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Purely irrotational theories of the flow of a viscous liquid are applied to model the effect of viscosity
on the decay and oscillation of capillary-gravity waves. In particular, the dissipation approximation
used in this analysis gives rise to a viscous correction of the frequency of the oscillations which was
not obtained by Lamb’s �H. Lamb, Hydrodynamics �Cambridge University Press, Cambridge, UK,
1932� �reprinted in 1993�� dissipation calculation. Moreover, our dissipation method goes beyond
Lamb’s in the sense that it yields an eigenvalue relation valid for the entire continuous spectrum of
wave numbers. Comparisons are presented between the purely irrotational theories and Lamb’s
exact solution, showing good to reasonable agreement for long, progressive waves and for short,
standing waves, even for very viscous liquids. The performance of the irrotational approximations
deteriorates within an interval of wave numbers containing the cutoff where traveling waves become
standing ones. © 2007 American Institute of Physics. �DOI: 10.1063/1.2760244�

I. INTRODUCTION

Stokes1 introduced the idea of the dissipation method “in
which the decay of the energy of the wave is computed from
the viscous dissipation integral where the dissipation is
evaluated on potential flow.”2 This method was implemented
by Lamb3 �Sec. 348� to study the effect of viscosity on the
dynamics of free oscillatory waves on deep liquid. The
waves are considered small departures about a plane-free
surface. The result of his analysis was an estimate of the
decay rate of the traveling waves. He also conducted the
solution of the linearized Navier–Stokes equations for this
problem using normal modes �Sec. 349; hereinafter “exact
solution”�, in which the zero-shear-stress condition at the
free surface is satisfied. Independently, Basset4 obtained the
same dispersion relation as Lamb for the exact solution. Fur-
thermore, Lamb3 applied his dissipation method to study vis-
cous effects on small oscillations about the spherical shape
of a liquid globule in a vacuum or a bubble surrounded by
liquid �Sec. 355�. Whereas the effect of viscosity in both the
decay rate and frequency of the oscillations can be examined
through the exact solution, Lamb’s dissipation approximation
does not give rise to a viscous correction of the frequency.

In this work, we carry out the integration of the me-
chanical energy equation assuming irrotational flow to obtain
a relation for the effects of viscosity on the decay rate and
frequency of the oscillations of small capillary-gravity
waves. Viscosity is explicitly considered in the dissipation
term of the mechanical energy balance and the shear stress is
set to zero at the free surface. This purely irrotational formu-
lation is referred to as the dissipation method �DM� here. Our
irrotational method is similar to Lamb’s3 in the sense that it
is an irrotational approximation, but, unlike Lamb, we do not
assume that the potential energy equals the kinetic energy
and gravity is thus explicitly considered in our formulation.
Unlike Lamb, our method of calculation yields a complex

eigenvalue for progressive waves with the same growth rate
as Lamb’s but a different frequency that depends on viscos-
ity. Lamb3 advertises his method as valid to estimate “the
effect of viscosity on free oscillatory waves on deep water.”
However, his analysis did not yield viscous effects on the
frequency of these waves. In fact, when the dissipation
method is carried out as presented here, it gives rise to pro-
gressive and standing waves just like the exact solution. The
progressive waves are associated with long waves and the
standing waves with short waves where the cutoff wave
number is a decreasing function of the viscosity. For standing
waves, DM predicts the effects of surface tension and gravity
on the decay rate. Another purely irrotational theory of the
motion of a viscous liquid is used in this study, namely the
theory of viscous potential flow �VPF�. In this approach, the
viscous normal stress at the free surface enters the potential
flow analysis.

Joseph and Wang5 applied both VPF and the viscous
correction of VPF �labeled as VCVPF� theories to the prob-
lem of free gravity waves in which capillary effects are ne-
glected. In the latter approach, VPF theory is modified by
adding a viscous pressure correction to the irrotational pres-
sure to compensate the difference between the nonzero irro-
tational shear stress and the zero-shear stress at the free sur-
face. Viscous effects in both the decay rate and the frequency
were considered. The same decay rate obtained by Lamb’s
dissipation method was found from VCVPF. Wang and
Joseph6 performed a thorough comparison showing good
agreement between the viscous irrotational theories, VPF and
VCVPF, with Lamb’s exact solution for short and long grav-
ity waves, respectively, even for liquids with viscosity 104

times that of water. The theories of irrotational flow of a
viscous fluid �VPF, VCVPF, and DM� are applied by Wang,
Joseph, and Funada7,8 to the problem of capillary instability
and by Padrino, Funada, and Joseph9 to study capillary-
driven oscillations about the spherical shape of a drop or
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bubble. In these works, VCVPF and DM produced equiva-
lent results. Although the study of nonlinear waves is beyond
the scope of this paper, we mention that among the abundant
literature on nonlinear waves, we know only the work by
Longuet-Higgins10 on the viscous effects on these waves. He
computed the viscous decay of steep irrotational capillary-
gravity waves through the dissipation method �see also
Joseph, Funada, and Wang11�.

Here, we compare and discuss predictions from the
purely irrotational theories with the exact solution of the lin-
earized problem. The method of calculating the dissipation
applied in this work, which follows the steps of that used in
the study of capillary instability,7,8 leads to an excellent to
reasonable approximation to the dispersion relation of the
exact solution for long waves. For short waves, VPF gives
the best approximation. The resulting performance may be
cautiously used as a guide for application of the irrotational
approximations in cases in which the “exact solution” is not
known.

Neither Ref. 5 nor Ref. 6 applied the DM to waves on a
plane free surface, although the former did review Lamb’s
dissipation approximation. The VPF calculation presented in
this paper in Sec. II expands the procedure outlined in Ref. 5
to include surface tension effects. More importantly, it gives
rise to intermediate results that are required by the DM in
Sec. III. To the best of our knowledge, for the first time,
viscous effects in both the decay rate and frequency of oscil-
lations of “small” capillary-gravity waves about a plane free
surface are obtained through the dissipation approximation.

II. VISCOUS POTENTIAL FLOW ANALYSIS „VPF…

Consider two-dimensional small irrotational distur-
bances of the basic state of rest of an incompressible fluid
occupying half of the space, −� �y�0, where y is a
Cartesian coordinate such that the plane y=0 corresponds to
the free surface for the basic state. The fluid in the upper half
is dynamically inactive. The basic state is given by dP /dy
=−�g, where P is the pressure, � is the liquid density, and g
is the acceleration of gravity. We set, with no loss of gener-
ality, P=0 at the free surface of the undisturbed state y=0.

In the perturbed state, we look for functions that are
periodic in the Cartesian coordinate x with period �. The
perturbed free surface has elevation y=��x , t�. For irrota-
tional flow, the velocity field is u=��, such that the incom-
pressibility condition implies Laplace’s equation �2�=0 for
the velocity potential �.

Dynamical effects enter the analysis through the
Bernoulli equation, which can be written as

�
��

�t
+

�

2
����2 + p̂ + �gy = 0, at y = � , �2.1�

where p̂ is the pressure in the disturbed state. The balance of
the normal stress at the free surface yields

− p̂ + 2�
�2�

�n2 = − ��II · n at y = � , �2.2�

where �II=�−n�n ·��.12 In this expression, � is the liquid
dynamic viscosity and � is the surface tension; the symbol n

denotes the unit outward normal vector from the fluid at the
free surface, which determines the n direction, and the sec-
ond term on the left-hand side of �2.2� accounts for the vis-
cous normal stress at the interface. At the free surface, the
kinematic condition can be written as

��

�y
=

D�

Dt
=

��

�t
+ u · �� at y = � . �2.3�

The pressure in the disturbed state is now decomposed into
small disturbances about the basic state, such that p̂= P+ p
with P=−�gy. The system of equations �2.1�–�2.3� is linear-
ized assuming that the free-surface displacement is “small”
in comparison with the wavelength and has “small” slopes,
�� /�x�1. This process yields, at y=0,

�
��

�t
+ p = 0, �2.4�

− p + �g� + 2�
�2�

�y2 = �
�2�

�x2 , �2.5�

��

�y
=

��

�t
. �2.6�

Solutions of Laplace’s equation for � in the domain
0�x��, −� �y�0 with periodic boundary conditions for
x=0 and x=� can be written under the form

� = Ae	t+ikx+ky + c.c., �2.7�

with k=2
j /� and j=1,2 ,3 , . . ., and c.c. denotes the com-
plex conjugate of the previous term. The time dependence
has been separated to obtain normal-mode solutions. We as-
sume that the shape of the disturbed interface is also given
by a normal-mode expression

� = �0e	t+ikx + c.c., �2.8�

where �0 is a constant. Combining �2.4� and �2.5� to elimi-
nate the pressure disturbance and using �2.7� and �2.8� gives
rise to the expression

��	A + 2�Ak2 + �g�0 + �k2�0�e	t+ikx + c.c. = 0 at y = 0.

�2.9�

The linearized kinematic condition �2.6� is then used to find
Ak=	�0. Applying this relation to eliminate �0 in �2.9�
yields the dispersion relation for VPF,

	2 + 2�k2	 + gk + ��k3 = 0, �2.10�

which can be solved for the eigenvalues

	 = − �k2 ± ��2k4 − �gk + ��k3� , �2.11�

with ��=� /� and the kinematic viscosity �=� /�. This result
can be obtained as a special case from the more general
expression derived by Funada and Joseph13 from the Kelvin-
Helmholtz stability analysis of two viscous fluids. For �=0
in �2.10�, our result agrees with the eigenvalue relation pre-
sented by Joseph and Wang5 using the theory of VPF for free
gravity waves with no capillary effects.
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In the case of �k2��gk+��k3 we have two real roots
from �2.11� and the waves decay monotonically. The highest
value gives the slowest decay rate. In the case of
�k2�gk+��k3 we obtain the complex conjugate pair of
roots

	 = − �k2 ± ik��g/k + ��k� − �2k2, �2.12�

giving rise to progressive decaying waves. The decay rate is
−�k2, which is half of the value computed by Lamb using
energy dissipation arguments. The speed of the traveling
waves is

c = ��g/k + ��k� − �2k2, �2.13�

and the speed is slower than the inviscid result �g /k+��k,
as noticed by Joseph and Wang5 in the absence of surface
tension.

For short waves or high viscosity, i.e., �k2��gk+��k3,
the eigenvalues from �2.11� follow

	 = − 2�k2 and 	 = −
��k

2�
−

g

2�k
, �2.14�

and the latter gives the slowest decay rate for the standing
waves. For zero surface tension, the damping of the waves
follows the rate −g / �2�k�, which decreases for shorter
waves. This decay rate was found by Lamb3 from the exact
solution for large viscosity. For �k2��gk+��k3, traveling
decaying waves are obtained and the eigenvalues behave as

	 = − �k2 ± ik�g/k + ��k , �2.15�

such that the wave speed reaches the inviscid result.

III. DISSIPATION METHOD „DM…

The dissipation method relies on the integration of the
mechanical energy equation. To apply DM to capillary-
gravity waves, the working equation is obtained after sub-
tracting the basic state of rest �P=�g from the incompress-
ible Navier-Stokes equation and then taking the scalar
�“dot”� product with the velocity vector. Integration over the
region of interest yields the mechanical energy balance for
the flow disturbances in integral form

d

dt
�

V

�

2
�u�2dV = �

S

n · T · udS − �
V

2�D:DdV , �3.1�

where T is the stress tensor for an incompressible Newtonian
fluid in terms of pressure and velocity disturbances �see �3.2�
below�; D is the strain-rate tensor

D = 1
2 ��u + ��u�T� ,

where the superscript T denotes the transpose, and n is the
outward normal vector from the fluid. The symbol V denotes
the volume of integration enclosed by the surface S. The
last term in �3.1� gives the viscous dissipation. The double
contracted product D :D=DijDji, and the repeated indexes
imply summation according to Cartesian index notation in
two dimensions.

The region of integration is defined by 0�x�� and
−� y�0. Periodic boundary conditions at x=0 and x=�
and disturbances �both velocity and pressure� that vanish as
y→−� are considered. Therefore, the surface integral is re-
duced to an integral at y=0.

The first integral on the right-hand side of �3.1� can be
expanded by considering

n · T · u = �− p + �yy�v + �xyu . �3.2�

The analysis follows with the assumption that the zero-shear-
stress condition and the normal-stress balance are satisfied at
the free surface. Therefore, we have, at y=0,

�xy = 0 and − p + �yy = − �g� + �
�2�

�x2 . �3.3�

Integrals in �3.1� are computed assuming that the fluid
motion can be approximated as irrotational. The discontinu-
ity of the zero shear stress at the free surface with the irro-
tational shear stress is resolved in a vorticity layer that is
neglected in the analysis. For irrotational flow, the following
identity holds:

�
V

2�D:DdV = �
S

n · 2�D · udS . �3.4�

Substitution of �3.2� and �3.4� into �3.1�, using �3.3�, yields

d

dt
�

V

�

2
�u�2dV = − �

0

�

�g�vdx + �
0

�

�
�2�

�x2 vdx

− �
S

n · 2�D · udS . �3.5�

Next, the integrals in �3.5� are carried out with the aid of the
formula in the Appendix A and using expressions �2.7� and
�2.8� for � and � together with the relation Ak=	�0, which
stems from the irrotational assumption. With �u�2=u2+v2 and
writing the components of the strain-rate tensor D in Carte-
sian coordinates, such that n ·2�D ·u=�yyv+�xyu from po-
tential flow, this series of integrals gives rise to

d

dt
�

V

�

2
�u�2dV = �kAĀ�	 + 	̄�e�	+	̄�t� , �3.6�

�
0

�

�g�vdx = �gk2AĀ� 1

	
+

1

	̄
	e�	+	̄�t� , �3.7�

�
0

�

�
�2�

�x2 vdx = − �k4AĀ� 1

	
+

1

	̄
	e�	+	̄�t� , �3.8�

�
S

n · 2�D · udS = 8�k3AĀe�	+	̄�t� . �3.9�

Substitution of �3.6�–�3.9� into �3.5� yields the expression

	 + 4�k2 + �gk + ��k3�
1

	
+ c.c. = 0, �3.10�

which is satisfied if the following eigenvalue relation holds:
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	2 + 4�k2	 + gk + ��k3 = 0 �3.11�

with roots

	 = − 2�k2 ± �4�2k4 − �gk + ��k3� . �3.12�

Putting ��=0 in �3.12� yields the same relation obtained in
Ref. 5 using the viscous correction of VPF, a method that
follows a different path to the one described here. We regard
�3.12� as an irrotational approximation for the exact solution.

For 2�k2��gk+��k3, expression �3.12� gives two real
roots and monotonically decaying waves are obtained. On
the contrary, if 2�k2�gk+��k3, progressive decaying
waves occur. In this case, it is convenient to write �3.12� in
the form

	 = − 2�k2 ± ik��g/k + ��k� − 4�2k2, �3.13�

and the traveling waves decay with rate −2�k2, which is the
same value obtained by Lamb3 via the dissipation method.
However, Lamb’s approach did not account for the effects of
viscosity in the wave speed of traveling decaying waves. The
wave speed is extracted from �3.13� as

c = ��g/k + ��k� − 4�2k2, �3.14�

which is slower than the inviscid result �g /k+��k.
Prosperetti14 finds �3.13� for small times and an irrotational
initial condition from the solution of the initial-value prob-
lem for standing, capillary-gravity waves. He notes that this
solution can apply to large viscosity. He also obtains Lamb’s
normal-mode solution �labeled “exact solution” here� as the
asymptotic limit for large times, pointing out that the validity
of Lamb’s solution for all times is restricted to small viscos-
ity.

For 2�k2��gk+��k3 �e.g., short waves or high viscos-
ity�, relation �3.12� yields the trend for the decay rates

	 = − 4�k2 and 	 = −
��k

4�
−

g

4�k
, �3.15�

and the second root, which is governed by surface tension,
gives the slowest decay rate of the standing waves. If
2�k2��gk+��k3, as for long waves or low viscosity, the
eigenvalues from �3.13� behave as

	 = − 2�k2 ± ik�g/k + ��k �3.16�

and the progressive decaying waves travel with the inviscid
speed. Lamb3 found that the exact solution reaches �3.16� in
the case of “small” viscosity.

IV. DISCUSSION

Lamb3 �Sec. 349� analyzed the viscous problem of small
waves on the free surface of a deep liquid with capillary and
gravity effects. The approach considers the solution of the
linearized Navier-Stokes equations of an incompressible flow
where the zero shear stress condition is satisfied at the free
surface. Hence, vorticity is not set to zero. Lamb obtained
the following eigenvalue relation, designated here as the ex-
act solution:

��	 + 2�k2�2 + 	0
2�2 = 16�3k6�	 + �k2�, 	0

2 = gk + ��k3,

�4.1�

with Re��	+2�k2�2+	0
2��0.

In this section, we compare the predictions from the ex-
act solution with results from the purely irrotational theories,
namely VPF, DM, and IPF, the inviscid irrotational theory.
The latter is reached by setting �=0 in either VPF or DM
eigenvalue relations �2.12� and �3.13�, respectively; hence,
the eigenvalues are purely imaginary with zero decay rate.

The dispersion relations �2.12�, �3.13�, and �4.1� can be
conveniently written in dimensionless form as follows:

VPF 	̃ = − � ± i�1 − �2, �4.2�

DM 	̃ = − 2� ± i�1 − 4�2, �4.3�

Exact solution ��	̃ + 2��2 + 1�2 = 16�3�	̃ + �� , �4.4�

and 	̃= i for IPF. In these expressions, we have set
	̃=	 /	0 and �=�k2 /	0, a factor introduced by Lamb in his
“exact solution.” The analysis of �4.2�–�4.4� reveals that a
threshold �c can be obtained that separates progressive
waves ���c, Im�	̃��0� from standing waves ����c,
Im�	̃�=0� from each theory. We obtain �c=1 for VPF and
�c=0.5 for DM. For the exact solution, �4.4� gives rise to,
nearly, �c=1.3115 �also reported in Ref. 14�. We notice that
the first-order approximation in � of �4.3� for the dissipation
method is equivalent to the first-order approximation in this
parameter of the exact solution presented by Lamb3 and
Basset.4 As noted by Landau and Lifshitz15, the vortical layer
is thin when viscous effects are “weak” �small �� and its
contribution to the total energy dissipation is negligible in
comparison to the dissipation from within the bulk of fluid.

From the definition of �, we have that the respective
cutoff wave number kc can be obtained for each theory using
the corresponding value of �c given above. When kkc, pro-
gressive waves decay, whereas for k�kc, the waves decay
monotonically.

To investigate the crossover from progressive to standing
waves according to the exact solution and the irrotational
approximations, we choose three different liquids, namely a
highly mobile one such as water, glycerin, and SO10000, a
very viscous oil at ambient temperature. The properties of
these liquids used in the computations are indicated in Table
I. The kinematic viscosity varies several orders of magnitude
from one fluid to another. The cutoff wave number kc from
the exact solution, VPF, and DM is shown in Table II for the
three liquids. For the same liquid, DM gives the lowest kc

and the exact solution gives the largest. Therefore, traveling
waves of certain length according to the exact solution may

TABLE I. Properties of the liquids used in this study.

Property Water Glycerin SO10000 oil

� �m2 s−1� 1.00�10−6 6.21�10−4 1.03�10−2

� �kg m−3� 1.00�103 1.26�103 9.69�102

� �N m−1� 7.28�10−2 6.34�10−2 2.10�10−2
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be predicted as standing waves by the irrotational approxi-
mations. Table II reveals that the cutoff wave number de-
creases as the viscosity increases. Thus, the region of pro-
gressive decaying waves 0kkc shrinks with increasing
viscosity. Waves for which kkc oscillate with a finite pe-
riod whereas waves with k�kc can be though of as having
an infinitely long period. This latter feature is clearly associ-
ated with the low mobility of highly viscous liquids.

Figure 1 shows the dimensionless decay rate −Re�	̃� and
frequency of the oscillations Im�	̃� as a function of the di-
mensionless parameter � from �4.2�–�4.4� for VPF, DM, and
the exact solution, respectively. IPF predictions for the fre-
quency, Im�	̃�=1, are also included. For ���c only the
slowest decay rate, given by the smallest real eigenvalue, is
plotted. In these figures, only the cutoff �c given by the exact
solution is presented, which hereafter is referred to as �c�. An
important feature of the dimensionless representation of the
dispersion relations �4.2�–�4.4� is that their graphs of 	̃ ver-

sus � are equally applicable to any incompressible Newton-
ian fluid, and no individual plots have to be presented for
every liquid chosen.

Both viscous irrotational theories follow the trend de-
scribed by the exact solution as shown in Fig. 1. With respect
to the decay rate, this figure indicates that DM approaches
the exact solution in the progressive-wave regime ���c��
for ��1. In particular, for ��0.02 we found that the rela-
tive error for DM in absolute value remains below 10% and
the agreement becomes outstanding as � decreases since
Re�	̃�=−2� as indicated by �3.16�. On the other hand, VPF
is off the mark by 50%, as can be anticipated from �2.15�. In
the standing-wave regime ����c��, VPF shows excellent
agreement with the exact solution; for ��2, this irrotational
theory predicts values of the decay rate with relative errors
within 5% in absolute value and the agreement with the ex-
act solution improves substantially following 	̃=−1/ �2�� as
� increases as predicted by �2.14�. By contrast, DM under-
predicts the decay rate by 50% in this regime in accord with
�3.15�. In the transition region �0.02���2, say�, neither of
the viscous irrotational theories gives a good approximation
of the exact decay rate for this entire interval. However, each
of these approximations gives rise to a critical value �c that
qualitatively resembles the crossover from progressive to
standing waves depicted by the exact solution.

Regarding the frequency of the oscillations, Im�	̃�, Fig.
1 reveals that viscous effects are significant when ��0.1, for
which the exact solution deviates from the inviscid result.
The frequency becomes damped and, for ���c�, the oscilla-
tions are suppressed. These features in the dynamics of the
waves are also described, on qualitative grounds, by the vis-
cous irrotational approximations. This figure also illustrates
what was computed above, namely the lowest crossover �c is
given by DM and the highest is obtained from the exact
solution; the cutoff from VPF lies in between. This cutoff
between progressive and standing waves cannot be obtained
from the dissipation calculation implemented by Lamb based
on Stokes’ idea.

An aspect that is worth mentioning and which may not
be evident from the graph −Re�	̃� versus � is the effect of
surface tension in the decay of the waves. The slowest decay
rate for the exact solution and VPF goes as −��k / �2�� as
k→�, whereas for DM, it goes as −��k / �4��. Thus, as the
waves become shorter, they are more rapidly damped by cap-
illary effects. By contrast, the suppression of the regularizing
effect of surface tension yields a decrease in the decay rate of
the gravity waves as k increases, as shown by Wang and
Joseph6 �see �2.14� and �3.15��. In the case of the inviscid
theory, the frequency continues increasing as k→� and the
waves oscillate undamped. The shortest the wave, the highest
the frequency, which contradicts the viscous theories. By tak-
ing into account viscous effects in the irrotational theories,
the crossover from the traveling-wave regime to the
standing-wave regime is predicted by these approximations,
in a similar fashion as the exact solution.

In this analysis, we have shown that the effect of viscos-
ity on the frequency of capillary-gravity waves, which
Lamb3 assumed to be the same as in an inviscid fluid, can be
obtained from the dissipation integral in the mechanical en-

TABLE II. Cutoff wave number kc �m−1� computed for DM, VPF, and the
exact solution for three different liquids: water, glycerin, and SO10000 oil.

Theory Water Glycerin SO10000 oil

DM 1.82�107 196.81 28.50

VPF 7.28�107 344.64 45.29

Exact 1.25�108 445.18 54.30

FIG. 1. Dimensionless decay rate −Re�	̃� and frequency of the oscillations
Im�	̃� as a function of the dimensionless parameter �=�k2 /	0 from the
exact solution and the irrotational theories VPF, DM, and IPF: Solid line,
exact solution; �, VPF; �, DM; dashed-dotted line, IPF. In the latter case,
the eigenvalues 	̃ are purely imaginary. The dimensionless eigenvalue is
	̃=	 /	0, where 	0 is the inviscid frequency. For ���c, the solutions are
purely real; in this case, only the slowest decay rate, given by the lowest real
eigenvalue, is presented. The cutoff �c� corresponds to the exact solution.
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ergy balance. Moreover, results from this dissipation method
are not restricted to oscillatory waves, as is the case with
Lamb’s dissipation calculation, but they also predict values
for the decay rate of standing waves that follow the trend
described by the exact solution. In sum, our dissipation
method yields an eigenvalue relation for the entire spectrum
of wave numbers and is in good agreement with the exact
solution for sufficiently large waves. VPF is the best approxi-
mation for sufficiently short waves.
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APPENDIX: INTEGRATION FORMULA

In the analysis presented in Secs. III and IV, the follow-
ing formula is used:

�
S

�B + B̄��C + C̄�dS = 2�
S

Re�BC + BC̄�dS

= 2 Re
�
S

�BC + BC̄�dS� , �A1�

where S denotes the region of integration and B and C are
complex fields. The bar indicates complex conjugate and
Re�·� is a linear operator that returns the real part of a com-
plex number.
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