefficient of restitution, Stokes number and Deborah number for different
measurements.

et al. (2002). Based on the accuracy of the results, we proceed to calculate the
coefficient of restitution for rebounding spheres in a PEO aqueous solution.

Table 4 shows the coefficient of restitution for the first rebound, Stokes number,
and Deborah number for different measurements. The coefficient of restitution as a
function of Stokes number for different poly(ethylene-oxide) (PEO) concentrations is
plotted in figure 2(b). It should be noted that figures 2(a)–2(c) include only the data
for the first rebound. Whereas, figure 2(d) includes the data for the first rebound as
well as the successive ones. For the aqueous solution of PEO, μ varies with shear
rate μ = μ(γ̇ ) as indicated earlier. As explained by Guala & Stocchino (2007), it is
necessary to assign a specific value to the rate of strain γ̇ in order to evaluate the
viscosity from the constitutive law. Mena, Manero & Leal (1987) studied the effect of
the rheological properties on the drag force experienced by a settling particle. They
suggested that for low De numbers, the shear-thinning behaviour can be represented
with a Newtonian fluid model using the non-Newtonian viscosity corresponding
to a strain rate γ̇ =Vt/d , where Vt is the particle terminal velocity. However, for
intermediate De numbers, elastic effects are primarily important. For the impact
problem, the impact velocity Vi should be used instead of the terminal velocity.
Stocchino & Guala (2005) showed that for shear-thinning liquids, the use of Vi/d for
the effective strain rate results in a higher coefficient of restitution as compared to
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the Newtonian case. In table 4 and figure 2(b), γ̇ = Vi/d is used as the effective strain
rate. As shown in this figure, a higher coefficient of restitution occurs in the PEO
solution when compared to Newtonian fluids, and the coefficient is higher for higher
PEO concentration. Both the shear-thinning and viscoelasticity affect the coefficient
of restitution and it is difficult to discern the effect of each property. In addition,
as seen in figure 2(b), the critical Stokes number below which no rebound occurs,
decreases as the concentration of PEO increases. Figure 2(c) shows the data provided
in table 4 but this time categorized with respect to the Deborah number. As it can be
seen, higher rebound occurs for higher De. Higher Deborah numbers correspond to
higher polymer concentration, higher viscoelasticity and higher shear-thinning effects.
In figure 2(c), we observe that the slope at which the coefficient of restitution increases
with St is smaller for larger Deborah number. Furthermore, smaller critical Stokes
numbers are observed for larger De.

The force experienced by a particle moving towards a wall in a power-law fluid
under the lubrication assumption can be written as Fa/mV 2

i = (a/h)(1/St)f (n) where
m is the mass of the particle and f (n) is a function of n defined as

2(3 + n)/2

6

(
2n+ 1

n

)n

β

(
n+ 3

2
,
3n − 1

2

)

(Rodin 1996); n is the exponent that relates the shear stress and the corresponding

strain rate (τ ∝ γ̇ n); β is the beta function and St = 2ρ
p
Via/9k(Vi

√
a

h3/2 )n−1. This
expression shows that for a purely shear-thinning liquid, defining the effective shear
rate as Vi

√
a/h3/2 results in the collapse of the data on the Newtonian behaviour

(Fa/mV 2
i = (a/h)(1/St)) if f (n) changes weakly with n. In this experiment f (n)

changes between 1 for Newtonian fluid and 13.6 for 1.5 % PEO aqueous solution.
As the particle approaches the wall, the fluid is squeezed out of the gap between

the particle and the wall and a strong shear rate occurs in the gap region. One might
argue that the pertinent length scale in this problem is the lubrication length scale
as opposed to the particle diameter. From the continuity equation, the average radial
velocity scales as Ur ≈ Vi

√
ah/h where h is the gap separation distance. Thus, the

important shear rate in this problem is γ̇ =Ur/h ≈ Vi

√
ah/h2, which is based on the

radial velocity and gap distance. The question is then: what is the appropriate h for
this problem since h varies from O(10a) to O(10−5a).

In the problem of particle-wall collision in liquids, the coefficient of restitution is
defined as the ratio of the particle post-collision velocity at a specific position to
the particle pre-collision velocity at the same position (h0). For dry collisions, the
coefficient of restitution does not depend on h0 since after the particle separates
from the wall, the change in particle velocity is negligible. However, for particle-wall
collision in a viscous fluid, even after the particle separates from the wall, there is a
marked decrease in particle velocity due to large viscous dissipation. See, for example,
figure 14 in Ardekani & Rangel (2008). Here we define the coefficient of restitution
at h0 = δtVi where δt is the time between two photo frames. Figure 2(d ) shows the

graph obtained using the above definition for local strain rate (γ̇ =
√

a/δt3Vi). The
data collapses onto the Newtonian data which is in agreement with the theoretical
calculations for the Squeezing film of a shear-thinning fluid as explained above. We
should clarify that this does not imply the dependence of the results on the camera
speed. If we use a camera with higher speed but calculate the coefficient of restitution
at the same h0, we get the same data points. The definition of coefficient of restitution
depends on h0 but not the camera frame rate and it can be shown that its dependence
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on h0 is smaller than the experimental uncertainty. If one changes the ratio of h0 to
surface roughness from 100 to 1000 using equation (4.4) of Joseph et al. (2001), the
changes in coefficient of restitution will be smaller than the experimental uncertainty.
In summary, the results for the coefficient of restitution in polymeric liquids collapse
on the Newtonian fluid behaviour if one defines the Stokes number based on the
local strain rate.

4. Conclusions
Particle-wall collision in a viscolastic liquid has been experimentally studied and

the effects of both viscoelasticity and shear-thinning on the rebound velocity are
discussed. It has been observed that the slope at which the coefficient of restitution
increases with Stokes number is smaller for higher Deborah numbers. In addition,
the critical Stokes number decreases with Deborah number. Higher rebound occurs
for higher PEO concentration at the same stokes number. However, the results for
the coefficient of restitution in polymeric liquids can be collapsed together with the
Newtonian fluid behaviour if one defines the Stokes number based on the local strain
rate (radial velocity of the fluid in the gap region divided by gap separation distance).

We wish to thank J. Garman for his help in setting up the experiment and S.
Maghzi who measured surface roughness. This work is sponsored by the National
Science Foundation under grants CBET-0302837 and OISE-0530270. The first author
acknowledges the Zonta International Foundation for an Amelia Earhart fellowship.
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