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We carry out the linear viscous-irrotational analysis of capillary instability with heat transfer
and phase change. We consider the cylindrical interface shared by two viscous incompressible fluids
enclosed by two concentric cylinders. In viscous potential flow, viscosity enters the model through
the balance of normal stresses at the interface. We write the dispersion relation from the stability
analysis for axisymmetric disturbances in terms of a set of dimensionless numbers that arise in this
phase change problem. For the film boiling condition, plots depicting the effect of some of these
parameters on the maximum growth rate for unstable perturbations and critical wavenumber for
marginal stability are presented and interpreted. Viscous effects of a purely irrotational motion in
the presence of heat and mass transfer can stabilize an otherwise unstable gas-liquid interface.

I. INTRODUCTION

The problem of Rayleigh-Taylor and Kelvin-Helmholtz instability with heat and mass transfer across the liquid-
vapor interface was formulated for potential flow of an inviscid fluid by Hsieh [1, 2]. He modeled ‘small’ perturbations
of a plane interface between two fluids bounded by two parallel plates. Hsieh [2] found that when the vapor layer is
hotter than the liquid layer, the presence of heat and mass transfer mitigates, but does not suppresses, the growth
of unstable perturbations; however, the classical stability criterion remains unaltered. Regarding Kelvin-Helmholtz
instability, the classical stability criterion is modified when heat and mass transfer are included in the analysis,
although the heat flux does not appear in the relation. Nayak and Chakraborty [3] studied the Kelvin-Helmholtz
stability of the cylindrical interface between the liquid and vapor phases with heat and mass transfer. Lee [4, 5]
studied Rayleigh and Kelvin-Helmholtz instabilities in phase change problems with mass transfer for the fluid motion
in a cylindrical pipe flow and in a channel, respectively. In both cases, Lee found that the nonlinear stability criterion
is strongly sensitive to the amount of heat transfer, contrary to the linear results by Hsieh [2]. Moreover, Lee’s results
show that in the nonlinear case the region of stability is bounded above and below, unlike the linear case, which
depicts a single neutral curve. All these investigations assumed that the flow is irrotational and the fluid inviscid
(IPF, inviscid potential flow).

Recently, Asthana and Agrawal [6] carried out the potential flow analysis of the Kelvin-Helmholtz instability with
heat and mass transfer for two viscous fluids confined between two parallel planes. They presented a stability criterion
given by a critical relative velocity. They also found that heat and mass transfer has a stabilizing effect when the lower
fluid is highly viscous, whereas it has a destabilizing effect when the lower fluid has a low viscosity. Their work is an
extension to include heat and mass transfer phenomena of the study of Kelvin-Helmholtz instability of two viscous
fluids by Funada and Joseph [7].

In this paper, we investigate the capillary instability problem of a vapor-liquid system in an annular configuration
with heat and mass transfer using viscous potential flow (VPF) for axisymmetric disturbances. We follow Hsieh’s [2]
analysis, assume irrotational motion but, unlike Hsieh, we do not set the fluid viscosity to zero. Therefore, the viscous
part of the normal stress enters the analysis; however, the non-slip condition at the boundary is not enforced for
irrotational flow. As in Hsieh [2], we assume that the phase change is induced by an interfacial condition for energy
transfer which balances the latent heat against conductive heat transfer (see (2.8)), thereby neglecting convection.
An antecedent of this work is the study by Funada and Joseph [8], who carried out the viscous potential flow analysis
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FIG. 1: Schematic of stability analysis

of capillary instability of a cylindrical core of fluid surrounded by another fluid with no heat and mass transfer. They
found the condition, in terms of a dimensionless number based on the relevant parameters of the system, for which
the growth rate from viscous potential flow closely approaches the solution of the linearized Navier-Stokes equations.
Their results show that viscous potential flow is a better approximation of the exact solution than the inviscid model.
This motivates the assumption of viscous irrotational motion to carry out the present stability analysis involving
phase change and heat transfer. A comprehensive discussion of the theory of viscous potential flow, with numerous
examples, can be found in the recent book by Joseph, Funada and Wang [9].

II. PROBLEM FORMULATION

We consider two fluids separated by a cylindrical interface in an annular configuration as in Fig. 1. Both phases
1 and 2 are considered incompressible and irrotational. In the equilibrium state, the inner fluid region r1 < r < R
has thickness h1, density ρ1 and viscosity µ1 and the outer fluid region R < r < r2 has thickness h2, density ρ2 and
viscosity µ2. The boundary surfaces at r = r1 and r = r2 are considered to be rigid. The temperatures at r = r1,
r = R and r = r2 are T1, T0 and T2, respectively. In the basic state, thermodynamics equilibrium is assumed and the
interface temperature T0 is set equal to the saturation temperature.

Small axisymmetric disturbances are superimposed to the basic state of rest. In the disturbed state, the interface
is thus given by

F (r, z, t) = r − R − η(z, t) = 0, (2.1)

where η is the perturbation in the radius of the interface from its equilibrium value. The velocity is expressed as the
gradient of a potential and the potential functions satisfy Laplace’s equation as a consequence of the incompressibility
constraint. That is,

∇2φi = 0. (i = 1, 2) (2.2)

These potentials are periodic in z.
We assume that phase-change takes place locally in such a way that the net phase-change rate at the interface is

equal to zero. The interfacial condition, which expresses the conservation of mass across the interface, is given bys
ρi

(
∂F

∂t
+ ∇φi · ∇F

){
= 0, (2.3)

where JxK = xR+ − xR− represents the difference in a quantity as we cross the interface. Then, by used of (2.1), (2.3)
becomes, s

ρi

(
∂φi

∂r
− ∂η

∂t
− ∂η

∂z

∂φi

∂z

){
= 0 at r = R + η. (2.4)

With mass transfer across the interface, the normal stress balance becomes, at r = R + η,

ρ1(∇φ1 · ∇F )
(

∂F

∂t
+ ∇φ1 · ∇F

)
=ρ2(∇φ2 · ∇F )

(
∂F

∂t
+ ∇φ2 · ∇F

)
+(p2 − p1 − 2µ2n · ∇ ⊗∇φ2 · n + 2µ1n · ∇ ⊗∇φ1 · n + σ∇ · n) |∇F |2 ,

(2.5)

where p is the pressure, σ is the surface tension coefficient, and n is the normal vector at the interface, respectively.
Surface tension has been assumed to be a constant, neglecting its dependence upon temperature, and thereby ignoring
any Marangoni effect.
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The pressure in (2.5) may be obtained from Bernoulli’s equation. When this is done, (2.5) becomes, at r = R + η,t
ρi

{
∂φi

∂t
+

1
2

(
∂φi

∂r

)2

+
(

1
2

∂φi

∂z

)2

−

[
1 +

(
∂η

∂z

)2
]−1 (

∂φi

∂r
− ∂η

∂z

∂φi

∂z

)

×
(

∂φi

∂r
− ∂η

∂t
− ∂η

∂t

∂φi

∂z

)}
+ 2µi

[
∂2φi

∂r2
− 2

∂η

∂z

∂2φi

∂r∂z
+

∂2φi

∂z2

(
∂η

∂z

)2
] |

= σ∇ · n,

(2.6)

using (2.1). At the wall the normal velocity vanishes, hence,

∂φ1

∂r
= 0 at r = r1,

∂φ2

∂r
= 0 at r = r2.

(2.7)

The perturbed heat flux at the interface r = R + η(z, t) induces phase change. The interfacial condition for this
energy transfer proposed by Hsieh [2] is expressed as

Lρ1

(
∂F

∂t
+ ∇φ1 · ∇F

)
= S (η) at r = R + η, (2.8)

where L is the latent heat released from the fluid when is transformed from phase 1 to phase 2 and S(η) denotes the
net heat flux from the interface. Hsieh [2] indicates that:

“The expression S(η) essentially represents the net heat flux from the interface when such a phase
transformation is taking place. In general, the heat fluxes have to be determined from equations governing
the heat transfer in the fluids, thus completely coupling the dynamics and the thermal exchanges in the
entire flow region. In this simplified version, . . . S is simply a function of η, and moreover, S is to be
determined from the heat exchange relations in the equilibrium state.”

In the equilibrium state, the heat fluxes in the positive r-direction in the fluid phases 1 and 2 are expressed as
−K1 (T1 − T0) /R ln (r1/R) and −K2 (T0 − T2) /R ln (R/r2), respectively where K1 and K2 are the heat conductivities
of the two fluids. After Hsieh[2], Nayak and Chakraborty [3] wrote this expression for the cylindrical geometry,

S(η) =
K2 (T0 − T2)

(R + η) [ln r2 − ln (R + η)]
− K1 (T1 − T0)

(R + η) [ln (R + η) − ln r1]
, (2.9)

and expand it in a Taylor series about r = R as

S(η) = S(0) + ηS′(0) +
1
2
η2S′′(0) + · · · . (2.10)

Then, we take S(0) = 0, so that

G =
K2 (T0 − T2)
R ln (r2/R)

=
K1 (T1 − T0)
R ln (R/r1)

=
(T1 − T2) /R

ln (R/r1) /K1 + ln (r2/R) /K2
,

(2.11)

indicating that in the equilibrium state the heat fluxes are equal across the vapor-liquid interface. Although the
problem has been defined in a somewhat general framework, one can picture the situation of a boiling liquid layer in
contact with one of the boundary surfaces and its vapor, considered incompressible, in contact with the other surface.
Then, one may apply the model detailed here to the vapor-liquid interface.

III. SOLUTION OF THE LINEARIZED PROBLEM

Linearization of the relations (2.4), (2.6) and (2.8) yieldst
ρi

(
∂φi

∂r
− ∂η

∂t

)|
= 0, (3.1)



4s
ρi

∂φi

∂t
+ 2µi

∂2φi

∂r2

{
= −σ

(
∂2η

∂z2
+

η

R2

)
, (3.2)

ρ1

(
∂φ1

∂r
− ∂η

∂t

)
= αη, (3.3)

at r = R, where (2.9)-(2.11) have been used to obtain (3.3) and

α =
G

LR

ln (r2/r1)
ln (R/r1) ln (r2/R)

. (3.4)

Additionally, Hsieh [2] notes that the “. . . vapor phase is usually hotter than the liquid phase; therefore α is always
positive.”

According to (2.2), in cylindrical coordinates, we can write for the harmonic potential φi(r, z), (i = 1, 2),

∇2φi =
∂2φi

∂r2
+

1
r

∂φi

∂r
+

∂2φi

∂z2
= 0, (3.5)

with boundary conditions (2.7) at the wall.
We use standard normal mode decomposition to find solutions of the above set of governing equations. Let

η = C exp (ikz − iωt) + c.c. = CE + c.c., (3.6)

where C is constant, E ≡ exp (ikz − iωt), i is the imaginary unit, k is the real wavenumber, ω = ωR + iωI is the
complex frequency and c.c. represents the complex conjugate of the previous term. Hence, solutions for the velocity
potential have the form,

φ1 =
1
k

(
α

ρ1
− iω

)
A0(k, r)CE + c.c.,

φ2 =
1
k

(
α

ρ2
− iω

)
B0(k, r)CE + c.c.,

(3.7)

where

A0(k, r) =
I0(kr)K1(kr1) + I1(kr1)K0(kr)
I1(kR)K1(kr1) − I1(kr1)K1(kR)

,

B0(k, r) =
I0(kr)K1(kr2) + I1(kr2)K0(kr)
I1(kR)K1(kr2) − I1(kr2)K1(kR)

,

and In, Kn are modified Bessel functions of the first and second kind. In writing (3.7), constraints (3.1) and (3.2)
have been satisfied.

IV. DISPERSION RELATION

A. Dimensional form

Substituting (3.6) and (3.7) into (3.2), we find

D(ω, k) = a0ω
2 + ia1ω + a2 = 0, (4.1)

where

a0 =ρ1A0(k,R) − ρ2B0(k,R),

a1 =α [A0(k,R) − B0(k,R)] + 2k2 [µ1At(k,R) − µ2Bt(k,R)] ,

a2 = − σk

(
k2 − 1

R2

)
− 2αk2

[
µ1

ρ1
At(k,R) − µ2

ρ2
Bt(k,R)

]
,
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At(k,R) = A0,rr(k,R) = A0(k,R) − 1
kR

,

Bt(k,R) = B0,rr(k,R) = B0(k,R) − 1
kR

,

where the subscript ‘rr’ denotes a second partial derivative with respect to r. For ω = ωR+iωI , the quadratic equation
(4.1) is separated into the real and imaginary parts. After eliminating ωR, we obtain the following expression for the
growth rate ωI :

a0ω
2
I + a1ωI − a2 = 0. (4.2)

Neutral curves, ωI(k) = 0, are generated by the condition a2 = 0, which implies,

σ

(
k2

c − 1
R2

)
+ 2αkc

[
µ1

ρ1
At(kc, R) − µ2

ρ2
Bt(kc, R)

]
= 0, (4.3)

where kc denotes the critical wavenumber. Expression (4.3) reveals that the effects of heat and mass transfer carried
by α enters into the definition of the neutral curve if the viscous effects of the irrotational motion are considered in
the analysis. For inviscid potential flow (see also Lee[4]), the critical wavenumber kc = 1/R is independent of α. For
zero heat flux (α = 0), both VPF and IPF predicts the same kc.

B. Dimensionless form

To write the dispersion relation in dimensionless form we introduce the following dimensionless groups,

r̂ = r/H, ẑ = z/H, η̂ = η/H,

t̂ = t/τ, ω̂ = ωτ, k̂ = kH,

ϕ =
h1

H
, R̂ = r̂1 + ϕ,

where the length scale H and the time scale τ are defined as

H = h1 + h2 = r2 − r1,

τ =

√
ρ2H3

σ
,

and ϕ denotes the dimensionless vapor thickness. Furthermore,

` =
ρ1

ρ2
, m =

µ1

µ2
,

κ =
ν1

ν2
=

m

`
with ν1 =

µ1

ρ1
, ν2 =

µ2

ρ2
,

and

Oh =
√

ρ2σH

µ2
, α̂ =

α

ρ2/τ
,

where Oh is the Ohnesorge number and we denote α̂ as the heat-transfer capillary group. Notice that surface tension,
which is essential in the description of the phenomena, is contained in these two dimensionless groups.

Eliminating the ‘ˆ’ on the dimensionless variables for brevity, (4.1) may be written in dimensionless form as

D(ω, k) = a0ω
2 + ia1ω + a2 = 0, (4.4)

where

a0 =`A0(k,R) − B0(k,R),
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a1 =α [A0(k,R) − B0(k,R)] +
2

Oh
k2 [mAt(k,R) − Bt(k,R)] ,

a2 = − k

(
k2 − 1

R2

)
− 2α

Oh
k2

[m

`
At(k,R) − Bt(k,R)

]
.

From (4.3), the expression for the neutral curve becomes(
k2

c − 1
R2

)
+ Λkc [κAt(kc, R) − Bt(kc, R)] = 0, (4.5)

with an alternative heat-transfer capillary dimensionless group

Λ =
2α

Oh
, (4.6)

which is introduced for convenience.
From (4.5), we can define f(k) for fixed R as

f(k) ≡
(

k2 − 1
R2

)
+ Λk [κAt(k,R) − Bt(k,R)] . (4.7)

From (4.7), we find that f(k) = f(−k), f(0) is a minimum and f(k) is concave. Thus f(0) < 0 is a necessary
condition for which kc (kc > 0) exists. When a real kc > 0 cannot be obtained, the fluid configuration is stable.

For k ∼ 0, the asymptotic form of f(k) is

(
k2R2 − 1

)
+ ΛR2

[
κ

(
2R

R2 − r2
1

− 1
R

)
+

2R

r2
2 − R2

+
1
R

]
= 0. (4.8)

Then, there is no critical wavenumber kc > 0 under the following condition for which f(0) > 0:

ΛR2

[
κ

(
2R

R2 − r2
1

− 1
R

)
+

(
2R

r2
2 − R2

+
1
R

)]
> 1, (4.9)

or

ΛR2

[
κ

(
R2 + r2

1

R2 − r2
1

)
+

R2 + r2
2

r2
2 − R2

]
> 1. (4.10)

V. COMPUTATION AND DISCUSSION OF RESULTS - VISCOUS STABILIZATION OF
WATER-STEAM SYSTEMS

In this section we carry out computations using the expressions presented in the previous sections for a film boiling
condition. We take water and steam as working fluids. Referring to Fig. 1, the steam and water are identified with
phase 1 and phase 2, respectively, such that T1 > T0 > T2. In film boiling, the water-steam interface is in saturation
condition and the temperature T0 is set equal to the saturation temperature. The properties of both phases are
determined for this condition. The diameter of the inner and outer cylinder are 1 and 2 mm, respectively. By knowing
the vapor thickness and two temperatures of the triad (T0, T1, T2), the heat flux and the unknown temperature can
be predicted from the conduction model (2.11).

The results from the viscous potential flow analysis of capillary instability with heat and mass transfer are presented
in Fig. 2 for the growth rate ωI versus the wavenumber k from (4.4). In this numerical experiment, the temperature
of interface T0 is set to 400K. The entire shape of the growth rate graph is similar to the inviscid case but with heat
and mass transfer having stabilizing effects in the irrotational flow of viscous fluids. Comparing results from IPF
with those from VPF in Fig. 2(a) and 2(b), we notice that the interval of wavenumbers for unstable waves shrinks
with increasing α according to VPF. However, for a dimensionless vapor thickness of ϕ = 0.10 the stabilizing effect
of viscosity is negligible as shown in Fig. 2(c) and 2(d). This is analyzed later in this section. As we shall see, there
is a threshold α for which VPF renders all waves stable. In contrast, IPF results show that, by neglecting the viscous
effects of the irrotational flow, the maximum length (or minimum wavenumber) of stable waves becomes insensitive
to heat and mass transfer phenomena. Hence, the system is always unstable according to IPF as shown by Lee [4].
In addition, comparing Fig. 2(a) and Fig. 2(c) for IPF and ϕ = 0.01 and ϕ = 0.1, respectively, we notice that the
maximum growth rate ωIm decreases the fastest with the parameter α for the smallest vapor thickness. Similar trend
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is observed for VPF from Fig. 2(b) and Fig. 2(d). VPF graphs also reveal that viscosity damps the maximum growth
rate with respect to the IPF value for the same α.

Table I compares the maximum growth rate ωIm, related wavenumber km and critical wavenumber kc as function
of the heat-transfer capillary number α (dimensionless) for IPF and VPF. The difference between the α scales are due
to the change of dimensionless vapor thickness ϕ, from 0.01 to 0.1. This table confirms that the maximum growth rate
for IPF and VPF decreases with α, with ωIm from VPF decreasing with the fastest rate. Also, VPF renders lower
values of ωIm than IPF for the same α. By comparing results for ϕ = 0.01 and ϕ = 0.1, we notice that discrepancies
between IPF and VPF substantially diminish as the vapor fraction increases. In this table, the last lines of results
for ϕ = 0.01 and ϕ = 0.1 show the critical α for which kc = 0 according to VPF, corresponding to a stable interface.
Notice that the threshold α for the higher vapor thickness ϕ = 0.1 is larger than the critical α associated with the
lower ϕ = 0.01

Graphs of the critical wavenumber kc versus the kinematic viscosity ratio κ are presented for various Λ values and
ϕ = 0.01 in Fig. 3 according to (4.5). In contrast with Fig. 2, this figure is not exclusive for the water-steam system.
We observe that for every Λ there exists a critical κ for which all waves are stable. This critical value decreases as the
heat-transfer capillary number Λ increases. For unstable waves (kc > 0), increasing κ for fixed Λ decreases the size of
the interval of wavenumbers for unstable waves. kc from VPF is bounded above by the inviscid result for all Λ.

Fig. 4(a) shows the critical wavenumber kc as function of the dimensionless vapor thickness ϕ and heat-transfer
capillary number Λ according to VPF from (4.5) for κ = 41.3218 (water-steam at T0 = 400K). Comparing with the
case Λ = 0 where no heat and mass transfer occurs, kc = 1/R, which in turn is equivalent to the inviscid result, the
critical wavenumber is the most sensitive to heat and mass transfer effects for lower vapor thickness ϕ. In particular,
for the highest Λ considered in the analysis (= 10 × 10−4), the system is stable. For this Λ, the discrepancy with
the Λ = 0 case is noticeable for the entire ϕ interval. The trend indicates that increasing Λ for fixed ϕ reduces the
interval of unstable waves, which can be completely suppressed. By contrast, the graphs for the lower nonzero Λ
(= 0.1 × 10−4 and 10 × 10−4) reach the inviscid result for ϕ > 0.2, nearly. This result follow the tendency shown in
Table I for ϕ = 0.1. Figure 4(b) shows graphs of kc versus ϕ for two values of Λ and κ. Notice that while keeping Λ
constant, increasing κ reduces kc for fixed ϕ; hence, longer stable waves are predicted by the model. As a side note
regarding Fig. 4, we observe in (3.4) and (4.6) that Λ is a function of the dimensionless vapor thickness ϕ, through R.
Keeping Λ fixed while changing ϕ implies that other parameters must change, for instance, the heat flux. It is also
evident from Fig. 4 that the graphs for Λ = 1.0 × 10−4 and Λ = 10.0 × 10−4 depict a maximum kc associated with
certain thickness ϕ; this thickness increases when Λ increases for fixed κ and when κ decreases for fixed Λ.

Our results thus show that linear analysis of capillary instability with heat and mass transfer predicts a region of
stability unbounded above (kc ≤ k < ∞) for viscous and inviscid potential flow, so that short waves are stable. In
contrast, as shown by Lee [4], nonlinear inviscid analysis surprisingly predicts a region of stability with upper and
lower bounds, thereby leading to both long and short unstable waves. Similar to our trends (see Fig. 2 and Table I),
Lee’s nonlinear analysis predicts that the width of the band of stability decreases by increasing the vapor thickness,
and becomes wider by increasing the heat flux.

Two competing mechanisms play major roles in the dynamics of the perturbed interface. On one side, the capillary
forces promotes the instability of the cylindrical interface, while, on the other side, heat and mass transfer effects help
to stabilize the interface. In the frame of Hsieh’s purely heat-conduction model, the latter mechanism is explained in
terms of local evaporation and condensation at the interface. At a perturbed interface, crests are warmer because they
are closer to the hotter boundary on the vapor side, thus local evaporation occurs, whereas troughs are cooler and
thus condensation takes place. A comprehensive discussion of phase-change effects in interfacial stability is presented
by Ozen and Narayanan [10], who considered not only heat conduction but also convection. However, their system
consisted of a liquid underlying its vapor between two parallel plates, where the plate in the liquid side is hotter. In
this setup, the evaporation-condensation phenomena promotes instability, which is mitigated by surface tension for
short waves, in opposition to the physics described above for the system investigated in the present work.

The destabilizing effects of surface tension and the stabilizing effects of heat transfer are demonstrated in the model
of the critical wavenumber kc given in (4.5) through the dimensionless group Λ defined in (4.6). Indeed, one can
readily show that Λ is directly proportional to the heat flux and inversely proportional to surface tension. Therefore,
when surface tension increases, the wavenumber interval for unstable waves becomes wider as Λ decreases for fixed κ
(see Fig. 3).

Concerning convective heat transfer, its effects on the dynamics of the liquid-vapor interface may be significant
[10, 11]. Certainly, the transport of heat by the motion of warmer or cooler fluid elements between crests and troughs
in either side of the interface can influence the stability features of heat conduction described above. However, to
simplify the analysis, Hsieh’s assumption of modeling heat conduction disregarding convection has been adopted
to elucidate the role in capillary instability of the interaction of heat and mass transfer with the viscous effects of
the irrotational motion. Including convection in the viscous potential flow analysis of capillary instability with heat
transfer and phase change will lead to more compelling results and is a matter for future work.
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FIG. 2: Growth rate ωI versus wavenumber k for a series of heat-transfer-capillary number α values according to (4.4) for the
water-steam system; (a) ϕ=0.01, IPF (b) ϕ=0.01, VPF, (c) ϕ=0.1, IPF (d) ϕ=0.1, VPF. In these computations ` = 0.0015,
m = 0.0604 and Oh = 1012 obtained for T0 = 400K.

A final remark on the assumption of irrotational motion is due. This approximation implies that the flow field
does not satisfy the non-slip condition at the bounding surfaces and, consequently, the boundary layers at these
locations are ignored. Similarly, vorticity layers on both sides of the interface are also disregarded and continuity
of tangential velocity and stress at this position is not enforced. In making this assumption, we are encouraged by
the results obtained by Funada and Joseph [8]. Using viscous potential flow as an approximation of the linearized
Navier-Stokes analysis of capillary instability of a fluid cylinder in another fluid with no heat and mass transfer,
they carried computations with more than a dozen of fluid pairs and concluded that VPF approximates the exact
solution for gas-liquid or liquid-liquid flows when a dimensionless surface tension Oh2 is greater than O(10), where
Oh is determined with the properties of the most viscous fluid; otherwise, potential flow is off the mark and internal
vorticity generation significantly affects the dynamics of the interface. In the frame of the problem discussed here,
boundary-layer flow impacts the interface stability through the diffusion of momentum and the transport of heat by
convection in either side of the interface.

VI. CONCLUSION

In this paper, we studied the capillary instability to linear perturbations of the cylindrical interface of two incom-
pressible fluids confined in a concentric annulus with heat and mass transfer using viscous potential flow. Heat transfer
is modeled exclusively as a conduction process. We obtained the dispersion relation describing the stability of the
system in terms of various dimensionless numbers, namely, density and viscosity ratios, dimensionless inner radius
and phase fraction, Ohnesorge number and a phase change parameter depending upon the geometry, the temperature
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FIG. 3: Critical wavenumber kc versus kinematic viscosity ratio κ for a series of heat-transfer-capillary group Λ values and
dimensionless vapor thickness ϕ =0.01 according to (4.5). For every Λ, there is a critical κ above which all waves are stable.
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κ=41.3218,Λ=1.0×104

κ=41.3218,Λ=10.0×104

κ=8.9151,Λ=1.0×104

κ=8.9151,Λ=10.0×104

(b)

FIG. 4: Critical wavenumber kc versus dimensionless vapor thickness ϕ for different values of the heat-transfer-capillary number
Λ according to (4.5) for the water-steam system: (a) for κ = 41.3218, ` = 0.0015 and Oh = 1012 obtained for T0 = 400K, (b)
Comparison with graphs for κ = 8.9151, ` = 0.0159 and Oh = 1378 obtained for T0 = 500K. The effects of heat and viscosity
become outstanding for low vapor thickness.

difference, and fluid properties including latent heat. We applied the model to the film-boiling condition in which the
liquid is in contact with the cooler outer boundary and its own vapor is in contact with the warmer inner boundary.
Our main result is that, for the irrotational motion of two viscous fluids, heat and mass transfer phenomena can
completely stabilize the interface against capillary effects. This conclusion cannot be achieved for inviscid fluids.
Moreover, we found that the viscous effects of the irrotational motion interacting with heat and mass transfer reduce
the maximum growth rate and increase the length of the wave with the maximum growth rate, in comparison with
the inviscid case. As the vapor thickness increases, the difference between inviscid and viscous potential flow becomes
less conspicuous.
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TABLE I: Maximum growth rate parameters and critical wavenumber as function of the heat-transfer-capillary number α and
dimensionless vapor thickness ϕ according to (4.4) for the water-steam system (` = 0.0015, m = 0.0604 and Oh = 1012 obtained
for T0 = 400K).

ϕ=0.01
IPF VPF

α ωIm km kc ωIm km kc

0.0000 0.4891 0.6672 0.9804 0.4855 0.6646 0.9804
0.0153 0.1375 0.6910 0.9804 0.1060 0.6448 0.9150
0.0305 0.0730 0.6924 0.9804 0.0406 0.5964 0.8446
0.0458 0.0493 0.6928 0.9804 0.0186 0.5424 0.7676
0.0610 0.0371 0.6928 0.9804 0.0087 0.4820 0.6820
0.0763 0.0298 0.6930 0.9804 0.0038 0.4128 0.5840
0.0916 0.0248 0.6930 0.9804 0.0000 0.0002 0.0002
0.1206 0.0189 0.6930 0.9804 0.0000 0.0000 0.0000

ϕ=0.10
IPF VPF

α ωIm km kc ωIm km kc

0.0000 0.3661 0.5732 0.8334 0.3652 0.5724 0.8334
0.0010 0.3600 0.5736 0.8334 0.3588 0.5726 0.8330
0.0019 0.3540 0.5742 0.8334 0.3524 0.5728 0.8326
0.0029 0.3482 0.5746 0.8334 0.3462 0.5730 0.8320
0.0039 0.3424 0.5750 0.8334 0.3401 0.5732 0.8316
0.0048 0.3367 0.5754 0.8334 0.3340 0.5734 0.8312
0.0058 0.3312 0.5758 0.8334 0.3281 0.5734 0.8306
0.0068 0.3257 0.5762 0.8334 0.3223 0.5736 0.8302
12.143 0.0009 0.5878 0.8334 0.0000 0.0000 0.0000
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