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The forces acting on two fixed spheres in a second-order uniform flow are investigated. When
�1+�2=0, where �1 and �2 are fluid parameters related to the first and second normal stress
coefficients, the velocity field for a second-order fluid is the same as the one predicted by the Stokes
equations while the pressure is modified. The Stokes solutions given by Stimson and Jeffery �Proc.
R. Soc. London, Ser. A 111, 110 �1926�� for the case when the flow direction is along the line of
centers and Goldman et al. �Chem. Eng. Sci. 21, 1151 �1966�� for the case when the flow direction
is perpendicular to the line of centers are utilized and the stresses and the forces acting on the
particles in a second-order fluid are calculated. For flow along the line of centers or perpendicular
to it, the net force is in the direction that tends to decrease the particle separation distance. For the
case of flow at arbitrary angle, unequal forces are applied to the spheres perpendicularly to the line
of centers. These forces result in a change of orientation of the sedimenting spheres until the line of
centers aligns with the flow direction. In addition, the potential flow of a second-order fluid past two
fixed spheres in a uniform flow is investigated. The normal stress at the surface of each sphere is
calculated and the viscoelastic effects on the normal stress for different separation distances are
analyzed. The contribution of the potential flow of a second-order fluid to the force applied to the
particles is an attractive force. Our explanations of the aggregation of particles in viscoelastic fluids
rest on three pillars; the first is a viscoelastic “pressure” generated by normal stresses due to shear.
Second, the total time derivative of the pressure is an important factor in the forces applied to
moving particles. The third is associated with a change in the normal stress at points of stagnation
which is a purely extensional effect unrelated to shearing. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2917976�

I. INTRODUCTION

The motion of small particles at low Reynolds number
was comprehensively reviewed by Happel and Brenner1 and
by Goldsmith and Mason.2 Extensive reviews on the motion
of particles in non-Newtonian fluids were reported by
Caswell3 and Leal.4 More recently, the unsteady motion of
solid spheres and their collisions have been studied by Arde-
kani and Rangel.5,6 In this study, the forces acting on two
spherical particles in a second-order fluid are investigated.

If two spheres are set into motion in a viscoelastic fluid
in an initial side-by-side configuration in which the two
spheres are separated by a smaller than critical gap, the
spheres will attract, turn, and chain.7 In the sedimentation of
a transversely isotropic particle at low Reynolds number
through a quiescent fluid, the presence of even weak vis-
coelasticity is responsible for adaption of a specific orienta-
tion independent of the initial configuration, whereas in a
Newtonian fluid, the particle configuration is indeterminate
at zero Reynolds number.4 Similarly, two spherical particles
sediment in a Newtonian fluid with constant orientation
equal to their initial orientation, whereas particles tend to
line up in a viscoelastic fluid. Our interest is to see if a
second-order fluid model can predict the orientation of two
sedimenting particles.

Expansion of the general stress function for slow and

slowly varying motion gives rise to the second-order fluid
introduced by Coleman and Noll.8–11 Correct predictions
have been obtained for second-order fluids for the orientation
of a settling long body, the evolution of the Jeffery orbit12

and the lateral migration of a sphere in a nonhomogeneous
shear flow.13 However, the predictions of the fluid response
to rapid motions have not been satisfactory.

The motion of a spherical particle normal to a wall in a
second-order fluid was theoretically investigated by Arde-
kani et al.14 who showed that the contribution of the second-
order fluid to the overall force applied to the particle is an
attractive force toward the wall independent of the direction
of motion of the particle.

Riddle et al.15 experimentally studied the effect of the
distance between two identical spheres falling along their
line of centers in viscoelastic fluids and found that the
gradual separation or coalescence of two spheres depends on
their initial separation distance. Brunn16 considered the inter-
action of two identical spheres sedimenting in a quiescent
second-order fluid and observed that the distance between
spheres decreases as they fall. His analysis applies when the
particle separation is large and he did not find a critical sepa-
ration distance for attraction. Brunn17 analyzed sedimenta-
tion of particles of arbitrary shape in a second-order fluid.
His investigation shows that a transversely isotropic particle
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changes orientation until it becomes either parallel or per-
pendicular to the direction of the external force.

Phillips18 developed a method to calculate the motion of
N spherical particles suspended in a quiescent second-order
fluid in a low-Reynolds-number flow. Binous and Phillips19

used a modified version of the Stokesian dynamics method to
calculate directly the particle-particle and particle-bead inter-
actions. In their approach, a viscoelastic fluid is represented
as a suspension of finite-extension, nonlinear, elastic dumb-
bells in a Newtonian solvent. They showed that two sedi-
menting spheres are, in most cases, attracted to each other
and turn in such way that their line of centers is in the direc-
tion of gravity. Bot et al.20 experimentally investigated the
motion of two identical spheres along the center line of a
cylindrical tube filled with a Boger fluid. They observed that
the spheres attract for large distances but separate for small
distances. Joseph and Feng et al.21 presented a two-
dimensional numerical study of particle-particle and particle-
wall interactions in an Oldroyd-B fluid and they observed
that two particles settling side by side attract and approach
each other. The doublet rotates until the line of centers is
aligned with the direction of fall. More recently, Phillips and
Talini22 studied hydrodynamic interactions between widely
separated spheres utilizing a multipole expansion and ob-
served particles chaining in sedimentation and shear flows.

In the present study, two nonrotating and freely rotating,
fixed spheres in a uniform flow of a second-order fluid at an
arbitrary direction using Stokes equations are discussed. The
results utilizing Stokes equations confirm that a viscoelastic
pressure associated with high-shear rates on the surface of
particles promotes the attraction and alignment of particles in
the direction of sedimentation for any range of particles
separation. For freely rotating spheres, the time derivative of
the Stokes pressure is nonzero and it enhances the attraction
of the spheres. An important question is whether other
mechanisms of attraction or repulsion exist for particles in a
second-order fluid. In order to answer this question, we ex-
amine the normal stresses at the stagnation points as calcu-
lated from viscoelastic potential flow. The literature shows
that the sedimenting particles chain robustly in all flows:
sedimentation, fluidization, shear flows, oscillating shear
flows, and elongational flows. This chaining occurs for par-
ticles ranging in sizes from microns to centimeters.7,22 There-
fore, the cause must be local and we believe that the local
mechanism is due to the change in the normal stress which
we compute in the second-order fluid using viscoelastic po-
tential flow. Locally, near the stagnation point, the flow is
slow and it could be argued that for this reason the local
behavior is second order. Takagi et al.23 similarly use the
idea of a local Stokes flow at the boundary of a moving
particle. In addition, at the stagnation point, the no-slip con-
dition is satisfied exactly while the slip velocity is small in
the vicinity of the stagnation point. This argument supports
the idea of examining the normal stresses in the neighbor-
hood of the stagnation point in a second-order fluid using
viscoelastic potential flow.

As Harlen et al.24 noted that polymers are fully extended
in the wake and this generates some problems in numerical
simulations of flow around the sphere and the mathematical

tools might not be able to predict this full extension of poly-
meric chains. One might get a large disagreement between
the mathematical and experimental results at this region.
However, this does not impose any mathematical constraint
on the use of the second-order model when �1+�2=0.
Tanner25 calculated the normal stress difference for steady
elongational flow V= �̇�xi− 1

2 yj− 1
2zk� using a second-order

fluid, where V is the velocity field, �̇ is the strain rate, i, j, k
are unit vectors along the x, y, z directions. He found that
�xx−�yy =3�̇� f�1+ �̇��1+�2� /� f� leads to unacceptable re-
sults at some negative �̇ with large absolute value since the
stress difference and the strain rate have different sign. In
this equation, � and � f represent the stress tensor and fluid
viscosity, respectively. This does not occur for the case in
which we used the Stokes analysis since �1+�2=0. How-
ever, for the viscoelastic potential flow analysis, we should
consider small values of the Deborah number to avoid this
problem.

The governing equations are presented in Sec. II. The
forces acting on two nonrotating fixed spheres in a uniform
flow with arbitrary direction are discussed in Sec. III. It is
known that two torque-free spheres falling side by side in
Newtonian fluid at low Reynolds number rotate. The forces
acting on freely rotating spheres in a free stream are consid-
ered in Sec. IV. The viscoelastic potential analysis for these
two particles in a uniform flow along their line of center is
presented in Sec. V.

II. THEORETICAL DEVELOPMENT

The governing equations for a second-order fluid are as
follows:

� f� �u

�t
+ �u · ��u� = � · T , �1�

� · u = 0, �2�

where u is the velocity field and � f is the fluid density. The
stress tensor T for an incompressible second-order fluid is

T = − pI + � fA + �1B + �2A2, �3�

where p is the pressure, � f is the zero shear viscosity, A
=�u+�uT is the symmetric part of velocity gradient and B
is given as

B =
�A

�t
+ �u · ��A + A � u + �uTA , �4�

with �1=−�1 /2 and �2=�1+�2, where �1 and �2 are the
first and second normal stress coefficients. In two dimensions
or when �1+�2=0, the velocity field for a second-order fluid
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is the same as the one predicted by the Stokes flow while the
pressure is modified as25

p = pN +
�1

� f

DpN

Dt
+

�

4
trA2, �5�

where pN is the Stokes pressure and �=3�1+2�2 is the
climbing constant. We shall call � /4tr A2 a viscoelastic
“pressure;” it is like a pressure because it is always compres-
sive. The viscoelastic pressure is large when tr A2 is large
and it is large at points on the body where the flow is fastest;
just the opposite of inertia. ��1 /� f��DpN /Dt� is zero for non-
rotating spheres and is nonzero for rotating spheres. For un-
steady problems, it could generate a tensile or compressive
normal stress. The effect of this term on the forces applied on
a sphere moving normal to a wall in a second-order fluid is
discussed by Ardekani et al.14 For a particle nearly touching
the wall, ��1 /� f��DpN /Dt� is much larger than � /4tr A2 and
this results in a large deviation from the Newtonian case and
yields a tensile stress at the stagnation point close to the wall.

III. FORCES ACTING ON TWO NONROTATING FIXED
SPHERES IN A SECOND-ORDER FLUID

The shear and normal stresses applied to two nonrotating
fixed particles in a second-order fluid in a uniform free
stream are calculated. The schematic of the problem is
shown in Fig. 1. Since the problem is steady and the particles
are fixed, a few simplifications can be made and the stress
tensor can be written as

�T�on particle = − �pN +
�

4
A:A	I + � fA + �1A � u

+ �1 � uTA + �2A2. �6�

The boundary conditions on the surface of the spheres are
more easily expressed in terms of bispherical coordinates.

Cylindrical coordinates �r ,z ,�� can be transformed to bi-
spherical coordinates �	 ,
 ,�� as

r = c
sin 


cosh 	 − cos 

, z = c

sinh 	

cosh 	 − cos 

. �7�

The coordinates �	 ,
 ,�� vary in the interval �−� ,��, �0,��,
�0,2��, respectively, where the surface of the spheres are at
	= �� and � and c can be calculated by using the following
equations:

cosh � =
h

a
, c = a sinh � . �8�

Let �=cos 
. Then �u in bispherical coordinates can be
written as

� � u�on particle =
cosh 	 − �

c



�u	

�	
− u


sin 


cosh 	 − �

�u	

�

+ u


sinh 	

cosh 	 − �

1

sin 


�u	

��
+

u� sin 
 sinh 	

sin 
�cosh 	 − ��
�u


�	
+ u	

sin 


cosh 	 − �

�u


�

− u	

sinh 	

cosh 	 − �

1

sin 


�u


��
−

u��� cosh 	 − 1�
sin 
�cosh 	 − ��

�u�

�	

�u�

�


1

sin 


�u�

��
+

− u	 sin 
 sinh 	 + u
�� cosh 	 − 1�
sin 
�cosh 	 − ��

� .

�9�

A. Free stream along the line of centers

Stimson and Jeffery26 solved the axisymmetric problem
where two spheres translate along their line of centers using
bispherical coordinates. Here, we only summarize the re-
sults.

The stream function for two translating particles in a
quiescent unbounded flow can be written as

� = �cosh 	 − ��−3/2�
n=1

�

UXn�Pn−1��� − Pn+1���� , �10�

where U is the particle velocity, Pn��� is the Legendre poly-
nomial of degree n and its derivatives can be written as

dm

d�m Pn��� =
�− 1�m

�1 − �2�m/2 Pn
m��� , �11�

y
z

x
2h

a

ζ

U

aII

I

θ

FIG. 1. Two spherical particles in a arbitrary-direction free stream.
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Xn = Ân cosh�n −
1

2
		 + B̂n sinh�n −

1

2
		

+ Ĉn cosh�n +
3

2
		 + D̂n sinh�n +

3

2
		 . �12�

The coefficients Ân through D̂n are described by Stimson and
Jeffery.26 From the continuity equation in bispherical coordi-
nates and also using a Galilean transformation since we are
interested in the problem of two fixed spheres in a free
stream, we can write

u	 = U
cosh 	� − 1

cosh 	 − �
−

�cosh 	 − ��2

c2

��

��
,

�13�

u
 = U
sinh 	 sin 


cosh 	 − �
−

�cosh 	 − ��2

c2 sin 


��

�	
.

The pressure pN can be expressed as an infinite summation of
spherical harmonics as follows:27,28

pN =
� f

c3 �cosh 	 − ��1/2U�
n=0

� �An cosh�n +
1

2
		

+ Bn sinh�n +
1

2
		�Pn��� . �14�

The coefficients An and Bn are defined by Pasol et al.27 Cal-
culating u	 ,u
, and pN and using Eqs. �6� and �9� gives the
stress tensor Tb in bispherical coordinates. By using the ro-
tation matrix from cylindrical to bispherical coordinates, we
have

R1 =

cosh 	 − �

c

�r

�	

cosh 	 − �

c

�z

�	
0

cosh	 − �

c

�r

�


cosh	 − �

c

�z

�

0

0 0 1
� , Tcyl = R1

TTbR1.

�15�

To calculate the stress tensor in spherical coordinates cen-
tered at the sphere center we have

R2 = 
 sin � cos � 0

cos � − sin � 0

0 0 1
�, Tsph = R2

TTcylR2. �16�

Finally, the force applied to each particle can be written as

F = 2�a2
0

�

�T�� cos � − T�� sin ��sin �d� , �17�

with � defined as

� =
F

6�� faU
= �N + �DeDe, �18�

where De= ��1�U /�a is the Deborah number. By examining
the normal stress in Eq. �6�, the first and third terms result in
a force which is the same as the one in a Newtonian liquid.
The remaining terms result in a force which is only present
in a second-order fluid and is proportional to De. Thus, �, the

force on the particle normalized with the Stokes law drag, is
divided into Newtonian and non-Newtonian terms. A sche-
matic of the forces acting on the particles is shown in Fig. 2
�forces are not to scale�. As it can be seen, the contribution of
a second-order fluid to the force applied to the particles is
attractive. This is in agreement with experimental results by
Riddle et al.15 and analytical ones by Brunn.16 Riddle et al.15

found that the distance between two identical spheres falling
along their line of centers gradually increases if their sepa-
ration is larger than a critical value and decreases otherwise.
Brunn16 analysis applies when the particle separation is large
and he did not find a critical separation distance for attrac-
tion. Our analysis is valid when the particle separation dis-
tance is small and it does not predict any critical separation
distance. The normalized force applied to each particle in a
Newtonian and a second-order fluid is shown in Fig. 3�a�.
This force varies linearly with De. The nondimensional co-
efficient �De is shown in Fig. 3�b�. As it can be seen, this
attractive force decreases as the separation distance between
the particles increases. The present results are quantitatively
compared with the results by Brunn16 in Fig. 3�b�. For large
separation between particles, the solutions are the same.
However, for small separation distances, Brunn’s results
overpredict the attraction between particles. The normal and
shear stresses and the pressure on the surface of sphere I is
shown in Fig. 4. Superscript * refers to dimensionless pa-
rameters. The stresses and pressure are nondimensionalized
by �1 /2��U2. The shear stress is the same for the Newtonian
and the second-order fluid. The normal stress and the pres-
sure are also the same for both fluids at the leading ��=0�
and trailing ��=�� edges. However, they differ noticeably at
other angles. A large compressive stress is observed at the
side of the sphere in a second-order fluid. The increase in
intensity of the compressive normal stresses due to larger
shear rate means that the turning couples which rotate long
bodies into the stream and the attractive stresses which cause
spherical particles to aggregate are all increased.

The present results are valid for a fluid in which the
second normal stress coefficient is equal to the negative one-
half of the first normal stress coefficient. However, �1+�2 is

U

I

II

(a)

U

I

II

(b)

FIG. 2. Schematic of forces acting on two particles. �a� Newtonian fluid.
�b� Second-order fluid.

063101-4 Ardekani, Rangel, and Joseph Phys. Fluids 20, 063101 �2008�

Downloaded 03 Sep 2009 to 128.101.98.21. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



positive for the fluids known to us and for simplification, this
constraint is applied to the fluid in this section. However, a
different method is utilized in the Sec. V and the constraint
on normal stress coefficients is removed. Ardekani et al.14

utilized a perturbation method for a spherical particle mov-
ing normal to a wall when �= �h /a�−1 and De /� are small
and there is no constraint on �1 and �2. They concluded that
the difference between the forces acting on the sphere in
second-order and Newtonian fluids is more pronounced as
��2 /�1� is increased and the force applied to the particle can
be written as follows:

F = −
6�� fUa

�
�1 +

De

10�
�2 − 3

�2

�1
	� . �19�

The same calculation can be used for this problem when the
particles are close to each other.

B. Free stream perpendicular to the line of centers

The motion of two spherical particles perpendicularly
to their line of centers has been studied by several

investigators.29,30 Here, the results by Goldman et al.29 are
utilized and briefly summarized. The pressure and velocity
components can be described as follows:

pN
† = � f

U

c
W† cos � , �20�

ur
† = U�− 1 +

1

2c
�rW† + c�X† + Y†��	cos � = ũr

† cos � ,

�21�

u�
† = U�1 +

1

2
��X† − Y†��	sin � = ũ�

† sin � , �22�

uz
† =

1

2c
U�zW† + 2cZ†�cos � = ũz

† cos � , �23�

where the auxiliary functions W†, X†, Y†, and Z† can be writ-
ten as
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e
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results by Brunn (1977)
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FIG. 3. Forces acting on particles in a second-order fluid while the free stream is along the particles line of centers.
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FIG. 4. Stresses on the surface of particle I in a second-order fluid while the free stream is along the particles line of centers: Re=0.05; De=3.35; h /a
=1.543.
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Z† = �cosh 	 − ��1/2 sin 
�
n=1

� �An
† sinh�n +

1

2
		�Pn���� ,

�24�

W† = �cosh 	 − ��1/2 sin 
�
n=1

� �Bn
† cosh�n +

1

2
		

+ Cn
† sinh�n +

1

2
		�Pn���� , �25�

Y† = �cosh 	 − ��1/2�
n=1

� �Dn
† cosh�n +

1

2
		

+ En
† sinh�n +

1

2
		�Pn��� , �26�

X† = �cosh 	 − ��1/2 sin2 
�
n=1

� �Fn
† sinh�n +

1

2
		

+ Gn
† sinh�n +

1

2
		�Pn���� , �27�

where the coefficients An
† through Gn

† are given by Goldman
et al.29 and Goldman.31 Calculating the velocity field, �u in
cylindrical coordinates becomes

� � u�on particle =

�ũr

�r
cos �

�ũr

�z
cos � −

ũr + ũ�

r
sin �

�ũz

�r
cos �

�ũz

�z
cos � −

ũz

r
sin �

�ũ�

�r
sin �

�ũ�

�z
sin �

ũ� + ũr

r
cos �

� .

�28�

For a Newtonian fluid, the lift and drag forces can be calcu-
lated as

Fl
N = a2

0

2� 
0

�

�T��
N cos � − T��

N sin ��sin �d�d� = 0,

�29�

Fd
N = a2

0

2� 
0

�

�T��
N sin � cos � + T��

N cos � cos �

− T��
N sin ��sin �d�d�

= �a2
0

�

�T̃��
N sin � + T̃��

N cos � − T̃��
N �sin �d� . �30�

U

II

I

(a) Newtonian fluid

U

II

I

(b) 2nd-order fluid

FIG. 5. Schematic of the forces acting to two particles.
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FIG. 6. Force acting on the particle I in a second-order fluid while the free stream is perpendicular to the particles line of centers.
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FIG. 7. Torque acting on sphere I in a second-order fluid while the free
stream is perpendicular to the particles line of centers.
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Fl
N is zero since �0

2� cos �d�=0. In calculating Fd
N, all terms

are proportional to either �0
2� cos �2d� or �0

2� sin �2d�
which gives rise to the � in front of the integral.

For the second-order fluid, after some simplifications, it
can be shown that the lift and drag forces can be determined
as

Fl = �a2
0

�

�T̃�� cos � − T̃�� sin ��sin �d� � 0, �31�

Fd = Fd
N. �32�

The contribution of a second-order fluid to the lift force is
proportional to either �0

2� cos �2d� or �0
2� sin �2d� thus a

nonzero lift is applied to the particles. However, the contri-
bution to the drag force is proportional to sin � and cos � or
their cubes which all have zero integrals from 0 to �. Thus,
the drag force in a second-order fluid is the same as for a
Newtonian fluid.

A schematic of the forces acting on the spheres in a
Newtonian and a second-order fluid is shown in Fig. 5. If we
define

�d =
Fd

6�� faU
, �l =

Fl

6�� faU
= �DeDe, �33�

the behavior of these coefficients versus particle separation
are shown in Fig. 6. As it can be seen, the lift force decreases
as the separation distance increases. One can show that the
torque applied to these particles in a second-order fluid is the
same as for a Newtonian fluid. �t=Torque /8�� fUa2 is plot-
ted in Fig. 7.

The shear and normal stresses on the surface of sphere I
are shown in Fig. 8 for �=0 and in Fig. 9 for �=� /2. The
overall behavior is the same as in the case when the free
stream is along the particles line of centers. The shear stress
is the same in the second-order flow as in the Newtonian
case. The normal stress and the pressure are not affected at
the stagnation point �=� /2, whereas at other angles, a large
compressive normal stress is observed ��=0�. For �=� /2,

the normal and shear stresses are zero in the Newtonian fluid
but the pressure and normal stress are nonzero for the
second-order fluid, as shown in Fig. 9.

C. Two spherical particles in a free stream
at an arbitrary angle

In this section, the more general case is studied when �
�Fig. 1� is nonzero. Since the velocity field is obtained from
the linear Stokes equations, superposition can be utilized to
calculate the velocity field. However, the stress is nonlinear
for a second-order fluid and the forces must be recalculated.
�u for the case when the free stream is perpendicular to the
line of centers is given by Eq. �28� while for the case when
the flow is along the line of centers, the velocity does not
depend on � and the last column and row in Eq. �9� are zero.
One could now write A�u, �uTA, and A2 where u=u�

+u�. Interestingly, the force due to the terms produced by
products of � and � are zero when one calculates the force
along the line of centers. Thus, this force can be simply
calculated by superposition of forces along the line of centers
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from the two previous sections. For the force perpendicular
to the line of centers, the terms produced by products of �

and � are nonzero. Thus, nonequal forces are applied to the
particles perpendicularly to their line of centers. Figure 10
shows schematics of the forces acting on the particles. For
this case,

�� = �d + De �De =
F�

6�� faU
, �34�

where F� is the force perpendicular to the line of centers.
Figure 11�a� shows that the forces acting on the particles

tend to rotate the line of centers until it becomes parallel to
the free stream. This force decreases as the particles separate
from each other and has a maximum when �=45° and is zero
at �=0° or 90°, as shown in Fig. 11�b�.

IV. FORCES ACTING ON TWO FREELY ROTATING
FIXED SPHERES IN A FREE STREAM
OF A SECOND-ORDER FLUID

As shown in Fig. 7, there is a torque experienced by
nonrotating spheres in a free stream. Sedimenting spheres,
unless experiencing an external torque �for example, gener-
ated by an electric field�, cannot bear this torque and are
hence prone to rotate such that they experience no torque. In
order to analyze the forces applied to freely rotating spheres
in a free stream, one constructs a composite flow by adding

the flow of two spheres counter-rotating in a quiescent fluid
to the flow of two nonrotating spheres in a free stream ex-
amined previously.

At first, the forces acting on two rotating fixed spheres in
a quiescent second-order fluid are considered. Sphere I is
rotating with angular velocity +� and sphere II is rotating
with angular velocity −� along the y direction. The rotation
rate � is chosen such that the torque experienced by each
sphere in the composite flow is zero. In other words, the
torque on the nonrotating sphere in the streaming flow is
canceled by the torque acting on the same sphere rotating in
a quiescent fluid. The pressure and velocity components can
be described as follows:

pN
r† = � f�Wr† cos � , �35�

ur
r† = 1

2��rWr† + c�Xr† + Yr†��cos � = ũr
r† cos � , �36�

u�
r† = 1

2�c��Xr† − Yr†��sin � = ũ�
r† sin � , �37�

uz
r† = 1

2��zWr† + 2cZr†�cos � = ũz
r† cos � , �38�

where the auxiliary functions Wr†, Xr†, Yr†, and Zr† are de-
fined in Eqs. �24�–�27� replacing † with r† while the coeffi-
cients An

r† through Gn
r† are given by Goldman et al.29 and

Goldman.31 The forces acting on the spheres can be calcu-
lated in a manner similar to that of Sec. III B and are shown
in Fig. 12 where

�d =
Fd

6�� fa
2�

, �l =
Fl

6�� fa
2�

= �DeDe. �39�

It should be noted that the substantial time derivative of the
Newtonian pressure plays a role here since the velocity of the
surface of the spheres is not zero.

The torque applied to the spheres rotating in a quiescent
second-order fluid is the same as that for a Newtonian fluid.
�t=torque /8�� f�a3 is plotted in Fig. 13.

As mentioned above, the rotation rate � can be calcu-
lated such that the torque experienced by each sphere in the
composite flow is zero. The rotation rate � for freely rotating
spheres in a free stream of second-order fluid is plotted in
Fig. 14.

In order to compute the attractive forces between the
freely rotating spheres, the velocity field for two nonrotating

FIG. 10. Schematic of the forces acting on two particles.
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spheres in a free stream and two rotating spheres in a quies-
cent flow will be superimposed and the stresses for this new
field will be calculated. The shear-rate distribution on a
sphere for both the freely rotating and nonrotating cases is
shown in Fig. 15�a�.

The shear rate is smaller on the outermost edges ��=0
for sphere I� of freely rotating spheres and larger on the
innermost edges. The viscoelastic pressure is proportional to
the square of the local shear rate. As it can be seen, the
modification of the pressure due to shear rate enhances the
attraction between the spheres for the freely rotating case.
p

N
*, −De�Dp

N
* /Dt*�, and p* are shown in Figs. 15�b�, 16�a�,

and 16�b�. In fact, all three terms in Eq. �5�, the Stokes pres-
sure, time derivative of Stokes pressure, and viscoelastic
pressure, change the pressure in the same way and enhance
the attraction force. However, the total lift force on the par-
ticles is less than the one for nonrotating particles due to the
modification of the first and second Rivlin–Ericksen tensors.
The normal and shear stresses are plotted in Fig. 17. The
drag and lift forces on the particles are shown in Fig. 18. As
it can be seen, a larger drag and smaller lift forces act on
freely rotating spheres as compared to nonrotating ones.

It can be concluded that rotation of the spheres mitigates
the attraction. The substantial time derivative of the pressure
is taken into account since the velocity is nonzero on the
surface of the spheres. The effect of rotation is only a small
percentage of the effect of translation on the particles’ attrac-
tion as shown in Fig. 18.

These calculations can be used for sedimenting particles
when the particles reach their terminal velocity and their ap-
proaching velocity is small compared to their terminal veloc-
ity.

V. VISCOUS POTENTIAL FLOW

The shear stress and tangential velocity on the boundary
are, in general, discontinuous in viscous and viscoelastic ir-
rotational flows. However, in some cases, such as flow near
the stagnation points, the amount of shear is small.32 In this
section, normal stresses on the surface of two spheres in a
uniform free stream along their line of centers are analyzed
by utilizing viscoelastic potential flow. A similar calculation
is performed by Ardekani et al.14 for a particle moving nor-
mal to a wall. A summary of the calculations is given here
for completeness.
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It has been shown that for potential flow, where u=��
�Ref. 33�,

� · ��1B + �2A2� = �3�1 + 2�2� � � , �40�

where

� =
�2�

�xi�xj

�2�

�xi�xj
=

1

4
tr A2. �41�

Thus, the divergence of the stress is irrotational. By using
Eqs. �40� and �41�, Wang and Joseph34 noted that the pres-
sure can be calculated by using the Bernoulli equation as

�
��

�t
+

1

2
�����2 + p − �� = C�t� . �42�

By using Eqs. �3� and �42�, the stress tensor for viscoelastic
potential flow becomes

T = ��
��

�t
+

1

2
�����2 − �� − C�t��I

+ �� + �1� �

�t
+ u · �	�A + ��1 + �2�A2. �43�

For two spherical particles in a free stream as shown in
Fig. 19, the potential-flow solution can be obtained by using
the image of a doublet source in a sphere and is given as the
following series:35

� = − Uz + U��0 cos �

d2 +
�1 cos �1

d1
2 +

�2 cos �2

d2
2 + ¯ 	

− U��0 cos ��

d�2 +
�1 cos �1�

d1�
2 +

�2 cos �2�

d2�
2 + ¯ 	 , �44�

where �0=1 /2a3, U is the particle velocity, A is the center of
sphere I, and B is the center of sphere II, d=AP, d�=BP,
d1=A1P, d1�=B1P, etc., are the distances between the dou-
blets and a fixed point P which can be defined by using

f1 = c� −
a2

c�
, f2 =

a2

f1
,

�1

�0
= −

a3

c�3 ,
�2

�1
= −

a3

f1
3 ,

f3 = c� −
a2

c� − f2
, f4 =

a2

f3
,

�3

�2
= −

a3

�c� − f2�3 ,

�4

�3
= −

a3

f3
3 , �45�

f5 = c� −
a2

c� − f4
, f6 =

a2

f5
,

�5

�4
= −

a3

�c� − f4�3 ,
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�6

�5
= −

a3

f5
3 , ¯ ,

where c�=2h is twice of the separation distance between the
two spheres; AA1= f1, AA2= f2, etc. ��, d, and other param-
eters are shown in Fig. 19 for clarification�

A = UÃ = 2U

�2�

�r2

�2�

�r�z
0

�2�

�r�z

�2�

�z2 0

0 0
1

r

��

�r

� , �46�

where r and z are cylindrical coordinates, as shown in
Fig. 19. The stress tensor can be written as

T + CI = �ÃU + ��1

2
��� ��

�r
	2

+ � ��

�z
	2�

− ��� �2�

�r2 	2

+ �1

r

��

�r
	2

+ � �2�

�z2 	2

+ 2� �2�

�r�z
	2��I

+ �1ũ · �Ã + ��1 + �2�Ã2	U2, �47�

while the normal stress Tn and the shear stress Tt are

Tn = Trr sin2 � + Tzz cos2 � + Trz sin 2� ,

�48�

Tt =
Trr − Tzz

2
sin 2� + Trz cos 2� .

By using Eqs. �44�, �47�, and �48�, the normal stress is
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computed on the surface of sphere I in a free stream. Prop-
erties of liquid M1 with density �=0.895 g cm−3, �1=−3,
and �2=5.34 g cm−1 �Ref. 36� are utilized. Figure 20 shows
the dimensionless normal stress on the surface of sphere I as
a function of � for different separation distances between the
two particles. All terms of Eq. �43� are included in Figs.
20–22. Results for Re=0.05 and De=0.168 are shown which
agree with the published results by Wang and Joseph34 when
c→�.

It can be seen that for large separation distances, a ten-
sile normal stress occurs at the trailing edge when the fluid is
Newtonian, and that for a second-order fluid, this tensile
stress is even larger. When the particle separation decreases
in either a Newtonian or a second-order fluid, the tensile
stress at the trailing edge of sphere I decreases whereas the
normal stress at the leading edge does not change. In Fig. 21,
the normal stress acting on the surface of sphere II is shown.
The normal stress at the stagnation point predicted by vis-
coelastic potential flow �VPF� is noticeably different in the
Newtonian and the second-order fluid, a result which dis-
agrees with the results obtained by employing the Stokes
equations. The normal stress is integrated over the sphere
surface and the forces applied to the particles are calculated
and shown in Figs. 22�a� and 22�b�. These forces are not
necessary quantitatively correct since our argument for the
use of VPF is only valid near the stagnation points. A smaller
drag force acts on the leading sphere in the Newtonian fluid,
whereas a larger drag force acts on the leading sphere in the
second-order fluid. A repulsive force is predicted using VPF
in the Newtonian case while an attractive force is obtained in
the second-order fluid. The repulsive force acting on the par-
ticles in a Newtonian fluid is due to inertia. These results
show that if one adds the effect of inertia to the results of the
previous sections, critical separation in the second-order
fluid might be predicted. Finally, our explanations of the ag-
gregation of particles in viscoelastic fluids rest on three pil-
lars; the first is a viscoelastic pressure generated by normal
stresses due to shear. Second, the total time derivative of the
pressure is an important factor in the forces applied to mov-
ing particles. The third is associated with a change in the
normal stress at points of stagnation which is a purely exten-
sional effect unrelated to shearing.

VI. CONCLUSIONS

The forces acting on two nonrotating spherical particles
in a second-order fluid in the Stokes flow are calculated. The
results are in agreement with experimental observations. The
contribution of the second-order fluid to the forces acting on
the particles is an attractive force when the free stream is
along or perpendicular to the line of centers. For flow at an
angle, these forces act in the direction that rotates the line of
centers until it becomes parallel to the free stream.

The results for freely rotating spheres show that rotation
of the spheres mitigates the attraction. The substantial time
derivative of the pressure is taken into account since the
velocity is nonzero on the surface of the spheres and it en-
hances the attraction. However, the effect of rotation is only
a small percentage of the effect of translation on the par-
ticles’ attraction.
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