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It is generally believed that the major effects of viscosity are associated with vorticity.
This belief is not always well founded; major effects of viscosity can be obtained
from purely irrotational analysis of flows of viscous fluids. Here we illustrate this
point by comparing our irrotational solutions with Lamb’s 1932 exact solution of the
problem of the decay of free gravity waves. Excellent agreements, even in fluids 107

more viscous than water, are achieved for the decay rates n(k) for all wavenumbers k,
excluding a small interval around a critical value kc where progressive waves change
to monotonic decay.

1. Introduction
Lamb (1932, § § 348, 349) performed an analysis of the effect of viscosity on free

gravity waves. He computed the decay rate by a dissipation method using the irrota-
tional flow only. He also constructed an exact solution for this problem, which satisfies
both the normal and shear stress conditions at the interface.

Joseph & Wang (2004) studied Lamb’s problem using the theory of viscous potential
flow (VPF) and obtained a dispersion relation which gives rise to both the decay
rate and wave-velocity. They also computed a viscous correction for the irrotational
pressure and used this pressure correction in the normal stress balance to obtain
another dispersion relation. This method is called a viscous correction of the viscous
potential flow (VCVPF). Since VCVPF is an irrotational theory, the shear stress cannot
be made to vanish. However, the shear stress in the energy balance can be eliminated
in the mean by the selection of an irrotational pressure which depends on viscosity.

Here we find that the viscous pressure correction gives rise to a higher-order
irrotational correction to the velocity, which is proportional to the viscosity and does
not have a boundary-layer structure. The corrected velocity depends strongly on
viscosity and is not related to vorticity. The corrected irrotational flow gives rise to a
dispersion relation which is in splendid agreement with Lamb’s exact solution, which
has no explicit viscous pressure. The agreement with the exact solution holds for
fluids even 107 times more viscous than water and for all wavenumbers away from
the cutoff wavenumber kc which marks the place where progressive waves change to
monotonic decay. We find that VCVPF gives rise to the same decay rate as in Lamb’s
exact solution and in his dissipation calculation when k < kc. The exact solution agrees
with VPF when k > kc. The effects of vorticity are evident only in a small interval
centred on the cutoff wavenumber. We present a comprehensive comparison for the
decay rate and wave-velocity given by Lamb’s exact solution and Joseph & Wang’s
VPF and VCVPF theories.
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2. Irrotational viscous corrections for the potential flow solution
The gravity wave problem is governed by the linearized Navier–Stokes equation

and the continuity equation

∂u
∂t

= − 1

ρ
∇p − gey + ν∇2u, (2.1)

∇ · u = 0, (2.2)

subject to the boundary conditions at the free surface (y ≈ 0)

Txy = 0, Tyy = 0, (2.3)

where Txy and Tyy are components of the stress tensor and the surface tension is
neglected. Surface tension is important at high wavenumbers but, for simplicity, is
neglected in the analyses given here. We divide the velocity and pressure field into
two parts

u = up + uv, p = pp + pv, (2.4)

where the subscript p denotes potential solutions and v denotes viscous corrections.
The potential solutions satisfy

up = ∇φ, ∇2φ = 0, (2.5)

and
∂up

∂t
= − 1

ρ
∇pp − gey. (2.6)

The viscous corrections are governed by

∇ · uv = 0, (2.7)

∂uv

∂t
= − 1

ρ
∇pv + ν∇2uv. (2.8)

We take the divergence of (2.8) and obtain

∇2pv = 0, (2.9)

which shows that the pressure correction must be harmonic. Next we introduce a
streamfunction ψ so that (2.7) is satisfied identically:

uv = −∂ψ

∂y
, vv =

∂ψ

∂x
. (2.10)

We eliminate pv from (2.8) by cross-differentiation and obtain the following equation
for the streamfunction

∂

∂t
∇2ψ = ν∇4ψ. (2.11)

To determine the normal modes which are periodic in respect of x with a prescribed
wavelength λ= 2π/k, we assume that

ψ = Bent+ikxemy, (2.12)

where m is to be determined from (2.11). Inserting (2.12) into (2.11), we obtain

(m2 − k2)[n − ν(m2 − k2)] = 0. (2.13)

The root m2 = k2 gives rise to irrotational flow; the root m2 = k2 + n/ν leads to the
rotational component of the flow. The rotational component cannot give rise to a
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harmonic pressure satisfying (2.9) because

∇2ent+ikxemy = (m2 − k2)ent+ikxemy (2.14)

does not vanish if m2 �= k2. Thus, the governing equation for the rotational part of
the flow can be written as

∂ψ

∂t
= ν∇2ψ. (2.15)

This is the equation used by Lamb (1932) for the rotational part of his exact solution.
The effect of viscosity on the decay of a free gravity wave can be approximated

by a purely irrotational theory in which the explicit appearance of the irrotational
shear stress in the mechanical energy equation is eliminated by a viscous contribution
pv to the irrotational pressure. In this theory u = ∇φ and a streamfunction, which is
associated with vorticity, is not introduced. The kinetic energy, potential energy and
dissipation of the flow can be computed using the potential flow solution

φ = Aent+ky+ikx. (2.16)

We insert the potential flow solution into the mechanical energy equation

d

dt

(∫
V

ρ|u|2/2 dV +

∫ λ

0

ρgη2/2 dx

)
=

∫ λ

0

[v(−p + τyy) + uτxy] dx +

∫
V

2µD :D dV ,

(2.17)

where η is the elevation of the surface and D is the rate of strain tensor. Motivated
by previous authors (Moore 1963; Kang & Leal 1988), we add a pressure correction
to the normal stress which satisfies∫ λ

0

v(−pv) dx =

∫ λ

0

uτxy dx. (2.18)

However, in our problem here, there is no explicit viscous pressure function in the
exact solution (see (3.1) and (3.2)). It turns out that the pressure correction defined
here in the purely irrotational flow is related to quantities in the exact solution in a
complicated way which requires further analysis (see (3.8)).

Joseph & Wang (2004) solved for the harmonic pressure correction from (2.9), then
determined the constant in the expression of pv using (2.18), and obtained

pv = −2µk2Aent+ky+ikx. (2.19)

The velocity correction associated with this pressure correction can be solved from
(2.8). We seek normal modes solution uv ∼ ent+ky+ikx and equation (2.8) becomes

ρnuv = −∇pv. (2.20)

Hence, curl(uv) = 0 and uv is irrotational. After assuming uv = ∇φ1 and φ1 =
A1e

nt+ky+ikx , we obtain

ρnφ1 = −pv ⇒ φ1 =
2µk2

ρn
Aent+ky+ikx. (2.21)

We compute the viscous normal stress due to the velocity correction

2µ
∂vv

∂y
= 2µ

∂2φ1

∂y2
=

4µ2k4

ρn
Aent+ky+ikx. (2.22)
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Since for mobile fluids such as water or even glycerine, ν = µ/ρ is small, this viscous
normal stress is negligible compared to pv when k is small. Therefore, the viscous
normal stress induced by the velocity correction can be neglected in the normal stress
balance in the VPVPF theory. The viscous normal stress (2.22) could be large when
k is large; however, we will show in the following sections that the flow is nearly
irrotational at large values of k and no correction is required.

This calculation shows that the velocity uv associated with the pressure correction
is irrotational. The pressure correction (2.19) is proportional to µ and it induces
a correction φ1 given by (2.21), which is also proportional to µ. The shear stress
computed from uv = ∇φ1 is then proportional to µ2. To balance this non-physical
shear stress, we can add a pressure correction proportional to µ2, which will in turn
induce a correction for the velocity potential proportional to µ2. We can continue
to build higher-order corrections and they will all be irrotational. The final velocity
potential has the following form

φ = (A + A1 + A2 + · · ·)ent+ky+ikx, (2.23)

where A1 ∼ µ, A2 ∼ µ2 . . . . Thus, the VCVPF theory is an approximation to the exact
solution based on solely potential flow solutions. The higher-order corrections are
small for liquids with small viscosities; the most important correction is the first
pressure correction proportional to µ. In our application of VCPVF to the gravity
wave problem, only the first pressure correction (2.19) is added to the normal stress
balance and higher-order normal stress terms such as (2.22) are not added. We obtain
a dispersion relation in excellent agreement with Lamb’s exact solution (see the
comparison in the next section); adding the higher-order corrections to the normal
stress balance does not improve the VCVPF approximation. It should be pointed out
that no matter how many correction terms are added to the potential (2.23), the shear
stress evaluated using (2.23) is still non-zero unless (A+A1 +A2 + · · ·) = 0. Therefore,
VCVPF is only an approximation to the exact solution and cannot satisfy the shear
stress condition at the free surface.

Prosperetti (1976) considered viscous effects on standing free gravity waves using
the same governing equations (2.7) and (2.8) for the viscous correction terms. If
we adapt our VCPVF method to treat standing waves represented by the potential
φ = k−1 (da/dt)eky cos kx, we can obtain −pv = 2µk (da/dt)eky cos kx, which is exactly
the same pressure correction obtained by Prosperetti (1976) using a different method.

3. Relation between the pressure correction and Lamb’s exact solution
It has been conjectured and is widely believed (Moore 1963; Harper & Moore

1968; Joseph & Wang 2004) that a viscous pressure correction arises in the vortical
boundary layer at the free surface which is neglected in the irrotational analysis.
However, no viscous pressure correction arises in Lamb’s exact solution. His solution
is given by a potential φ and a streamfunction ψ:

u =
∂φ

∂x
− ∂ψ

∂y
, v =

∂φ

∂y
+

∂ψ

∂x
,

p

ρ
= −∂φ

∂t
− gy, (3.1)

satisfying

∇2φ = 0, ∂ψ/∂t = ν∇2ψ. (3.2)

The streamfunction gives rise to the rotational part of the flow. No pressure term
enters into the streamfunction equation, as we have shown in the previous section
that the only harmonic pressure for the rotational part is zero. The pressure p comes
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k pv/ρ Term 1 Term 2 Term 3 Term 4

0.01 −2.063 × 10−6 −1.325 × 10−9 + −2.063 × 10−6 − −1.325 × 10−9 5.300 × 10−9 +
i2.01 × 10−4 i2.01 × 10−4 i5.300 × 10−9

0.1 −2.057 × 10−4 −7.441 × 10−7 + −2.071 × 10−4 − −7.461 × 10−7 2.980 × 10−6 +
i0.00358 i0.00358 i2.980 × 10−6

1 −0.02022 −4.207 × 10−4 + −0.02106 − −4.186 × 10−4 0.001679 +
i0.06272 i0.06440 i0.001679

10 −1.881 −0.3131 + i0.6303 −2.423 − i1.513 −0.1829 1.038 + i0.8830

Table 1. The value of each term in (3.8) normalized by AE for SO10000 oil at different
wavenumbers; term 1 = ∂(φJ − φE)/∂t , term 2 = g(ηJ −ηE), term 3 = 2ν∂2(φJ − φE)/∂y2 and
term 4 = 2ν∂2ψE/∂x∂y.

from Bernoulli’s equation in (3.1) and no explicit viscous pressure exists, though p

depends on the viscosity through the velocity potential. Lamb shows that (3.2) can
be solved with normal modes

φ = Aekyeikx+nt , ψ = Cemyeikx+nt , m2 = k2 + n/ν, (3.3)

where A and C are constants.
It is therefore of interest to derive the connection between the viscous pressure

correction pv in our VCVPF theory and Lamb’s exact solution; superscript E
represents Lamb’s exact solution and J represent Joseph & Wang’s VCVPF theory.
The irrotational pressure in the two solutions are

pE = −ρ
∂φE

∂t
− ρgηE, pJ

i = −ρ
∂φJ

∂t
− ρgηJ . (3.4)

The elevation η is obtained from the kinematic condition at y ≈ 0

∂η

∂t

E

=
∂φE

∂y
+

∂ψE

∂x
,

∂η

∂t

J

=
∂φJ

∂y
. (3.5)

The normal stress balance for the two solutions is

T E
yy = −pE + 2µ

∂2φE

∂2y
+ 2µ

∂2ψE

∂x∂y
= 0, (3.6)

T J
yy = −pJ

i − pv + 2µ
∂2φJ

∂2y
= 0. (3.7)

Therefore T E
yy − T J

yy = 0 and we can obtain

pv

ρ
=

∂(φJ − φE)

∂t
+ g(ηJ − ηE) + 2ν

∂2(φJ − φE)

∂y2
− 2ν

∂2ψE

∂x∂y
. (3.8)

The amplitude A for the potential is different in Lamb’s exact solution and in
VCPVF:

φE = AE ent+ky+ikx, φJ = AJ ent+ky+ikx, AE �= AJ . (3.9)

To make the two solutions comparable, we compute the relation between AE and
AJ by equating the dissipation evaluated using Lamb’s exact solution and evaluated
using VCVPF. Table 1 gives the values of each term in (3.8) normalized by AE . It
seems that the term g(ηJ − ηE) gives the most important contribution to pv , but the
other terms are not negligible.
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4. Comparison of the decay rate and wave velocity given by the exact solution,
VPF and VCVPF

When the surface tension is ignored, Lamb’s exact solution gives rise to the following
dispersion relation:

n2 + 4νk2n + 4ν2k4 + gk = 4ν2k3
√

k2 + n/ν. (4.1)

Lamb considered the solution of (4.1) in the limits of small k and large k. When
k � kc = (g/ν2)1/3, he obtained approximately

n = −2νk2 ± ik
√

g/k, (4.2)

which gives rise to the decay rate –2νk2, in agreement with the dissipation result, and
the wave velocity

√
g/k, which is the same as the wave velocity for inviscid potential

flow. When k 	 kc = (g/ν2)1/3, Lamb noted that the two roots of (4.1) are both real.
One of them is

n1 = − g

2νk
, (4.3)

and the other is

n2 = −0.91νk2. (4.4)

Lamb pointed out that n1 is the more important root because the motion
corresponding to n2 dies out very rapidly.

4.1. VPF results

Joseph & Wang (2004) treated this problem using VPF and obtained the following
dispersion relation

n2 + 2νk2n + gk = 0. (4.5)

When k < kc = (g/ν2)1/3, the solution of (4.5) is

n = −νk2 ± ik
√

g/k − ν2k2. (4.6)

We note that the decay rate –νk2 is half of that in (4.2) and the wave velocity√
g/k − ν2k2 is slower than the inviscid wave velocity. When k > kc = (g/ν2)1/3, the

two roots of (4.5) are both real and they are

n = −νk2 ±
√

ν2k4 − gk. (4.7)

If k 	 kc = (g/ν2)1/3, the above two roots are approximately

n1 = − g

2νk
, (4.8)

and

n2 = −2νk2 +
g

2νk
. (4.9)

We note that (4.8) is the same as (4.3), and the magnitude of (4.9) is approximately
twice that of (4.4).

4.2. VCVPF results

Joseph & Wang (2004) computed a pressure correction and added it to the normal
stress balance to obtain

n2 + 4νk2n + gk = 0, (4.10)
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Fluid Water Glycerine SO10000 –

ν(m2 s−1) 10−6 6.21 × 10−4 1.03 × 10−2 10
kc (m−1) 21399.7 294.1 45.2 0.461

Table 2. The values for the cutoff wavenumber kc for water, glycerine SO10000 oil and the
liquid with ν = 10 m2 s−1. kc decreases as the viscosity increases.

which is the dispersion relation for VCVPF theory. When k < k′
c = (g/4ν2)1/3, the

solution of (4.10) is

n = −2νk2 ± ik
√

g/k − 4ν2k2. (4.11)

We note that the decay rate –2νk2 is the same as in (4.2) and the wave velocity√
g/k − 4ν2k2 is slower than the inviscid wave-velocity. When k > k′

c = (g/4ν2)1/3, the
two roots of (4.10) are both real and they are

n = −2νk2 ±
√

4ν2k4 − gk. (4.12)

If k 	 k′
c =(g/4ν2)1/3, the above two roots are approximately

n1 = − g

4νk
, (4.13)

and

n2 = −4νk2 +
g

4νk
. (4.14)

We note that (4.13) is half of (4.3), and the magnitude of (4.14) is approximately four
times that of (4.4).

4.3. Comparisons for the results

We compute the solution of (4.1) and compare the real and imaginary part of n with
those obtained by solving (4.5) and (4.10). Water, glycerine and SO10000 oil, for which
the kinematic viscosity is 10−6, 6.21 × 10−4 and 1.03 × 10−2 m2 s−1, respectively, are
chosen as examples. Figures 1 and 2 show the decay rate –Re(n) for water; the root
n1 when k > kc is shown in figure 1 and the root n2 in figure 2. The imaginary part of
n, i.e. the wave velocity multiplied by k, is plotted in figure 3 for water. For glycerine
and SO10000 oil (figures 4 and 5), we only plot the decay rate corresponding to the
more important root n1; the plots for the root n2 and the wave velocity are omitted.
Figure 6 shows the decay rate corresponding to the root n1 for ν = 10 m2 s−1, which is
1000 times more viscous than SO10000 oil; the comparison between the exact solution
and VPF, VCVPF is still excellent. The cutoff wavenumber kc = (g/ν2)1/3 decreases as
the viscosity increases. In Table 2 gives the values of kc for water, glycerine, SO10000
oil and the liquid with ν = 10 m2 s−1. In practice, waves associated with different
wavenumbers may exist simultaneously. For very viscous fluids, kc is small and the
majority of the wave numbers are above kc, therefore the motion of monotonic decay
dominates; for less viscous fluids, the motion of progressive waves may dominate.

5. Why does the exact solution agree with VCVPF when k < kc and with VPF
when k > kc?

Our VCVPF solution and Lamb’s dissipation calculation are based on the
assumption that the energy equation (2.17) for the exact solution is approximated
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Figure 1. Decay rate −Re(n) vs. wavenumber k for water, ν = 10−6 m2 s−1. Re(n) is computed
–, for the exact solution from (4.1), �, for VPF from (4.5) and �, for VCVPF from (4.10).
When k < kc , the decay rate −2νk2 for VCVPF is in good agreement with the exact solution,
whereas the decay rate −νk2 for VPF is only half of the exact solution. When k > kc , n has
two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding to
(4.3), (4.8) and (4.13). The exact solution can be approximated by −g/(2νk); the decay rate
−g/(2νk) for VPF is in agreement with the exact solution, whereas the decay rate −g/(4νk)
for VCVPF is only half of the exact solution.
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Figure 2. Decay rate −Re(n) vs. wavenumber k for water, ν = 10−6 m2 s−1. Re(n) is computed
–, for the exact solution from (4.1), �, for VPF from (4.5) and �, for VCVPF from (4.10).
When k > kc , n has two real solutions in each theory. In this figure, we plot the decay rate
n2 corresponding to (4.4), (4.9) and (4.14). The decay rate for the exact solution can be
approximated by −0.91νk2; the decay rate ≈ −2νk2 for VPF is closer to the exact solution
than the decay rate ≈ −4νk2 for VCVPF.

well by an irrotational solution. To verify this, we computed and compared the rates
of change of the kinetic energy, the potential energy and dissipation terms in (2.17)
for Lamb’s exact solution and for the purely irrotational part of his solution. The
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Figure 3. Im(n), i.e. the wave velocity multiplied by k, vs. wavenumber k for water,
ν = 10−6 m2 s−1. Im(n) is computed –, for the exact solution from (4.1), – - –, for VPF from
(4.5) and �, for VCVPF from (4.10). When k < kc , the three theories give almost the same
wave velocity. When k > kc , all the three theories give zero imaginary part of n.
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Figure 4. Decay rate −Re(n) vs. wavenumber k for glycerine, ν = 6.21 × 10−4 m2 s−1. Re(n) is
computed –, for the exact solution from (4.1), �, for VPF from (4.5) and �, for VCVPF from
(4.10). When k < kc , the decay rate −2νk2 for VCVPF is in good agreement with the exact
solution, whereas the decay rate −νk2 for VPF is only half of the exact solution. When k > kc , n
has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding to
(4.3), (4.8) and (4.13). The decay rate for the exact solution can be approximated by −g/(2νk);
the decay rate −g/(2νk) for VPF is in agreement with the exact solution, whereas the decay
rate −g/(4νk) for VCVPF is only half of the exact solution.

agreement is excellent when k < kc. This shows that the vorticity may be neglected in
the computation of terms in the energy balance when k < kc, and is consistent with
results given in §4 which demonstrate that the decay rates from VCVPF and the
dissipation calculation agree with the exact solution when k is small. The agreement



470 J. Wang and D. D. Joseph

k

–R
e(

n)

10–2 10–1 100 101 102 103 104 105

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

101

102

For root n1

kc

Figure 5. Decay rate −Re(n) vs. wavenumber k for SO10000 oil, ν = 1.03 × 10−2 m2 s−1. Re(n)
is computed –, for the exact solution from (4.1), �, for VPF from (4.5) and �, for VCVPF from
(4.10). When k < kc , the decay rate −2νk2 for VCVPF is in good agreement with the exact
solution, whereas the decay rate −νk2 for VPF is only half of the exact solution. When k > kc , n
has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding to
(4.3), (4.8) and (4.13). The decay rate for the exact solution can be approximated by −g/(2νk);
the decay rate −g/(2νk) for VPF is in agreement with the exact solution, whereas the decay
rate −g/(4νk) for VCVPF is only half of the exact solution.
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Figure 6. Decay rate −Re(n) vs. wavenumber k for ν = 10 m2 s−1. Re(n) is computed –, for
the exact solution from (4.1), �, for VPF from (4.5) and �, for VCVPF from (4.10). When
k < kc , the decay rate −2νk2 for VCVPF is in good agreement with the exact solution, whereas
the decay rate −νk2 for VPF is only half of the exact solution. When k > kc , n has two real
solutions in each theory. In this figure, we plot the decay rate n1 corresponding to (4.3),
(4.8) and (4.13). The decay rate for the exact solution can be approximated by −g/(2νk); the
decay rate −g/(2νk) for VPF is in agreement with the exact solution, whereas the decay rate
−g/(4νk) for VCVPF is only half of the exact solution.
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is poor for k in the vicinity of kc, therefore the decay rates from VCVPF deviate from
the exact solution near kc, as shown in figures 1 to 6.

When k is much larger than kc, the energy equation is not approximated well by the
irrotational part of the exact solution. However, this result does not mean that the
vorticity is important. Lamb pointed out m ≈ k when k is large, which is confirmed
in our calculation. It follows that the vorticity of the exact solution is

∇2ψ = (m2 − k2)Cemy+ikx+nt ≈ 0; (5.1)

the vorticity is negligible when k is large. The result that the wave is nearly irrotational
for large k was also pointed out by Tait (1890). Consequently, the decay rate −g/(2νk)
from VPF is in good agreement with the exact solution and no pressure correction is
required.

6. Conclusion
The problem of decay of free gravity waves due to viscosity was analysed using

two different theories of viscous potential flow, VPF and VCVPF. The contribution of
the viscous part of the normal stress at the gas liquid surface is computed using the
potential flow in VPF; otherwise the VPF theory is the same as the irrotational theory
of flow of an inviscid fluid. VCVPF is the same as VPF except for an additional
viscous contribution to the pressure selected so as to remove the shear stress in the
energy balance evaluated using the irrotational flow. The pressure correction leads to
a hierarchy of potential flows in powers of viscosity. These higher-order contributions
vanish more rapidly than the principal correction which is proportional to µ. The
higher-order corrections do not have a boundary-layer structure and may not have a
physical significance.

The irrotational theory is in splendid agreement with Lamb’s exact solution
for all wavenumbers k except for those in a small interval around kc where
progressive waves change to monotonic decay. VCVPF agrees with Lamb’s solution
when k < kc (progressive waves) and VPF agrees with Lamb’s exact solution when
k > kc (monotonic decay). The cutoff wave number kc =(g/ν2)1/3 decreases as the
viscosity increases. In practice, waves associated with different wave numbers may
exist simultaneously. For very viscous fluids, kc is small and the majority of the
wavenumbers are above kc, therefore the motion of monotonic decay dominates; for
less viscous fluids, the motion of progressive waves may dominate.

There is a boundary layer of vorticity associated with the back and forth motion of
the progressive waves. The confined vorticity layer has almost no effect on the solution
except for k near kc. There is no explicit pressure correction in the exact solution.
The vortical part of the exact solution does not generate a pressure correction; the
pressure depends on the viscosity through the velocity potential and the surface
elevation; it is related to the potential and vortical parts of the exact solution in a
complicated way. The vortical part is not dominant and the pressure correction is
not primarily associated with a boundary layer (see (3.8) and table 1).

The analysis of capillary instability of liquid in gas (Wang, Joseph & Funada 2005)
is very much like the analysis of the decay of free gravity waves. The purely potential
flow analysis is in excellent agreement with Tomotika’s (1935) exact solution which
has no explicit dependence on viscous pressure. In the case of capillary instability, the
best result is based on VCVPF because the short waves which give rise to a sluggish
decay in Lamb’s problem are stabilized by surface tension.
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