Simulating the dynamics of fluid–ellipsoid interactions

Tsorng-Whay Pan a,*, Daniel D. Joseph b, Roland Glowinski

a University of Houston, Department of Mathematics, Houston, TX 77204-3008, USA
b Department of Aerospace Engineering and Mechanics, University of Minnesota, MN 55455, USA

Accepted 19 August 2004
Available online 21 December 2004

Abstract

We present the simulation of the dynamics of fluid–ellipsoid interactions in a narrow channel filled with a Newtonian fluid, using a Lagrange multiplier based fictitious domain methodology. As expected, a settling ellipsoid turns its broadside perpendicular to the stream main direction and the center of mass moves to the central axis of the channel. For two ellipsoid cases, we have obtained two kinds of interactions between two ellipsoids: (1) they settle side-by-side and interact with each other periodically; (2) they keep moving around each other and stay together. We also found that the length of longest axis plays an important role for these interactions.

Keywords: Particulate flow; Finite element methods; Operator-splitting methods; Fictitious domain methods

1. Introduction

The orientation of symmetric long body, e.g., ellipsoid and truncated cylinder, settling in liquids of different nature is a fundamental issue in many problems of practical interest (see, e.g., [1], and the references therein). In the past decade, more and more researchers have developed numerical methods for the direct simulation of fluid/particle interaction, e.g., see Refs. [2–13] and the references therein for more details. In this article we first discuss the generalization of a Lagrange multiplier based fictitious domain method [9,10] to the simulation of the motion of particles of general shape in a Newtonian fluid. Unlike the cases where the particles are spheres, we attach two points to each particle and move them according to the rigid-body motion of the particle. The equations describing the motion of these two points are solved by a distance preserving scheme so that rigidity can be maintained. Then we apply the above methodology to simulate the settling of ellipsoids in a narrow channel filled with a Newtonian fluid. As expected, a settling ellipsoid turns its broadside perpendicular to the stream main direction and the center of mass moves toward the central axis of the channel. For two ellipsoid cases, we have obtained two kinds of interactions. When initially placed side-by-side, they sediment side-by-side and interact with each other periodically. But with short long axis, the interaction between two ellipsoids is weaker. When releasing initially one on top of the other, we have observed that two ellipsoids keep moving around each other and stay together while they are settling down in the channel. Depending on the length of the longest axis, they can either interact at one side of the channel or interact and oscillate between two sides of the channel. The simulations discussed in this article concern fluid-rigid solid interactions. More general situations are discussed in, e.g., [14,15], where the
case of elastic solids is also considered (see also the references therein).

2. A model problem and fictitious domain formulation for three-dimensional particulate flow

To perform the direct numerical simulation of the interaction between particles and fluid, we have developed a methodology which combines a distributed Lagrange multiplier based fictitious domain (also called domain embedding) method with operator splitting methods [9,10,16–18]. This approach (or closely related ones derived from it) has been used by other investigators (c.g., [12,19–21]). We are going to recall the ideas at the basis of the above methodology by considering the motion of a single particle in a Newtonian viscous incompressible fluid (of density $\rho_l$ and viscosity $\nu_l$) under the effect of gravity; actually, the generalization to a thousand of spherical particles in 2-D is possible as shown in [10,22,23]. For the situation depicted in Fig. 1 (for non-spherical particle cases), the flow is modeled by the Navier–Stokes equations, namely, (with obvious notation)

$$\rho_l \left[ \frac{\partial \mathbf{u}}{\partial t} + \left( \mathbf{u} \cdot \nabla \right) \mathbf{u} \right] - \nabla \cdot \mathbf{p} = \rho_l \mathbf{g} \quad \text{in} \quad \Omega \setminus \overline{B(t)}, \quad 0 < t < T, \quad (1)$$

$$\mathbf{V} \cdot \mathbf{u} = 0 \quad \text{in} \quad \Omega \setminus \overline{B(t)}, \quad 0 < t < T, \quad (2)$$

$$\mathbf{u}(0) = \mathbf{u}_0(x) \quad (\text{with} \quad \mathbf{V} \cdot \mathbf{u}_0 = 0), \quad (3)$$

$$\mathbf{u} = \mathbf{g}_0 \quad \text{on} \quad \Gamma \times (0, T), \quad \text{with} \quad \int_{\Gamma} \mathbf{g}_0 \cdot \mathbf{n} d\Gamma = 0, \quad (4)$$

where $\Gamma = \partial \Omega$, $\mathbf{g}$ denotes gravity and $\mathbf{n}$ is the unit normal vector pointing outward to the flow region. We assume a no-slip condition on $\gamma = \partial \mathcal{B}$. The motion of particle $\mathcal{B}$ satisfies the Euler–Newton’s equations, namely

$$\mathbf{v}(x,t) = \mathbf{V}(t) + \omega(t) \times \mathbf{G}(t)x,$$

$$\forall \{x,t\} \in \overline{B(t)}, \quad 0 < t < T,$$

$$\frac{d\mathbf{G}}{dt} = \mathbf{V}, \quad (6)$$

$$M_p \frac{d\mathbf{V}}{dt} = M_p \mathbf{g} + \mathbf{F}_H + \mathbf{F}^r, \quad (7)$$

$$\frac{d(I_p \mathbf{\omega})}{dt} = \mathbf{T}_H + \mathbf{G}_{x} \times \mathbf{F}^r, \quad (8)$$

with the resultant and torque of the hydrodynamical forces given by, respectively,

$$\mathbf{F}_H = - \int_{\partial\Omega} \mathbf{\sigma} d\gamma, \quad \mathbf{T}_H = - \int_{\partial\Omega} \mathbf{G}_{x} \times \mathbf{\sigma} d\gamma \quad (9)$$

with $\mathbf{\sigma} = \gamma_l (\mathbf{Vu} + \mathbf{V} \cdot \mathbf{u} \mathbf{I}) - \rho \mathbf{I}$. Relations (1)–(9) are completed by the following initial conditions

$$\mathbf{G}(0) = \mathbf{G}_0, \quad \mathbf{V}(0) = \mathbf{V}_0, \quad \omega(0) = \omega_0, \quad B(0) = \mathcal{B}_0. \quad (10)$$

Above, $M_p, I_p, \mathbf{G}, \mathbf{V}$ and $\omega$ are the mass, inertia, center of mass, velocity of the center of mass and angular velocity of particle $\mathcal{B}$, respectively. In (8) we found preferable to deal with the kinematic angular momentum $I_p \mathbf{\omega}$ making the formulation more conservative. In order to avoid particle-particle and particle-wall penetration which can happen in the numerical simulation, we have introduced an artificial short-range repulsion force $\mathbf{F}^r$ in (7), which becomes active when the shortest distance between two (convex) particles or between (convex) particle and wall is less than a prechosen distance (for more details, see, e.g., [9] and [10]; see also [24] for another approach) and then a torque in (8) acting on the point $\mathbf{x}$ where $\mathbf{F}^r$ applies on $\mathcal{B}$. For non-convex particles, we can apply similar approach to activate the short-range repulsion force $\mathbf{F}^r$.

To solve system (1)–(10) we can use, for example, Arbitrary Lagrange–Euler (ALE) methods as in [5–7], or fictitious domain methods, which allow the flow calculation on a fixed grid, as in [9,10,16–18]. The fictitious domain methods that we advocate have some common features with the immersed boundary method of Ch. Peskin (see, e.g., Refs. [25–27]) but also some significant differences in the sense that we take systematically advantage of distributed Lagrange multipliers to force the rigid body motion inside the particle. As with the methods in [25–27], our approach takes advantage of the fact that the flow can be computed on a grid which

![Fig. 1. The flow region with one particle.](image-url)
does not have to vary in time, a substantial simplification indeed.

The principle of fictitious domain methods is simple. It consists of

- Filling the particles with a fluid having the same density and viscosity as the surrounding one.
- Compensating the above step by introducing, in some sense, an anti-particle of mass \((-1)M_f\) and inertia \((-1)I_f\), taking into account the fact that any rigid body motion \(\mathbf{v}(x,t)\) verifies \(\nabla \cdot \mathbf{v} = 0\) and \(\mathbf{D}(\mathbf{v}) = 0\) (particle density).
- Finally, imposing the rigid body velocity on \(\overline{B(t)}\), namely

\[
\mathbf{v}(x,t) = \mathbf{V}(t) + \omega(t) \times \mathbf{G}(t)x, \\
\forall x \in \overline{B(t)}, \quad \forall t \in (0,T),
\]

via a Lagrange multiplier \(\lambda\) supported by \(\overline{B(t)}\). Vector \(\lambda\) forces rigidity in \(B(t)\) in the same way that \(\nabla \mathbf{p}\) forces \(\nabla \cdot \mathbf{v} = 0\) for incompressible fluids.

We obtain then an equivalent formulation of (1)–(10) defined on the whole domain \(\Omega\), namely

\[\mathbf{u}(t) \in W_{0,0}(t), \quad p(t) \in L^2_0(\Omega), \quad \mathbf{V}(t) \in \mathbb{R}^3, \quad \mathbf{G}(t) \in \mathbb{R}^3, \quad \omega(t) \in \mathbb{R}^3, \quad \lambda(t) \in A(t)\]

and

\[
\left\{ \begin{array}{l}
\rho \int_{\Omega} \left[ \frac{du}{dt} + (\mathbf{u} \cdot \nabla)\mathbf{u} \right] \cdot \mathbf{v} \, dx - \int_{\Omega} \rho \mathbf{v} \cdot \nabla \mathbf{u} \, dx + \int_{\partial \Omega} \mathbf{u} \cdot \mathbf{v} \, ds \\
- \left( \lambda, \mathbf{v} - \mathbf{Y} - \theta \times \mathbf{G} \right)_{A(0)} + \left( 1 - \frac{\mu}{\rho} \right) \left[ M_{\mu} \frac{d\mathbf{u}}{dt} \times \mathbf{Y} \right] \\
+ \frac{d(\rho \omega)}{dt} \mathbf{g} - \mathbf{F}^e \cdot \mathbf{Y} - \mathbf{G}_x \times \mathbf{F}^e \cdot \mathbf{\theta} \\
= \left( 1 - \frac{\mu}{\rho} \right) M_{\mu} \mathbf{g} \cdot \mathbf{Y} + \rho \int_{\Omega} \mathbf{g} \cdot \mathbf{v} \, dx \\
\end{array} \right. \quad \forall \mathbf{v} \in (H^1_0(\Omega))^3, \quad \forall \mathbf{Y} \in \mathbb{R}^3, \quad \forall \mathbf{\theta} \in \mathbb{R}^3,
\]

\[
\int_{\Omega} q \mathbf{V} \cdot \mathbf{u} \, dx = 0, \quad \forall q \in L^2(\Omega),
\]

\[
\frac{d\mathbf{G}}{dt} = \mathbf{V},
\]

\[
(\mathbf{\mu} \cdot \mathbf{u}(t) - \mathbf{V}(t) - \omega(t) \times \mathbf{G}(t)x)_{A(0)} = 0, \quad \forall \mathbf{\mu} \in A(t),
\]

\[
\mathbf{V}(0) = \mathbf{V}_0, \quad \omega(0) = \omega_0, \quad \mathbf{G}(0) = \mathbf{G}_0, \quad B(0) = B_0,
\]

\[
\mathbf{u}(x,0) = \hat{\mathbf{u}}_0(x), \quad \mathbf{V}_0 + \omega_0 \times \mathbf{G}_0 \mathbf{x}, \quad \forall x \in \Omega \setminus B(0),
\]

with the following functional spaces

\[
W_{0,0}(t) = \{ \mathbf{v} \mid \mathbf{v} \in (H^1(\Omega))^3, \quad \mathbf{V} = \mathbf{g}_0(t) \text{ on } \Gamma \},
\]

\[
L^2_0(\Omega) = \{ q \mid q \in L^2(\Omega), \int_\Omega q \, dx = 0 \},
\]

\[
A(t) = (H^1(B(t)))^3.
\]

Various examples for \(\langle \cdot, \cdot \rangle_{A(t)}\) in (13) and (16) are given in [10,28, Chapter 8].

Remark 1. The second gravity term in the right-hand-side of the (13) can be combined with the pressure. Hence in the following, we will not use this term anymore.

In (12)–(18), only the center of mass, the translation velocity of the center of mass and the angular velocity of the particle are considered. Knowing these two velocities and the center of mass of the particle, one is able to translate and rotate the particle in space by tracking two extra points \(x_i\) and \(x_i\) in each particle, which follow the rigid body motion

\[
\frac{dx_i}{dt} = \mathbf{V}(t) + \omega(t) \times \mathbf{G}(t)x, \quad x_i(0) = x_{i0}, \quad i = 1,2.
\]

In practice we shall track two orthogonal normalized vectors rigidly attached to the body \(B\) and originating from the center of mass \(G\).

3. Time and space discretization

3.1. Lie's scheme: a first order operator-splitting scheme

Many operator-splitting schemes can be applied to problem (12)–(19). One of the advantage of operator-splitting schemes is that we can decouple difficulties such as (i) the incompressibility condition, (ii) the non-linear advection term, and (iii) the rigid body motion, so that each one of them can be handled separately, and in principle optimally. Let \(\Delta t\) be a time discretization step and \(t^n = (n + s)\Delta t\). The Lie’s scheme is a first order operator-splitting scheme [29], which, when applied to problem (12)–(19), yields:

\[
\mathbf{u}^0 = \hat{\mathbf{u}}_0, \quad \mathbf{G}^0 = \mathbf{G}_0, \quad \mathbf{V}^0 = \mathbf{V}_0, \quad \omega^0 = \omega_0,
\]

\[
x_i^0 = x_{i0}, \quad x_i^0 = x_{i20} \text{ given};
\]
for \( n \geq 0 \), \( u^i(\varepsilon(t^{p_0})) \), \( G^e \), \( V^e \), \( \omega^e \), \( \mathbf{x}_1^e \) and \( \mathbf{x}_2^e \) being known, we first compute \( u^{p+1/6} \) via the solution of

\[
\begin{align*}
\rho \int_{L} \frac{\partial u}{\partial t} \mathbf{v} \, dx - \int_{L} \rho \mathbf{V} \cdot \mathbf{v} \, dx &= 0, \quad \forall \mathbf{v} \in (H^1_0(\Omega))^3, \\
& \text{a.e. on } (t^p, t^{p+1}), \\
\int_{L} \rho \mathbf{V} \cdot \mathbf{u} \, dx &= 0, \quad \forall \mathbf{q} \in L^2, \\
u(t^p) &= u^e, \\
u(t) \in (H^1(\Omega))^3, u(t) &= g(t^{p+1}) \\
on \Gamma \times (t^p, t^{p+1}), p(t) & \in L^2, \\
\end{align*}
\]

and set \( u^{p+1/6} = u(t^{p+1}) \), \( p^{p+1/6} = p(t^{p+1}) \).

Next, compute \( u^{p+2/6} \) via the solution of

\[
\begin{align*}
\rho \int_{L} \frac{\partial u}{\partial t} \mathbf{v} \, dx + \int_{L} (u^{p+1/6} \cdot \mathbf{v}) \mathbf{u} \cdot \mathbf{v} \, dx &= 0, \quad \forall \mathbf{v} \in W^{0,1/2}_0, \\
a.e. on (t^p, t^{p+1}), \\
u(t^p) &= u^{p+1/6}, \\
u(t) \in (H^1(\Omega))^3, u(t) &= g(t^{p+1}) \\
on \Gamma \times (t^p, t^{p+1}), \\
\end{align*}
\]

and set \( u^{p+2/6} = u(t^{p+1}) \).

Then, compute \( u^{p+3/6} \) via the solution of

\[
\begin{align*}
\rho \int_{L} \frac{\partial u}{\partial t} \mathbf{v} \, dx + \int_{L} \mathbf{V} \cdot \mathbf{u} \cdot \mathbf{v} \, dx &= 0, \quad \forall \mathbf{v} \in (H^1_0(\Omega))^3, \\
a.e. on (t^p, t^{p+1}), \\
u(t^p) &= u^{p+2/6}, \\
u(t) \in (H^1(\Omega))^3, u(t) &= g(t^{p+1}) \\
on \Gamma \times (t^p, t^{p+1}), \\
\end{align*}
\]

and set \( u^{p+3/6} = u(t^{p+1}) \).

Now predict the motion of the center of mass and the angular velocity of the particle via

\[
\begin{align*}
\frac{d \mathbf{G}}{dt} &= \mathbf{V}(t)/2, \\
\left(1 - \frac{\rho_1}{\rho_2}\right) M_p \frac{d \mathbf{V}}{dt} &= \mathbf{F}/2, \\
\left(1 - \frac{\rho_1}{\rho_2}\right) \frac{d (\mathbf{l}_p \omega)}{dt} &= \mathbf{G}_x \times \mathbf{F}/2, \\
\frac{d \mathbf{x}_i}{dt} &= \mathbf{V}(t) + \omega(t) \times \mathbf{G}(t) \mathbf{x}_i, \quad \text{for } i = 1, 2, \\
\mathbf{G}(t^p) &= G^e, \quad \mathbf{V}(t^p) = V^e, \quad (\mathbf{l}_p \omega)(t^p) = (\mathbf{l}_p \omega)^e, \\
x_1(t^p) &= x_1^{p+1/6}, \quad x_2(t^p) &= x_2^{p+1/6}, \quad \text{for } t^p < t < t^{p+1}. \quad \text{Then set } G^{p+1/6} = G(t^{p+1}), \quad V^{p+1/6} = V(t^{p+1}), \quad \mathbf{l}_p \omega)^{p+1/6} = (\mathbf{l}_p \omega)(t^{p+1}), \quad x_1^{p+1/6} = x_1(t^{p+1}), \quad \text{and } x_2^{p+1/6} = x_2(t^{p+1}).
\end{align*}
\]
3.2. Space discretization

We assume that $\Omega \subset \mathbb{R}^3$ and is a rectangular parallelepiped. Concerning the finite element approximation of problem (12)–(19), we have

$$W_h = \{ \mathbf{v}_h | \mathbf{v}_h \in (C^0(\overline{\Omega}))^3, \mathbf{v}_h|_T \in (P_1)^3, \quad \forall T \in \mathcal{T}_h \},$$

(36)

$$W_{0h} = \{ \mathbf{v}_h | \mathbf{v}_h \in W_h, \mathbf{v}_h = \mathbf{0} \text{ on } \Gamma \},$$

(37)

$$L^2_h = \{ q_h | q_h \in C^0(\overline{\Omega}), q_h|_P \in P_1, \quad \forall T \in \mathcal{T}_{2h} \},$$

(38)

$$L^2_{0h} = \{ q_h | q_h \in L^2_h, \int_T q_h \, d\mathbf{x} = 0 \},$$

where $\mathcal{T}_h$ is a tetrahedronization of $\Omega$, $\mathcal{T}_{2h}$ is twice coarser than $\mathcal{T}_h$, and $P_1$ is the space of the polynomials in three variables of degree $\leq 1$. A finite dimensional space approximating $A(t)$ is as follows: let $\{ \xi_j \}_{j=1}^N$ be a set of points from $\overline{B}(t)$ which cover $B(t)$ (uniformly, for example); we define then

$$A_h(t) = \left\{ \mu_h | \mu_h = \sum_{i=1}^N \mu_i \delta(\mathbf{x} - \xi_i), \mu_i \in \mathbb{R}^3, \right\}$$

(39)

where $\delta(\cdot)$ is the Dirac measure at $\mathbf{x} = \mathbf{0}$. Then we shall use $\langle \cdot, \cdot \rangle_h$ defined by

$$\langle \mu_h, \mathbf{v}_h \rangle_h = \sum_{i=1}^N \mu_i \cdot \mathbf{v}_h(\xi_i), \forall \mu_h \in A_h(t), \mathbf{v}_h \in W_h.$$  

(40)

A typical choice of points for defining (39) is to take the grid points of the velocity mesh internal to the particle $B$ and whose distance to the boundary of $B$ is greater than, e.g. $h/2$, and to complete with selected points from the boundary of $B(t)$ (e.g., see Fig. 2 for an example of selected points on the boundary of $B(t)$).

Using the above finite dimensional spaces and the backward Euler’s method for most of the subproblems in scheme (20)–(35), we obtain the following scheme after dropping some of the subscripts $h$ (similar cases are discussed in [9,10,16–18]):

$$
\begin{align*}
\mathbf{u}^0 &= \mathbf{u}_h, \quad \mathbf{G}^0 = \mathbf{G}_h, \quad \mathbf{V}^0 = \mathbf{V}_h, \quad \omega^0 = \omega_h, \\
\mathbf{x}^0 &= \mathbf{x}_{1,0}, \quad \mathbf{x}_2^0 = \mathbf{x}_{2,0} \text{ given}.
\end{align*}
$$

(41)

for $n \geq 0, \mathbf{u}^n(\varepsilon, \mathbf{u}(t^n)), \mathbf{G}^n, \mathbf{V}^n, \omega^n, \mathbf{x}_1^n$ and $\mathbf{x}_2^n$ being known, we compute $\mathbf{u}^{n+1/6}, \mathbf{p}^{n+1/6}$ via the solution of

$$
\begin{cases}
\rho_t \int_O \frac{\mathbf{u}^{n+1/6} - \mathbf{u}^{n}}{\Delta t} \cdot \mathbf{v} \, d\mathbf{x} - \int_O \mathbf{p}^{n+1/6} \mathbf{V} \cdot \mathbf{v} \, d\mathbf{x} = 0, \quad \forall \mathbf{v} \in W_{0h}, \\
\int_O \mathbf{q} \cdot \mathbf{u}^{n+1/6} \, d\mathbf{x} = 0, \quad \forall \mathbf{q} \in L^2_{0h}, \\
\mathbf{u}^{n+1/6} \in W_{0h}, \mathbf{u}^{n+1/6} = \mathbf{g}^{n+1}_{0h} \quad \text{on } \Gamma, \mathbf{p}^{n+1/6} \in L^2_{0h}.
\end{cases}
$$

(42)

Next, compute $\mathbf{u}^{n+2/6}$ via the solution of

$$
\begin{cases}
\int_O \frac{\mathbf{u}^{n+2/6} - \mathbf{u}^{n+1/6}}{\Delta t} \cdot \mathbf{v} \, d\mathbf{x} + \int_O \mathbf{u}^{n+1/6} \cdot \mathbf{V} \mathbf{v} \, d\mathbf{x} = 0, \\
\forall \mathbf{v} \in W_{0h}^- \quad \text{a.e. on } (t^n, t^{n+1}), \\
\mathbf{u}(t^n) = \mathbf{u}^{n+1/6}, \\
\mathbf{u}(t) \in W_h, \mathbf{u}(t) = \mathbf{g}^{n+1}_{0h} \quad \text{on } \Gamma_+ \times (t^n, t^{n+1}),
\end{cases}
$$

(43)

and set $\mathbf{u}^{n+2/6} = \mathbf{u}(t^{n+1})$.

Then, compute $\mathbf{u}^{n+3/6}$ via the solution of

$$
\begin{cases}
\rho_t \int_O \frac{\mathbf{u}^{n+3/6} - \mathbf{u}^{n+2/6}}{\Delta t} \cdot \mathbf{v} \, d\mathbf{x} + \alpha_\nu \int_O \mathbf{u}^{n+3/6} \cdot \mathbf{V} \mathbf{v} \, d\mathbf{x} = 0, \\
\forall \mathbf{v} \in W_{0h}, \mathbf{u}^{n+3/6} \in W_h, \mathbf{u}^{n+3/6} = \mathbf{g}^{n+1}_{0h} \quad \text{on } \Gamma.
\end{cases}
$$

(44)

Now predict the motion of the center of mass and the angular velocity of the particle via

$$
\frac{d \mathbf{G}}{dt} = \mathbf{V}(t)/2, \\
\frac{d}{dt} \left( 1 - \frac{\rho_t}{\rho_\nu} \right) M \frac{d \mathbf{V}}{dt} = \mathbf{F}_r/2, \\
\frac{d}{dt} \left( 1 - \frac{\rho_t}{\rho_\nu} \right) \frac{d (I_p \omega)}{dt} = \mathbf{G}_r \times \mathbf{F}_r/2,
$$

(45)

(46)

(47)

$$
\frac{dx_i}{dt} = \mathbf{V}(t) + \omega(t) \times \mathbf{G}(t) x_i, \quad \text{for } i = 1, 2,
$$

(48)

$$
\mathbf{G}(t^n) = \mathbf{G}^n, \mathbf{V}(t^n) = \mathbf{V}^n, (I_p \omega)(t^n) = (I_p \omega)^n^n, \\
x_1(t^n) = x_1^n, \quad x_2(t^n) = x_2^n
$$

(49)

for $t^n < t < t^{n+1}$.

Then set $\mathbf{G}^{n+4/6} = \mathbf{G}(t^{n+1}), \mathbf{V}^{n+4/6} = \mathbf{V}(t^{n+1}), (I_p \omega)^{n+4/6} = (I_p \omega)(t^{n+1}), x_1^{n+4/6} = x_1(t^{n+1})$, and $x_2^{n+4/6} = x_2(t^{n+1})$.

With the center $\mathbf{G}^{n+4/6}, x_1^{n+4/6}$ and $x_2^{n+4/6}$ obtained at the above step, we enforce the rigid body motion in the region $B(t^{n+4/6})$ occupied by the particle.

![Fig. 2. An example of selected points on the boundary of the particle.](image-url)
Correct the motion of the center of mass and the angular velocity of the particle via

\[
\rho_i \int_0^{\Delta t} \frac{u_i^{n+1}}{\Delta t} \cdot v \, dx + \beta \gamma_i \int_0^{\Delta t} \nabla v^{n+1} : \nabla v \, dx + \left(1 - \frac{\rho_i}{\rho_s} \right) M_p \frac{v^{n+1} - v^{n+1}}{\Delta t} \cdot \mathbf{Y} + \left(1 - \frac{\rho_i}{\rho_s} \right) \frac{(\mathbf{l}_p \omega)^{n+1} - (\mathbf{l}_p \omega)^{n+1}}{\Delta t} \cdot \mathbf{\theta} = 0,
\]

\[
\forall v \in \mathbf{W}_{v0}, \mathbf{Y} \in \mathbb{R}^3, \mathbf{\theta} \in \mathbb{R}^3;
\]
\[
u_i^{n+1} \in \mathbf{W}_v, \omega_i^{n+1} = \text{g}_{\phi_i}^{n+1}; \text{on } I, \lambda_i^{n+1/6} \in \mathbb{A}_h^{n+1/6},
\]
\[
\lambda_i^{n+1/6} \in \mathbb{R}^3, \omega_i^{n+1/6} \in \mathbb{R}^3.
\]

(50)

\[
\langle \mu, u_i^{n+1} - v_i^{n+5/6} - \omega_i^{n+5/6} \times G_i^{n+4/6} \rangle_h = 0, \quad \forall \mu \in \mathbb{A}_h^{n+4/6}. \tag{51}
\]

Correct the motion of the center of mass and the angular velocity of the particle via

\[
\frac{dG}{dt} = \mathbf{V}(t)/2, \tag{52}
\]

\[
\left(1 - \frac{\rho_i}{\rho_s} \right) M_p \frac{d\mathbf{V}}{dt} = \mathbf{F}/2, \tag{53}
\]

\[
\left(1 - \frac{\rho_i}{\rho_s} \right) \frac{d(\mathbf{l}_p \omega)}{dt} = \mathbf{G} \times \mathbf{F}/2, \tag{54}
\]

\[
\frac{dx_i}{dt} = \mathbf{V}(t) + \omega(t) \times G(t) x_i, \quad \text{for } i = 1, 2, \tag{55}
\]

\[
\mathbf{G}(t) = \mathbf{G}^{n+4/6}, \quad \mathbf{V}(t) = \mathbf{V}^{n+5/6}, \quad (\mathbf{l}_p \omega)(t) = (\mathbf{l}_p \omega)^{n+5/6},
\]

\[
x_i(t) = x_i^{n+4/6}, \quad x_i(t) = x_i^{n+4/6}, \tag{56}
\]

for \( t^n < t < t^{n+1} \). Then set \( \mathbf{G}^{n+1} = \mathbf{G}(t^{n+1}), \mathbf{V}^{n+1} = \mathbf{V}(t^{n+1}), \)

\[
(\mathbf{l}_p \omega)^{n+1} = (\mathbf{l}_p \omega)(t^{n+1}), \quad x_i^{n+1} = x_i(t^{n+1}), \quad \text{and} \quad x_i^{n+1} = x_i(t^{n+1}).
\]

In (41)–(56), \( I_{n+1} = \{ x \mid x \in I, \mathbf{g}_{\phi_i}^{n+1}(x) \cdot \mathbf{n}(x) < 0 \} \) and \( \mathbf{W}_{v0}^{n+1} = \{ v \mid v \in \mathbf{W}_v, v = 0 \text{ on } I_{n+1} \} \). \( \mathbb{A}_h^{n+1/6} \) is an approximation of \( \mathbf{g}_{\phi_i}^{n+1} \) belonging to \( \gamma \mathbf{W}_h = \{ \mathbf{z}_h \mid \mathbf{z}_h \in (C^0(I))^3, \quad \mathbf{z}_h = \mathbf{z}_h|_I \text{ with } \mathbf{z}_h \in \mathbf{W}_h \} \)

and verifying \( \int_I \mathbf{g}_{\phi_i}^{n+1} \cdot n \, dI = 0 \).

**Remark 2.** When applying the backward Euler method to all the subproblems in cheme (20)–(35), we obtain a fractional step scheme à la Marchuk–Yanenko [30], which is only first order accurate but its low-order accuracy is compensated by good stability and robustness properties. The preliminary numerical results obtained via the variant of the above scheme (the one without the correction step for the particle motion) were presented in [31]. The above algorithm (41)–(56) gives us better convergent result which has been presented in Section 4. The rate of convergence, when using Taylor–Hood finite element approximation, has been investigated in [13] for a circular particle in Stokes flow, the
error orders in $L^2$-norm for velocity and pressure are a bit beyond 3 and 2, respectively.

3.3. On the solution of subproblems (42)–(49), and (50) and (51)

The degenerated quasi-Stokes problem (42) is solved by an Uzawa/preconditioned conjugate gradient algorithm as in [32], where the discrete elliptic problems used for preconditioning are solved by a matrix-free fast solver from FISHPAK due to Adams et al. in [33]. The stopping criterion for the preconditioned conjugate gradient algorithm is $\|r_k^p\|/\|p^0\| \leq \varepsilon$ where $r_k^p$ is the residue at the $k$th iteration. It typically takes about 10 iterations in the simulation with $\varepsilon = 10^{-5}$. The advection problem (43) for the velocity field is solved by a wave-like equation method as in [34,35]. Problem (44) is a classical discrete elliptic problem which can be solved by the above matrix-free fast solver.

Systems (45)–(49) and (52)–(56) are systems of ordinary differential equations thanks to operator splitting. For its solution one can choose a time step smaller than $\Delta t$, (i.e., we can divide $\Delta t$ into smaller steps) to predict the translation velocity of the center of mass, the angular velocity of the particle, the position of the center of mass and the regions occupied by each particle so that the repulsion forces can be effective to prevent particle-particle and particle-wall overlapping. At each sub-cycling time step, keeping the distance constant between points $x_1$ and $x_2$ in each particle is important since we are dealing with rigid particles. To satisfy the above constraint we have applied the following approach:

- Translate $x_1$ and $x_2$ according to the new position of the mass center at each sub-cycling time step.
• Rotate $Gx_1$ and $Gx_2$, the relative positions of $x_1$ and $x_2$ to the center of mass $G$, by the following Crank–Nicolson scheme (a Runge–Kutta scheme of order 2, in fact):

$$\frac{Gx_{\text{new}}^i - Gx_{\text{old}}^i}{\tau} = \omega \times \frac{Gx_{\text{new}}^i + Gx_{\text{old}}^i}{2}$$

(57)

for $i = 1, 2$ with $\tau$ as a sub-cycling time step. By (57), we have $|Gx_{\text{new}}^i|^2 = |Gx_{\text{old}}^i|^2$ for $i = 1, 2$ and

Fig. 5. Velocity field at $t = 0.2, 0.35, 0.45$ and 4 on the plane passing through the mass center of the left ellipsoid (from left to right).

Fig. 6. Snapshots of a period of the motion of two cylinders with round ends sedimenting in a narrow channel filled with a Newtonian fluid.
\[ |Gx_2^{\text{new}} - Gx_1^{\text{new}}|^2 = |Gx_2^{\text{old}} - Gx_1^{\text{old}}|^2 \] (i.e., scheme (57) is distance and in fact shape preserving).

**Remark 3.** In order to activate the short range repulsion force, we have to find the shortest distance between two ellipsoids. Unlike the cases for spheres, it is not trivial to locate the point from each surface of the ellipsoid where the distance is the shortest between two ellipsoids. There is no explicit formula for such distance. In practice, we first choose a set of points from the surface of each ellipsoid. Then we find the point among the chosen points from each surface at which the distance is the shortest. We repeat this (kind of relaxation) process in the neighborhood of the newly located point on each surface of ellipsoid until convergence, usually obtained in very few iterations.

For the shortest distance between the wall and ellipsoid, there exists an explicit formula. To check whether two ellipsoids overlap each other, there exists an algorithm used by people working on computer graphics and in robotics (e.g., see, [36]).

The rigid body motion is enforced in \( B(\tau + 4/6) \), via Eq. (51). At the same time those hydrodynamical forces and gravity acting on the particles are also taken into account in order to update the translation and angular velocities of the particles. To solve (50) and (51), we use a conjugate gradient algorithm as discussed in [9]. Since we take \( \beta = 0 \) in (50) for the simulation, we actually do not need to solve any non-trivial linear systems for the velocity field; this saves a lot of computing time. To get the angular velocity \( \omega^{n+1} \), computed via

\[ \omega^{n+1} = (I_p^{n+4/6})^{-1}(I_p \omega_n^{n+1}), \] (58)

we need to have \( I_p^{n+4/6} \), the inertia of the particle \( B(\tau + 4/6) \). We first compute the inertia \( I_0 \) in the coordinate system attached to the particle. Then via the center of mass \( G^{n+4/6} \) and points \( x_1^{n+4/6} \) and \( x_2^{n+4/6} \), we have the rotation transformation \( Q \) (\( QQ^T = Q^TQ = I_6 \), \( \det(Q) = 1 \)) which transforms vectors expressed in the particle frame to vectors in the flow domain coordinate system and \( I_p^{n+4/6} = QI_0Q^T \). Actually in order to update matrix \( Q \) we can also use quaternion techniques, as shown, in the review paper [37].

4. Numerical experiments

4.1. Settling of one ellipsoid

In the first test case, we consider the simulation of the motion of an ellipsoid settling in a narrow channel of infinite length filled with a Newtonian fluid. The computational domain is \( \Omega = (0,1) \times (0,0.25) \times (0,4) \) initially, then it moves down with the center of the ellipsoid (see, e.g., [2] for adjusting the computational domain according to the position of the particle). The fluid density is \( \rho_f = 1 \) and the fluid viscosity is \( \nu_f = 0.01 \). The flow field initial condition is \( u = 0 \). The density of the ellipsoid is \( \rho_s = 1.1 \). The three semi-axes of the ellipsoid are 0.2, 0.1 and 0.1. Initially its longest axis is in the vertical direction. The initial position of the mass center is at \( (0.5,0.125,1) \). The initial translation and angular velocities of the ellipsoid are 0. To check the conver-
gence, we have chosen the following three pairs of mesh size of the velocity field and the time step: \( \{ h_v, \Delta t \} = \{ 1/80, 0.001 \}, \{ 1/112, 0.0005 \} \) and \( \{ 1/0.12, \} \). 

Fig. 8. Histories of the x-coordinates of the mass centers of two ellipsoids of long axis 0.36 (top), those of long axis 0.32 (middle) and those of the density 1.25 (bottom).
The mesh size of the pressure is always \( h_p = 2h_r \).

The snapshots of the ellipsoid position for \{h_r, \Delta t\}={1/160,0.0005} at different times in the channel are shown in Fig. 3. The computation was performed in a moving frame of reference, so the ellipsoid appears not moving downward. The histories of the horizontal position, horizontal and vertical velocities of the mass center and the angular velocity with respect to the \( y \)-axis are shown in Fig. 4. We have obtained a good convergent result. The movement of the ellipsoid is very fast at the beginning when it moves toward the side wall after releasing from its initial position. Later on the oscillation has been damped out (see Fig. 4). As expected, the ellipsoid turns its broadside perpendicular to the stream main direction and the mass center moves back to the central axis of the channel. The velocity field projected to the \( xy \)-plane passing through the mass center are shown in Fig. 5 for \( h_r = 1/160 \) and \( \Delta t = 0.0005 \).

For \( h_r = 1/160 \) and \( \Delta t = 0.0005 \), the averaged particle speed when the ellipsoid reaches stable position is about 2.6 (the maximal speed is about 4.65) so the averaged particle Reynolds number with the longest axis as characteristic length is 104. The number of nodes for the velocity field is 546,021 (resp., 1,471,373 and 4,231,241) for \( h_r = 1/80 \) (resp., 1/112 and 1/160). The memory used in the simulation is about 68 Mb (resp., 182 and 523 Mb) for \( h_r = 1/80 \) (resp., 1/112 and 1/160). The simulation takes about 5 s (resp., 14 and 46 s) per time step for \{h_r, \Delta t\}={1/80,0.001} (resp., \{1/
Remark 4. Due to the symmetry, there are two directions for a ellipsoid to settle after releasing from the initial position located at the central axis of the channel considered in this test case: to the left or to the right from the central axis. For \((h, \Delta t) = \{1/160, 0.0005\}\) the ellipsoid moves to the left and for the other two pairs of parameters, it moves to the right. In order to compare the results, the results for \((h, \Delta t) = \{1/160, 0.0005\}\) have been converted first and then plotted as shown in Fig. 4.

4.2. Two ellipsoids sedimenting side-by-side

It had been observed experimentally by Joseph et al. that when two cylinders with round ends sediment in a narrow channel filled with a Newtonian fluid, they can sediment side-by-side and interact each other peri-
cally as shown in Fig. 6. To reproduce similar result computationally, we consider the following test case. The initial mass center positions are $(0.22, 0.125, 0.75)$ and $(0.78, 0.125, 0.75)$, respectively. The frames rigidly
attached to the ellipsoids are \((\cos \frac{\pi}{3}, 0, \sin \frac{\pi}{3}), (0,1,0), (\cos \frac{5\pi}{6}, 0, \sin \frac{5\pi}{6})\) and \((\cos \left(\frac{\pi}{3}\right), 0, \sin \left(\frac{\pi}{3}\right)), (0,1,0), (\cos \frac{\pi}{6}, 0, \sin \frac{\pi}{6})\) initially, respectively (see the position of ellipsoids at \(t = 0\) in Fig. 7). The long semi-axis is 0.18 and \(\{h, \Delta t\}\) is \{1/112, 0.001\}. All other parameters are same as in the previous case. The averaged terminal speed of two ellipsoids is 1.66 obtained for the last five periods of oscillation, so the averaged particle Reynolds number is 59.76 based on the length of the long axis (which is 0.36). Positions of two ellipsoids similar to those in Fig. 6 are shown in Fig. 7. It is in good qualitative agreement with experimental results. The period of the motion is 0.39 s. As shown in Fig. 8, we have observed a strong interaction between two settling ellipsoids of long axis 0.36. Three snapshots of the velocity field projected on the plane passing through the mass center of the left ellipsoid are shown in Fig. 9. The velocity field is about symmetric with respect to the centerline. We believe that the jet stream between two ellipsoids when they become closer is one of the key factors for the oscillation we have observed. To see the effect of the length of the long axis and the density of the ellipsoid, we have considered two following tests. When only reducing the long axes to 0.32 and keeping other parameters unchanged from the above case, they settle side-by-side in the channel with a weak interaction of period 0.3856 s. When increasing the density to 1.25 and keeping other parameters unchanged from the above case, the interaction of two ellipsoids becomes stronger and faster with period 0.2472 s. The histories of the horizontal position of the mass center of both cases are shown in Fig. 8. The memory used in the simulation is
about 186 Mb for $h_s = 1/112$. The simulation takes about 43 s per time step for \((h_s, \Delta t) = \{1/112, 0.001\}\) on a Linux based PC with 1.6 GHz Athlon CPU.

4.3. One ellipsoid on top of another one

It had also been observed experimentally by Joseph et al. that two cylinders with round ends can move around each other and stay together while they are settling down in the channel. It is unlike the case for two balls settling in a Newtonian fluid, which is known as drafting, kissing, and tumbling [38]. Two balls always break away after tumbling.

In this test case all parameters are same as in Section 4.1 except those mentioned in the following. The initial mass center positions are \((0.5, 0.125, 0.9)\) and \((0.5, 0.125, 1.25)\), respectively, so one is on top of the other. The long axes of both ellipsoids are parallel to \((0.5, 0.125, 1.25)\), respectively, so one is on top of the initial mass center positions are \((0.5, 0.125, 0.9)\) and \((0.5, 0.125, 1.25)\), respectively, so one is on top of the other.

The averaged terminal speeds of two ellipsoids are 4.847, 4.818 and 4.81 for the long semi-axes 0.21, 0.22 and 0.23, respectively.

The averaged terminal speeds of two ellipsoids are 4.847, 4.818 and 4.81 for the long semi-axes 0.21, 0.22 and 0.23, respectively, for the last 2 s. The averaged particle Reynolds numbers are 203.574, 211.992 and 221.26 based on the long semi-axes 0.21, 0.22 and 0.23, respectively. We have observed that two ellipsoids always interact with each other and stay together. The snapshots of the projection of two ellipsoids are shown in Fig. 10 for the case of long semi-axis 0.22. In Fig. 11, the histories of the \(x\)-coordinate of the mass centers of two ellipsoids are shown. We have observed that for ellipsoids of long semi-axes 0.21 they interact at one side of channel and for ellipsoids of long semi-axes 0.23 they interact more chaotically and oscillate between two sides. Somewhere around 0.22 is the critical length of the top ellipsoid are shown in Fig. 12 for the case of long semi-axes 0.22. The memory used in the simulation is about 186 Mb for $h_s = 1/112$. It takes about 25 s per time step on a Linux based PC with 2.2 GHz AMD Opteron 64-bit CPU.

Acknowledgement

We acknowledge the helpful comments and suggestions of R. Bai, E.J. Dean, J. He, H.H. Hu, P.Y. Huang, G.P. Galdi, Y. Kuznetsov, V. Paulsen, J. Periaux and referees. We acknowledge also the support of NSF (grants ECS-9527123, CTS-9873236, DMS-9973318, CCR-9902035, DMS-0209066), and DOE/LASCI (grant R71700K-292-000-99).

References


