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Abstract

The breakup of a liquid capillary filament is analyzed as a viscous potential flow

near a stagnation point on the centerline of the filament towards which the surface

collapses under the action of surface tension forces. We find that the neck is of

parabolic shape and its radius collapses to zero in a finite time; the curvature at the

throat tends to zero much faster than the radius, leading ultimately to a microthread

of nearly uniform radius. During the collapse the tensile stress due to viscosity

increases in value until at a certain finite radius, which is about 1.5 microns for water

in air, the stress in the throat passes into tension, presumably inducing cavitation

there.
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INTRODUCTION

The breakup of liquid jets is generally framed in terms of the capillary pressure�=R(z; t) due

to surface tension� acting at the neck of radiusR(z; t). The capillary pressure is greatest at the

positionz whereR is smallest, an unstable situation in which liquid is squeezed out of the neck

further reducingR and increasing the capillary pressure there. This picture leads to an inevitable

collapse of the radius to zero. The conventional view is that the capillary instability just described

leads to “pinchoff” but the physics required to actually rupture the thread is not understood. Here

we are promoting the idea that the filament ruptures by cavitation due to tensile stresses induced

by the motion out of the neck. The idea that liquids can cavitate by tensile stresses associated with

motions, rather than by lowering the pressure was introduced by Joseph [3]. One of the interesting

implications of this idea [4] is that cavitation in a pure shear flow may be induced by a tensile

stress at45� from the direction of shearing.

.

In this paper we present a simple collapsing solution in which all the physics is transparent.

The solution is a viscous potential flow. In most viscous potential flows applied to free surface

problems, such as the celebrated Levich [5] rising bubble problem, continuity of the shear stress at

the free surface goes unsatisfied, justified for large Reynolds numbers by the weakness of the thin

shear layer which develops. In the solution presented here continuity of the shear stress is satisfied

asymptotically at all Reynolds numbers.

ANALYSIS

Here we consider the collapse of a capillary filament under surface tension forces which

squeezes liquid symmetrically from a parabolic throat sketched in figure 1. We assume that the

flow in the neighborhood of the throat is an axially symmetric straining flow, or stagnation point

flow, with velocity components

uz = a(t)z (1)

ur = �

1

2
a(t)r (2)
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and determine the strain ratea(t) and the capillary shape,r = R(z; t), by satisfying the appropriate

boundary conditions at the capillary surface. The velocity field described by equations (1) and (2)

is incompressible and irrotational, therefore despite being a viscous flow, it may be described by a

velocity potential (uz =
@'
@z
; ur =

@'
@r

) of form

' =
1

2
az2 �

1

4
ar2: (3)

The pressure in the flow is determined from the unsteady version of the Bernoulli equation

@'

@t
+

1

2
(u2

r + u2

z) +
p

�
=

p0
�

(4)

in the form

p� p0
�

= �(
1

2
_a+

1

2
a2)z2 + (

1

4
_a�

1

8
a2)r2: (5)

The stagnation pressurep0 is generally an unknown function of time in this local solution. For

sufficiently large Reynolds numbers equation (4) will be valid beyond the local region andp0 will

equal theconstantpressure in a distant state of rest, providing a global reference in this otherwise

local solution. The overdot denotes a time derivative.

In this flow the state of stress is given by two principal stresses;

Tzz = �p + 2�
@uz
@z

= �p+ 2�a; (6)

Trr = �p + 2�
@ur
@r

= �p� �a: (7)

The normal traction at a point on the free surface, the force per unit area which the surface exerts

on the fluid, is

Tnn = n2

rTrr + n2

zTzz (8)

wherenr andnz are components of the unit outward normal (indicated in figure 1).

A force balance at the free surface gives the boundary condition

�Tnn � pa = �� (9)
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wherepa is atmospheric pressure,� is the surface tension force per unit length and� is the mean

curvature, given by

� = �

@2R
@z2

(1 + (@R
@z
)2)

3

2

+
1

R(1 + (@R
@z
)2)

1

2

: (10)

Equation (9) is the condition which drives the capillary collapse.

The condition of zero shear stress at the boundary is not exactly satisfied. It is well-known

[10] that vorticity is generated at free surfaces: the condition that the shear stress is zero prevents

the flow from being exactly irrotational. In this axially symmetric flow the vorticity is required to

be!� = 3anrnz, which can be regarded as a measure of the error. For large Reynolds numbers

the vorticity generated is confined to a thin layer with thickness of order Re�1=2 with variation of

velocity across it of order Re�1=2. That is, the vortex layer is thin and weak. However, even if

the Reynolds number is not small the magnitude of the vorticity required is small for this flow,

becausenz is very small in our solution.

Since the free surface must move with the fluid, we also have the kinematic condition

ur =
@R

@t
+ uz

@R

@z
(11)

at r = R(z; t). This may be written

�

1

2
aR =

@R

@t
+ az

@R

@z
: (12)

The mathematical problem is to find a functionR(z; t) which satisfies the conditions expressed

by equations (9) and (12). We will show that a function of form

R(z; t) = R0(t) +R2(t)z
2 +O(z4) (13)

is suitable and determineR0(t); R2(t) and the strainratea(t) by expanding these conditions for

smallz. To the lowest order inz2

Tnn
�

=
Trr
�

= �

p

�
� �a (14)

= �

p0
�
� (

1

4
_a�

1

8
a2)R2

0
� �a (15)
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and to the same order

� =
1

R0

� 2R2; (16)

so equation (9) gives

p0 � pa
�

+ (
1

4
_a�

1

8
a2)R2

0
+ �a =

�

�
(
1

R0

� 2R2) : (17)

Equation (12) gives the two equations

�

1

2
aR0 = _R0 (18)

and

�

5

2
aR2 = _R2: (19)

From these we see thatR2 = CR5

0
, whereC is a constant depending on starting conditions. This

result implies theR2 tends to zero faster thanR0 which means the parabola flattens out during

collapse. This flattening can be identified with the formation of a cylindrical “micro-thread” of

nearly constant radius which appears in all the many different cases studied by Kowalewski [9].

In particular, Kowalewski’s figure 10 shows the length of the micro-thread increasing with this

before collapse.

When equation (18) is used to eliminatea from equation (17) we obtain a single equation for

R0(t), namely,

p0 � pa
�

�

1

2
R0

�R0 �

2� _R0

R0

=
�

�
(
1

R0

� 2CR5

0
): (20)

This equation is structurally similar to the Rayleigh-Plesset equation [8] which describes the col-

lapse and growth of spherical bubbles by a viscous point source potential flow. Since we are most

interested in smallR0, we can pick out the dominant terms asR0 tends to zero. These are

�

2� _R0

R0

=
�

�R0

(21)

which is a balance between theviscouspart of the normal force (which resists the collapse) and

the surface tension force (which drives it). The largeR�1

0 term cancels from each side giving
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_R0 = �

1

2

�

��
(22)

with solution

R0 =
�

2��
(t
�
� t) (23)

wheret
�

is a constant of integration. Therefore we have a solution in whichR0 tends to zero in

a finite time. It is easy to see that the neglected terms in equation (20) give a correction toR0 of

order(t
�
� t)2. With the additional term the solution becomes

R0 =
�

2��
(t
�
� t)�

�

2��

p0 � pa
4��

(t
�
� t)2 + � � � ; (24)

The strain rate in the flow,

a = �2
_R0

R0

=
2

t
�
� t

�

p0 � pa
2��

+ � � � ; (25)

becomes infinite as

t! t
�

and the pressure, given by equation (5) is

p

�
=

p0
�
�

3z2

(t
�
� t)2

+
(p0 � pa)

��

(z2 + 1

4
r2)

t
�
� t

+ � � � (26)

to leading orders.

The result given by equation (24) says thatR0 tends to zero linearly in time. Eggers [2] pre-

sented a solution to model equations which also exhibits linear collapse. Anonviscoussimilarity

law due to Keller and Miksis [6] predicts that the radius will collapse to zero more rapidly than

this, like(t
�
� t)

2

3 .

Equation (26) shows that the pressure decreases away from the throat atz = 0 and would tend

to zero a short distance away. This would lead to cavitation in the traditional sense. However the

solution is limited to small values ofz because of the power series expansion. In the analysis to

follow, we show that cavitation can occur even atz = 0.

The stress componentTzz at the stagnation point(z = 0; r = 0) is

Tzz
�

= �

p0
�
+ 2�a (27)

= �

(2p0 � pa)

�
+

4�

t
�
� t

+O(t
�
� t): (28)
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It is convenient to express this in terms of the instantaneous value of the throat radius by substitut-

ing t
�
� t = 2��R0=� to get

Tzz
�

= �

(2p0 � pa)

�
+


�

�R0(t)
(29)

Equation (29) shows that the capillary thread will pass into tension when

R0(t) < Rocr =
2�

(2p0 � pa)
(30)

and the tensions will grow unboundedly large asR0(t)! 0. Liquids which are specially prepared

to remove nucleation sites cannot withstand large tensions, and impure liquids like tap water can-

not sustain any tension. The critical valueRocr is independent of viscosity for low viscosity fluids

since we can use a global value forR0. If we estimatep0 to be approximatelypa = 106dynes/cm2

for water with� = 75 dynes/cm we getRocr = 1:5 micrometers. For high viscosity fluidsp0

probably depends on viscosity.

The solution presented here may be compared with the experiments of Kowalewski [9]. The

most striking features of these experiments is the appearance of a thin liquid neck of nearly con-

stant radius, a micro-thread, joining the droplet to a much fatter macro-thread. This thread elon-

gates and thins until it ruptures. “... Its final diameter before rupture was approximately one

micrometer and seems constant within wide range of parameters varied.” In comparing theory

with these experiments, perhaps the most salient point of agreement is the vanishing of variations

of curvature over an increasing length of the micro-thread.

The observed dynamics of the micro-thread is in astonishing agreement with simple extension

of a cylinder of constant radius satisfying (1) and (2) and the agreements, surprisingly, are even

better for the more viscous threads.

A Reynolds number for the collapsing capillary may be defined by

Re =
R0

_R0

�
; (31)

based on the throat radius and the velocity of collapse, using equation (22) for the latter quantity

gives
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Re =
R0�

2��2
; (32)

which is the ratio ofR0 to a viscous length [7]2��2=� which is very small for water, about .027

micron. Therefore usingR0cr (=1.5 micron) forR0, the Reynolds number at collapse is about 55

for water (the collapse velocity is about 37 m/s). For more viscous liquids the Reynolds number

at collapse could be very small.

The symmetric local solution derived here may not be stable; photographs of breaking liquid

bridges [7] and jets [ ] are globally asymmetric. A strongly collapsing capillary could be expected

to amplify asymmetries, as is known to happen in a collapsing bubble. However, thinning micro-

threads of nearly constant radius which evolved from the pinched asymmetric macro-threads ob-

served in the jet break-up experiments of Kowalewski [9] look exactly like thinning threads of

vanishing axial curvature which we have computed. An extending, thinning thread of vanish-

ing axial curvature can only be described as an extensional flow satisfying (1) and (2) with the

caveat that the position of the stagnation point in the experiments is not known. In such a flow,

the pressure will decrease away from the origin and the extensional stress (29) due to stretching

will be uniform along the thread and will dominate for small threads. In this case thread rupture

would be expected to occur at various and unpredictable nucleation sites as in the experiments of

Kowalewski [9].

CONCLUSIONS

Neckdown of a liquid capillary thread was studied in a local analysis based on viscous potential

flow. One objective of this study was to show that during collapse the thread will enter into tension

due to viscosity and can be expected to fracture, or cavitate, at a finite radius.

The flow in the throat of the collapsing capillary is locally a uniaxial extensional flow, linear

in z andr, with a time dependent strain ratea(t). This viscous potential flow satisfies the Navier-

Stokes equation and all the relevant interfacial conditions, including continuity of the shear stress.

The principal dynamic balance is between the surface tension forces, which are trying to col-

lapse the capillary, and the radial viscous stress which is resisting the collapse. Since mass must
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be conserved a large axial flow results from squeezing liquid out of the neck and this results in

a large viscous extensional stress. The extensional stress passes into tension atR0 = 1:5 micron

(for water and air) long beforeR0 actually collapses to zero.

The solution is symmetric aboutz = 0, the position of the smallest radius; the axial velocity is

odd and the radial velocity, pressure and interface shape

R(z; t) = R0(t) +R2(t)z
2 + O(z4)

are even inz. At lowest order the interface is a parabola in whichR2(t) is proportional toR5

0
, hence

in the limit of collapsing radiusR2 ! 0 much more rapidly thenR0 and the shape approaches that

of a straight cylinder. This solution, like the micro-threads observed by Kowalewski [9] have a

vanishing axial curvature. Though they evolve from different configurations, the observed micro-

threads and our theoretical solution both tend to a thinning of uniform but decreasing radius, pure

extension of a thin cylinder. The radius tends to zero linearly, like(t
�
� t), collapsing to zero in a

finite time. At the same time the strain ratea(t) tends to infinity like(t
�
� t)�1.
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