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Abstract

We present the simulation of the dynamics of fluid–ellipsoid interactions in a narrow channel filled with a Newtonian

fluid, using a Lagrange multiplier based fictitious domain methodology. As expected, a settling ellipsoid turns its broad-

side perpendicular to the stream main direction and the center of mass moves to the central axis of the channel. For two

ellipsoid cases, we have obtained two kinds of interactions between two ellipsoids: (1) they settle side-by-side and inter-

act with each other periodically; (2) they keep moving around each other and stay together. We also found that the

length of longest axis plays an important role for these interactions.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The orientation of symmetric long body, e.g., ellip-

soid and truncated cylinder, settling in liquids of differ-

ent nature is a fundamental issue in many problems of

practical interest (see, e.g., [1], and the references there-

in). In the past decade, more and more researchers have

developed numerical methods for the direct simulation

of fluid/particle interaction, e.g., see Refs. [2–13] and

the references therein for more details. In this article

we first discuss the generalization of a Lagrange multi-

plier based fictitious domain method [9,10] to the simu-

lation of the motion of particles of general shape in a

Newtonian fluid. Unlike the cases where the particles

are spheres, we attach two points to each particle and

move them according to the rigid-body motion of the
0045-7949/$ - see front matter � 2004 Elsevier Ltd. All rights reserv

doi:10.1016/j.compstruc.2004.08.019

* Corresponding author. Tel: +713 743 3448; fax: +713 743

3505.

E-mail address: pan@math.uh.edu (T.-W. Pan).
particle. The equations describing the motion of these

two points are solved by a distance preserving scheme

so that rigidity can be maintained. Then we apply the

above methodology to simulate the settling of ellipsoids

in a narrow channel filled with a Newtonian fluid. As ex-

pected, a settling ellipsoid turns its broadside perpendic-

ular to the stream main direction and the center of mass

moves toward the central axis of the channel. For two

ellipsoid cases, we have obtained two kinds of interac-

tions. When initially placed side-by-side, they sediment

side-by-side and interact with each other periodically.

But with short long axis, the interaction between two

ellipsoids is weaker. When releasing initially one on

top of the other, we have observed that two ellipsoids

keep moving around each other and stay together while

they are settling down in the channel. Depending on the

length of the longest axis, they can either interact at one

side of the channel or interact and oscillate between two

sides of the channel. The simulations discussed in this

article concern fluid-rigid solid interactions. More gen-

eral situations are discussed in, e.g., [14,15], where the
ed.
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case of elastic solids is also considered (see also the ref-

erences therein).
2. A model problem and fictitious domain formulation

for three-dimensional particulate flow

To perform the direct numerical simulation of the

interaction between particles and fluid, we have devel-

oped a methodology which combines a distributed

Lagrange multiplier based fictitious domain (also called

domain embedding) method with operator splitting

methods [9,10,16–18]. This approach (or closely related

ones derived from it) has been used by other investiga-

tors (e.g., [12,19–21]). We are going to recall the ideas

at the basis of the above methodology by considering

the motion of a single particle in a Newtonian viscous

incompressible fluid (of density qf and viscosity mf) under
the effect of gravity; actually, the generalization to a

thousand of spherical particles in 3-D and 10,000 circu-

lar particles in 2-D is possible as shown in [10,22,23].

For the situation depicted in Fig. 1 (for non-spherical

particle cases), the flow is modeled by the Navier–Stokes

equations, namely, (with obvious notation)

qf
ou

ot
þ ðu � $Þu

� �
� mfDuþ $p

¼ qfg in X n BðtÞ; 0 < t < T ; ð1Þ

$ � u ¼ 0 in X n BðtÞ; 0 < t < T ; ð2Þ

uð0Þ ¼ u0ðxÞ ðwith $ � u0 ¼ 0Þ; ð3Þ

u ¼ g0 on C � ð0; T Þ; with
Z

C
g0 � ndC ¼ 0; ð4Þ
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Fig. 1. The flow region with one particle.
where C = oX, g denotes gravity and n is the unit normal
vector pointing outward to the flow region. We assume

a no-slip condition on c( = oB). The motion of particle

B satisfies the Euler–Newton�s equations, namely

vðx; tÞ ¼ VðtÞ þ xðtÞ �GðtÞx
�!

;

8fx; tg 2 BðtÞ; 0 < t < T ; ð5Þ

dG

dt
¼ V; ð6Þ

Mp
dV

dt
¼ Mpgþ FH þ Fr; ð7Þ

dðIpxÞ
dt

¼ TH þGxr
!

�Fr; ð8Þ

with the resultant and torque of the hydrodynamical

forces given by, respectively,

FH ¼ �
Z

c
rndc;TH ¼ �

Z
c
Gx
!

�rndc ð9Þ

with r = mf ($u + $ u t) � p I. Relations (1)–(9) are
completed by the following initial conditions

Gð0Þ ¼ G0; Vð0Þ ¼ V0; xð0Þ ¼ x0; Bð0Þ ¼ B0:

ð10Þ

Above,Mp, Ip,G,V andx are the mass, inertia, center

of mass, velocity of the center of mass and angular veloc-

ity of particle B, respectively. In (8) we found preferable

to deal with the kinematic angular momentum Ipxmaking

the formulationmore conservative. In order to avoid par-

ticle-particle and particle-wall penetration which can

happen in the numerical simulation, we have introduced

a artificial short-range repulsion force Fr in (7), which be-

comes active when the shortest distance between two

(convex) particles or between (convex) particle and wall

is less than a prechosen distance (for more details, see,

e.g., [9] and [10]; see also [24] for another approach)

and then a torque in (8) acting on the point xr where F
r

applies on B. For non-convex particles, we can apply

similar approach to activate the short-range repulsion

force Fr.

To solve system (1)–(10) we can use, for example,

Arbitrary Lagrange–Euler (ALE) methods as in [5–7],

or fictitious domain methods, which allow the flow calcu-

lation on a fixed grid, as in [9,10,16–18]. The fictitious

domain methods that we advocate have some common

features with the immersed boundary method of Ch. Pe-

skin (see, e.g., Refs. [25–27]) but also some significant

differences in the sense that we take systematically

advantage of distributed Lagrange multipliers to force

the rigid body motion inside the particle. As with the

methods in [25–27], our approach takes advantage of

the fact that the flow can be computed on a grid which
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does not have to vary in time, a substantial simplifica-

tion indeed.

The principle of fictitious domain methods is simple.

It consists of

• Filling the particles with a fluid having the same den-

sity and viscosity as the surrounding one.

• Compensating the above step by introducing, in some

sense, an anti-particle of mass ð�1ÞMp
qf
qs
and inertia

ð�1ÞIp qf
qs
, taking into account the fact that any rigid

body motion v(x,t) verifies $ Æ v = 0 and D(v) = 0

(qs: particle density).
• Finally, imposing the rigid body velocity on BðtÞ,
namely

vðx; tÞ ¼ VðtÞ þ xðtÞ �GðtÞx
�!

;

8x 2 BðtÞ; 8t 2 ð0; T Þ; ð11Þ

via a Lagrange multiplier k supported by BðtÞ. Vector
k forces rigidity in B(t) in the same way that $p
forces $ � v ¼ 0 for incompressible fluids.

We obtain then an equivalent formulation of (1)–(10)

defined on the whole domain X, namely
For a.e. t > 0, find {u(t),p(t),V(t),G(t),x(t),k(t)}

such that

uðtÞ 2Wg0ðtÞ; pðtÞ 2 L20ðXÞ; VðtÞ 2 R3;

GðtÞ 2 R3; xðtÞ 2 R3; kðtÞ 2 KðtÞ ð12Þ

and

qf
R

X
ou
ot þðu �$Þu
� �

� vdx�
R

X p$ � vdxþ mf
R

X $u : $vdx

�hk;v�Y� h�Gx
�!

iKðtÞ þ 1� qf
qs

� �h
Mp

dV
dt �Y

þdðIpxÞ
dt � h

i
�Fr �Y�Gxr

�!
�Fr � h

¼ 1� qf
qs

� �
Mpg �Yþ qf

R
X g � vdx;

8v 2 ðH 1
0ðXÞÞ3; 8Y 2R3; 8h 2R3;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð13Þ
Z

X
q$ � uðtÞdx ¼ 0; 8q 2 L2ðXÞ; ð14Þ

dG

dt
¼ V; ð15Þ

hl; uðtÞ � VðtÞ � xðtÞ �GðtÞx
�!

iKðtÞ ¼ 0; 8l 2 KðtÞ;
ð16Þ

Vð0Þ ¼ V0; xð0Þ ¼ x0; Gð0Þ ¼ G0; Bð0Þ ¼ B0;

ð17Þ
uðx; 0Þ ¼ ~u0ðxÞ ¼
u0ðxÞ; 8x 2 X n Bð0Þ;

V0 þ x0 � G0x
�!

; 8x 2 Bð0Þ;

8<
:

ð18Þ

with the following functional spaces

Wg0 ðtÞ ¼ fv j v 2 ðH 1ðXÞÞ3; v ¼ g0ðtÞ on Cg;

L20ðXÞ ¼ q j q 2 L2ðXÞ;
Z

X
qdx ¼ 0

� �
;

KðtÞ ¼ ðH 1ðBðtÞÞÞ3:

Various examples for h Æ , Æ iK(t) in (13) and (16) are
given in [10,28, Chapter 8].

Remark 1. The second gravity term in the right-hand-

side of the (13) can be combined with the pressure.
Hence in the following, we will not use this term

anymore.

In (12)–(18), only the center of mass, the translation

velocity of the center of mass and the angular velocity of

the particle are considered. Knowing these two velocities

and the center of mass of the particle, one is able to

translate and rotate the particle in space by tracking two

extra points x1 and x2 in each particle, which follow the

rigid body motion

dxi

dt
¼ VðtÞ þ xðtÞ �GðtÞxi

�!
; xið0Þ ¼ xi;0; i ¼ 1; 2:

ð19Þ

In practice we shall track two orthogonal normalized

vectors rigidly attached to the body B and originating

from the center of mass G.
3. Time and space discretization

3.1. Lie’s scheme: a first order operator-splitting scheme

Many operator-splitting schemes can be applied to

problem (12)–(19). One of the advantage of operator-

splitting schemes is that we can decouple difficulties such

as (i) the incompressibility condition, (ii) the non-linear

advection term, and (iii) the rigid body motion, so that

each one of them can be handled separately, and in prin-

ciple optimally. Let Dt be a time discretization step and
tn+s = (n + s)Dt. The Lie�s scheme is a first order opera-
tor-splitting scheme [29], which, when applied to prob-

lem (12)–(19), yields:

u0 ¼ ~u0; G0 ¼ G0; V0 ¼ V0; x0 ¼ x0;

x01 ¼ x1;0; x02 ¼ x2;0 given; ð20Þ
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for nP 0, un(’u(tn)), Gn, Vn, xn, xn1 and xn2 being known,
we first compute un+1/6, pn+1/6 via the solution of

qf
R

X
ou
ot � vdx�

R
X p$ � vdx ¼ 0; 8v 2 ðH 1

0ðXÞÞ3;

a:e: on ðtn; tnþ1Þ;R
Xq$ � udx ¼ 0; 8q 2 L2;

uðtnÞ ¼ un;

uðtÞ 2 ðH 1ðXÞÞ3; uðtÞ ¼ gðtnþ1Þ

on C � ðtn; tnþ1Þ; pðtÞ 2 L20;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð21Þ

and set un+1/6 = u(tn+1), pn+1/6 = p(tn+1).

Next, compute un+2/6 via the solution ofR
X

ou
ot � vdxþ

R
Xðunþ1=6 � $Þu � vdx ¼ 0; 8v 2Wnþ1;�

0 ;

a:e: on ðtn; tnþ1Þ;

uðtnÞ ¼ unþ1=6;

uðtÞ 2 ðH 1ðXÞÞ3; uðtÞ ¼ gðtnþ1Þ

on Cnþ1
� � ðtn; tnþ1Þ;

8>>>>>>>><
>>>>>>>>:

ð22Þ

and set un+2/6 = u(tn+1).

Then, compute un+3/6 via the solution of

qf
R

X
ou
ot � vdxþ amf

R
X $u : $vdx ¼ 0; 8v 2 ðH 1

0ðXÞÞ3;

a:e: on ðtn; tnþ1Þ;

uðtnÞ ¼ unþ2=6;

uðtÞ 2 ðH 1ðXÞÞ3; uðtÞ ¼ gðtnþ1Þ

on C � ðtn; tnþ1Þ;

8>>>>>>>><
>>>>>>>>:

ð23Þ

and set un+3/6 = u(tn+1).

Now predict the motion of the center of mass and the

angular velocity of the particle via

dG

dt
¼ VðtÞ=2; ð24Þ

1� qf
qs

� �
Mp
dV

dt
¼ Fr=2; ð25Þ

1� qf
qs

� �
dðIpxÞ
dt

¼ Gxr
�!

�Fr=2; ð26Þ

dxi

dt
¼ VðtÞ þ xðtÞ �GðtÞxi

�!
; for i ¼ 1; 2; ð27Þ

GðtnÞ ¼ Gn; VðtnÞ ¼ Vn; ðIpxÞðtnÞ ¼ ðIpxÞn;
x1ðtnÞ ¼ xn1; x2ðtnÞ ¼ xn2; ð28Þ
for tn < t < tn+1. Then set Gn+4/6 = G(tn+1), Vn+4/6 =

V(tn+1), (Ipx)
n+4/6 = (Ipx)(t

n+1), x
nþ4=6
1 ¼ x1ðtnþ1Þ, and

x
nþ4=6
2 ¼ x2ðtnþ1Þ.
Using Gn+4/6, x

nþ4=6
1 and x

nþ4=6
2 obtained in the above

step, we enforce the rigid body motion in the region

Bn+4/6 occupied by the particle

qf
R

X
ou
ot � vdxþ bmf

R
X $u : $vdxþ 1� qf

qs

� �
Mp

dV
dt � Y

þ 1� qf
qs

� �
dðIpxÞ
dt � h ¼ 1� qf

qs

� �
Mpg � Y

þhk; v� Y� h �Gnþ4=6x
�!

iKnþ4=6 ;

8v 2 ðH 1
0ðXÞÞ3;Y 2 R3; h 2 R3; a:e: on ðtn; tnþ1Þ;

uðtnÞ ¼ unþ3=6;

u 2 ðH 1ðXÞÞ3; uðtÞ ¼ g0ðtnþ1Þ on C � ðtn; tnþ1Þ;
k 2 Knþ4=6;V 2 R3;x 2 R3;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð29Þ

hl; u� V� x �Gnþ4=6x
�!

iKnþ4=6 ¼ 0; 8l 2 Knþ4=6; ð30Þ

and set un+1 = u(tn+1), Vn+5/6 = V(tn+1), (Ipx)
n+5/6 =

(Ip x)(tn+1).

Correct the motion of the center of mass and the

angular velocity of the particle via

dG

dt
¼ VðtÞ=2; ð31Þ

1� qf
qs

� �
Mp
dV

dt
¼ Fr=2; ð32Þ

1� qf
qs

� �
dðIpxÞ
dt

¼ Gxr
�!

�Fr=2; ð33Þ

dxi

dt
¼ VðtÞ þ xðtÞ �GðtÞxi

�!
; for i ¼ 1; 2; ð34Þ

GðtnÞ ¼ Gnþ4=6; VðtnÞ ¼ Vnþ5=6;

ðIpxÞðtnÞ ¼ ðIpxÞnþ5=6;

x1ðtnÞ ¼ x
nþ4=6
1 ; x2ðtnÞ ¼ x

nþ4=6
2 ; ð35Þ
for tn < t < tn+1. Then set Gn+1 = G(tn+1), Vn+1 = V(tn+1),

(Ipx)
n+1 = (Ipx)(t

n+1), xnþ11 ¼ x1ðtnþ1Þ, and xnþ12 ¼
x2ðtnþ1Þ.
In (20)–(32), Cnþ1

� ¼ fx j x 2 C;g0ðtnþ1ÞðxÞ � nðxÞ < 0g
and Wnþ1;�

0 ¼fv j v 2 ðH 1ðXÞÞ3; v ¼ 0 on Cnþ1
� g, Kn+4/6 =

(H1(Bn+4/6))3, Bn+4/6 is the region occupied by the

particle B according to Gn+4/6, x
nþ4=6
1 and x

nþ4=6
2 , and

a+b = 1. In the numerical simulation, we usually choose
a = 1 and b = 0.
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3.2. Space discretization

We assume that X � R3 and is a rectangular parallel-

epiped. Concerning the finite element approximation of

problem (12)–(19), we have

Wh ¼ fvh j vh 2 ðC0ðXÞÞ3; vhjT 2 ðP 1Þ3; 8T 2 Thg;
ð36Þ

W0h ¼ fvh j vh 2 Wh; vh ¼ 0 on Cg; ð37Þ

L2h ¼ fqh j qh 2 C0ðXÞ; qhjT 2 P 1; 8T 2 T2hg;

L20h ¼ qh j qh 2 L2h;
Z

X
qh dx ¼ 0

� �
ð38Þ

whereTh is a tetrahedrization of X,T2h is twice coarser

thanTh, and P1 is the space of the polynomials in three

variables of degree 61. A finite dimensional space

approximating K(t) is as follows: let fnig
N
i¼1 be a set of

points from BðtÞ which cover BðtÞ (uniformly, for exam-
ple); we define then

KhðtÞ ¼
�

lh j lh ¼
XN
i¼1

lidðx� niÞ; li 2 R3;

8i ¼ 1; . . . ;N
�
; ð39Þ

where d( Æ ) is the Dirac measure at x = 0. Then we shall
use h Æ , Æ ih defined by

hlh; vhih ¼
XN
i¼1

li � vhðniÞ; 8lh 2 KhðtÞ; vh 2Wh: ð40Þ

A typical choice of points for defining (39) is to take the

grid points of the velocity mesh internal to the particle B

and whose distance to the boundary of B is greater

than, e.g. h/2, and to complete with selected points from

the boundary of B(t) (e.g., see Fig. 2 for an example of

selected points on the boundary of B(t)).

Using the above finite dimensional spaces and the

backward Euler�s method for most of the subproblems
Fig. 2. An example of selected points on the boundary of the

particle.
in scheme (20)–(35), we obtain the following scheme

after dropping some of the subscripts h (similar ones

are discussed in [9,10,16–18]):

u0 ¼ ~u0; G0 ¼ G0; V0 ¼ V0; x0 ¼ x0;

x01 ¼ x1;0; x02 ¼ x2;0 given; ð41Þ

for nP 0,un(’u(tn)), Gn, Vn, xn, xn1 and xn2 being known,
we compute un+1/6, pn+1/6 via the solution of

qf
R

X
unþ1=6�un

Dt � vdx�
R

X pnþ1=6$ � vdx ¼ 0; 8v 2W0h;R
Xq$ � unþ1=6 dx ¼ 0; 8q 2 L2h;

unþ1=6 2Wh; u
nþ1=6 ¼ gnþ10h on C; pnþ1=6 2 L20h:

8><
>:

ð42Þ

Next, compute un+2/6 via the solution ofR
X

ou
ot � vdxþ

R
Xðunþ1=6 � $Þu � vdx ¼ 0;

8v 2Wnþ1;�
0h ; a:e: on ðtn; tnþ1Þ;

uðtnÞ ¼ unþ1=6;

uðtÞ 2 Wh; uðtÞ ¼ gnþ10h on Cnþ1
� � ðtn; tnþ1Þ;

8>>>><
>>>>:

ð43Þ

and set un+2/6 = u(tn+1).

Then, compute un+3/6 via the solution of

qf
R

X
unþ3=6�unþ2=6

Dt � vdxþ amf
R

X $unþ3=6 : $vdx ¼ 0;
8v 2 W0h; u

nþ3=6 2 Wh; u
nþ3=6 ¼ gnþ10h on C:

(

ð44Þ

Now predict the motion of the center of mass and the

angular velocity of the particle via

dG

dt
¼ VðtÞ=2; ð45Þ

1� qf
qs

� �
Mp
dV

dt
¼ Fr=2; ð46Þ

1� qf
qs

� �
dðIp xÞ
dt

¼ Gxr
!

�Fr=2; ð47Þ

dxi

dt
¼ VðtÞ þ xðtÞ �GðtÞxi

�!
; for i ¼ 1; 2; ð48Þ

GðtnÞ ¼ Gn;VðtnÞ ¼ Vn; ðIpxÞðtnÞ ¼ ðIpxÞn;
x1ðtnÞ ¼ xn1; x2ðtnÞ ¼ xn2; ð49Þ

for tn < t < tn+1.

Then set Gn+4/6 = G(tn+1), Vn+4/6 = V(tn+1), (Ipx)
n+4/6 =

(Ipx)(t
n+1), x

nþ4=6
1 ¼ x1ðtnþ1Þ, and xnþ4=62 ¼ x2ðtnþ1Þ.

With the center Gn+4/6, x
nþ4=6
1 and x

nþ4=6
2 obtained at

the above step, we enforce the rigid body motion in

the region B(tn+4/6) occupied by the particle



Fig. 3. Position of the ellipsoid at t = 0.2, 0.35, 0.45, 0.6, 0.7 and 4 (from left to right and from top to bottom).
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qf
R

X
unþ1�unþ4=6

Dt � vdxþ bmf
R

X $unþ1 : $vdx

þ 1� qf
qs

� �
Mp

Vnþ5=6�Vnþ4=6

Dt � Y

þ 1� qf
qs

� �
ðIpxÞnþ5=6�ðIpxÞnþ4=6

Dt � h

¼ 1� qf
qs

� �
Mpg � Yþ hknþ4=6; v� Y� h �Gnþ4=6x

�!
ih;

8v 2W0h;Y 2 R3; h 2 R3;

unþ1 2 Wh; u
nþ1 ¼ gnþ10h on C; knþ4=6 2 Knþ4=6

h ;

Vnþ5=6 2 R3;xnþ5=6 2 R3;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð50Þ

hl; unþ1 � Vnþ5=6 � xnþ5=6 �G
nþ4=6
j x
�!

ih ¼ 0; 8l 2 Knþ4=6
h :

ð51Þ

Correct the motion of the center of mass and the

angular velocity of the particle via
dG

dt
¼ VðtÞ=2; ð52Þ

1� qf
qs

� �
Mp
dV

dt
¼ Fr=2; ð53Þ

1� qf
qs

� �
dðIpxÞ
dt

¼ Gxr
!

�Fr=2; ð54Þ

dxi

dt
¼ VðtÞ þ xðtÞ �GðtÞxi

�!
; for i ¼ 1; 2; ð55Þ
GðtnÞ ¼ Gnþ4=6; VðtnÞ ¼ Vnþ5=6; ðIpxÞðtnÞ ¼ ðIpxÞnþ5=6;

x1ðtnÞ ¼ x
nþ4=6
1 ; x2ðtnÞ ¼ x

nþ4=6
2 ; ð56Þ

for tn < t < tn+1. Then set Gn+1 = G(tn+1), Vn+1 = V(tn+1),

(Ipx)
n+1 = (Ipx)(t

n+1), xnþ11 ¼ x1ðtnþ1Þ, and xnþ12 ¼
x2ðtnþ1Þ.

In (41)–(56), Cnþ1
� ¼ fx j x 2 C, gnþ10h ðxÞ � nðxÞ < 0g

and Wnþ1;�
0h ¼ fv j v 2 Wh; v ¼ 0 on Cnþ1

� g, Knþs
h ¼

KhðtnþsÞ, gnþ10h is an approximation of gnþ10 belonging to

cWh ¼ fzh j zh 2 ðC0ðCÞÞ3; zh ¼ ~zhjC with ~zh 2 Whg

and verifying
R

Cg
nþ1
0h � ndC ¼ 0.

Remark 2. When applying the backward Euler method

to all the subproblems in cheme (20)–(35), we obtain a
fractional step scheme à la Marchuk–Yanenko [30],

which is only first order accurate but its low-order

accuracy is compensated by good stability and robust-

ness properties. The preliminary numerical results

obtained via the variant of the above scheme (the one

without the correction step for the particle motion) were

presented in [31]. The above algorithm (41)–(56) gives us

better convergent result which has been presented in

Section 4. The rate of convergence, when using Taylor–

Hood finite element approximation, has been investi-

gated in [13] for a circular particle in Stokes flow, the
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error orders in L2-norm for velocity and pressure are

a bit beyond 3 and 2, respectively.

3.3. On the solution of subproblems (42)–(49), and

(50) and (51)

The degenerated quasi-Stokes problem (42) is solved

by an Uzawa/preconditioned conjugate gradient algo-

rithm as in [32], where the discrete elliptic problems used

for preconditioning are solved by a matrix-free fast sol-

ver from FISHPAK due to Adams et al. in [33]. The

stopping criterion for the preconditioned conjugate gra-

dient algorithm is krkk/kr0k 6 � where rk is the residue at
the kth iteration. It typically takes about 10 iterations in

the simulation with � = 10�5. The advection problem
(43) for the velocity field is solved by a wave-like equa-

tion method as in [34,35]. Problem (44) is a classical dis-
crete elliptic problem which can be solved by the above

matrix-free fast solver.

Systems (45)–(49) and (52)–(56) are systems of ordin-

ary differential equations thanks to operator splitting.

For its solution one can choose a time step smaller than

Dt, (i.e., we can divide Dt into smaller steps) to predict
the translation velocity of the center of mass, the angular

velocity of the particle, the position of the center of mass

and the regions occupied by each particle so that the

repulsion forces can be effective to prevent particle-par-

ticle and particle-wall overlapping. At each sub-cycling

time step, keeping the distance constant between points

x1 and x2 in each particle is important since we are deal-

ing with rigid particles. To satisfy the above constraint

we have applied the following approach:

• Translate x1 and x2 according to the new position of

the mass center at each sub-cycling time step.



Fig. 5. Velocity field at t = 0.2, 0.35, 0.45 and 4 on the plane passing through the mass center of the left ellipsoid (from left to right).

Fig. 6. Snapshots of a period of the motion of two cylinders with round ends sedimenting in a narrow channel filled with a Newtonian

fluid.
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• Rotate G x1 and G x2, the relative positions of x1 and

x2 to the center of mass G, by the following Crank–

Nicolson scheme (a Runge–Kutta scheme of order

2, in fact):
Gxnewi �Gxoldi

s
¼ x �Gxnewi þGxoldi

2
ð57Þ

for i = 1,2 with s as a sub-cycling time step. By (57),
we have j Gxnewi j2 ¼j Gxoldi j2 for i = 1,2 and



Fig. 7. Position of ellipsoids at t = 0, 7.058, 7.16, 7.20, 7.26, 7.32, 7.36 and 7.448 (from left to right and from top to bottom). The last

seven positions are taken from one period of motion.
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j Gxnew2 �Gxnew1 j2 ¼j Gxold2 �Gxold1 j2 (i.e., scheme (57)
is distance and in fact shape preserving).
Remark 3. In order to activate the short range repul-

sion force, we have to find the shortest distance between

two ellipsoids. Unlike the cases for spheres, it is not

trivial to locate the point from each surface of the

ellipsoid where the distance is the shortest between two
ellipsoids. There is no explicit formula for such distance.

In practice, we first choose a set of points from the

surface of each ellipsoid. Then we find the point among

the chosen points from each surface at which the

distance is the shortest. We repeat this (kind of

relaxation) process in the neighborhood of the

newly located point on each surface of ellipsoid until

convergence, usually obtained in very few iterations.

For the shortest distance between the wall and

ellipsoid, there exists an explicit formula. To check

whether two ellipsoids overlap each other, there exists an

algorithm used by people working on computer graphics

and in robotics (e.g., see, [36]).

The rigid body motion is enforced in B(tn+4/6), via

Eq. (51). At the same time those hydrodynamical forces

and gravity acting on the particles are also taken into ac-

count in order to update the translation and angular

velocities of the particles. To solve (50) and (51), we

use a conjugate gradient algorithm as discussed in [9].

Since we take b = 0 in (50) for the simulation, we actu-
ally do not need to solve any non-trivial linear systems

for the velocity field; this saves a lot of computing time.

To get the angular velocity xn+1, computed via
xnþ1 ¼ ðInþ4=6p Þ�1ðIpxÞnþ1; ð58Þ

we need to have Inþ4=6p , the inertia of the particle

B(tn+4/6). We first compute the inertia I0 in the coordi-

nate system attached to the particle. Then via the center

of mass Gn+4/6 and points x
nþ4=6
1 and x

nþ4=6
2 , we have the

rotation transformation Q (QQT = QTQ = Id, detQ=1)

which transforms vectors expressed in the particle frame

to vectors in the flow domain coordinate system and

Inþs
p ¼ QI0Q

T . Actually in order to update matrix Q

we can also use quaternion techniques, as shown, in the

review paper [37].
4. Numerical experiments

4.1. Settling of one ellipsoid

In the first test case, we consider the simulation of the

motion of an ellipsoid settling in a narrow channel of

infinite length filled with a Newtonian fluid. The compu-

tational domain is X = (0,1) · (0,0.25) · (0,4) initially,
then it moves down with the center of the ellipsoid

(see, e.g., [2] for adjusting the computational domain

according to the position of the particle). The fluid den-

sity is qf = 1 and the fluid viscosity is mf = 0.01. The flow
field initial condition is u = 0. The density of the

ellipsoid is qs = 1.1. The three semi-axes of the ellipsoid
are 0.2, 0.1 and 0.1. Initially its longest axis is in the ver-

tical direction. The initial position of the mass center is

at (0.5,0.125,1). The initial translation and angular

velocities of the ellipsoid are 0. To check the conver-
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Fig. 8. Histories of the x-coordinates of the mass centers of two ellipsoids of long axis 0.36 (top), those of long axis 0.32 (middle) and

those of the density 1.25 (bottom).
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gence, we have chosen the following three pairs of

the mesh size of the velocity field and the time
step: {hv,Dt} = {1/80,0.001}, {1/112,0.0005} and {1/



Fig. 9. Velocity field at t = 4, 6 and 8 on the plane passing through the mass center of the left ellipsoid (from left to right).
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160,0.0005}. The mesh size of the pressure is always

hp = 2hv.

The snapshots of the ellipsoid position for

{hv,Dt}={1/160,0.0005} at different times in the channel
are shown in Fig. 3. The computation was performed in

a moving frame of reference, so the ellipsoid appears not

moving downward. The histories of the horizontal posi-

tion, horizontal and vertical velocities of the mass center

and the angular velocity with respect to the y-axis are

shown in Fig. 4. We have obtained a good convergent

result. The movement of the ellipsoid is very fast at

the beginning when it moves toward the side wall after

releasing from its initial position. Later on the oscilla-

tion has been damped out (see Fig. 4). As expected,

the ellipsoid turns its broadside perpendicular to the

stream main direction and the mass center moves back
to the central axis of the channel. The velocity field

projected to the xy-plane passing through the mass

center are shown in Fig. 5 for hv = 1/160 and Dt =
0.0005.

For hv = 1/160 and Dt = 0.0005, the averaged particle
speed when the ellipsoid reaches stable position is about

2.6 (the maximal speed is about 4.65) so the averaged

particle Reynolds number with the longest axis as

characteristic length is 104. The number of nodes

for the velocity field is 546,021 (resp., 1,471,373 and

4,231,241) for hv = 1/80 (resp., 1/112 and 1/160). The

memory used in the simulation is about 68 Mb (resp.,

182 and 523 Mb) for hv = 1/80 (resp., 1/112 and 1/160).

The simulation takes about 5 s (resp., 14 and 46 s)

per time step for {hv,Dt} = {1/80,0.001} (resp., {1/



Fig. 10. Position of ellipsoids of long semi-axis 0.22 at t = 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7,

5.8, and 5.9 (from left to right and from top to bottom).
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112,0.0005} and {1/160,0.0005}) on a Linux based PC

with 2.2 GHz AMD Opteron CPU.

Remark 4. Due to the symmetry, there are two direc-

tions for a ellipsoid to settle after releasing from the
initial position located at the central axis of the channel

considered in this test case: to the left or to the right

from the central axis. For (hv, Dt) = {1/160,0.0005} the

ellipsoid moves to the left and for the other two pairs

of parameters, it moves to the right. In order to com-
pare the results, the results for (hv,Dt) = {1/160,0.0005}

have been converted first and then plotted as shown

in Fig. 4.
4.2. Two ellipsoids sedimenting side-by-side

It had been observed experimentally by Joseph et al.

that when two cylinders with round ends sediment in a

narrow channel filled with a Newtonian fluid, they can

sediment side-by-side and interact each other periodi-
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Fig. 11. Histories of the x-coordinates of the mass centers of two ellipsoids of semi-axis 0.21 (top), those of long semi-axis 0.22

(middle) and those of long semi-axis 0.23 (bottom).
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cally as shown in Fig. 6. To reproduce similar result

computationally, we consider the following test case.
The initial mass center positions are (0.22,0.125,0.75)

and (0.78,0.125,0.75), respectively. The frames rigidly



Fig. 12. Velocity field at t = 4, 5 and 9 on the plane passing through the mass center of the top ellipsoid for the case of density 1.25 and

long semi-axis 0.22 (from left to right).
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attached to the ellipsoids are fðcos p
3
; 0; sin p

3
Þ, (0,1,0),

ðcos 5p
6
; 0; sin 5p

6
Þg and fðcosð�p

3
Þ; 0; sinð�p

3
ÞÞ, (0,1,0),

ðcos p
6
; 0; sin p

6
Þg initially, respectively (see the position

of ellipsoids at t = 0 in Fig. 7). The long semi-axis is

0.18 and {hv,Dt} is {1/112,0.001}. All other parameters
are same as in the previous case. The averaged terminal

speed of two ellipsoids is 1.66 obtained for the last five

periods of oscillation, so the averaged particle Reynolds

number is 59.76 based on the length of the long axis

(which is 0.36). Positions of two ellipsoids similar to

those in Fig. 6 are shown in Fig. 7. It is in good qualita-

tive agreement with experimental results. The period of

the motion is 0.39 s. As shown in Fig. 8, we have ob-

served a strong interaction between two settling ellip-

soids of long axis 0.36. Three snapshots of the velocity

field projected on the plane passing through the mass
center of the left ellipsoid are shown in Fig. 9. The veloc-

ity field is about symmetric with respect to the centerline.

We believe that the jet stream between two ellipsoids

when they become closer is one of the key factors for

the oscillation we have observed. To see the effect of

the length of the long axis and the density of the ellip-

soid, we have considered two following tests. When only

reducing the long axes to 0.32 and keeping other para-

meters unchanged from the above case, they settle

side-by-side in the channel with a weak interaction of

period 0.3856 s. When increasing the density to 1.25 and

keeping other parameters unchanged from the above

case, the interaction of two ellipsoids becomes stronger

and faster with period 0.2472 s. The histories of the hor-

izontal position of the mass center of both cases are

shown in Fig. 8. The memory used in the simulation is
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about 186 Mb for hv = 1/112. The simulation takes

about 43 s per time step for (hv, Dt) = {1/112,0.001} on
a Linux based PC with 1.6 GHz Athlon CPU.
4.3. One ellipsoid on top of another one

It had also been observed experimentally by Joseph

et al. that two cylinders with round ends can move

around each other and stay together while they are set-

tling down in the channel. It is unlike the case for two

balls settling in a Newtonian fluid, which is known as

drafting, kissing, and tumbling [38]. Two balls always

break away after tumbling.

In this test case all parameters are same as in Sec-

tion 4.1 except those mentioned in the following. The

initial mass center positions are (0.5, 0.125,0.9) and

(0.5,0.125,1.25), respectively, so one is on top of the

other. The long axes of both ellipsoids are parallel to

the x–axis initially. Two short semi-axes of both ellip-

soids are 0.1. The ellipsoid density is qs = 1.25 and
{hv,Dt} is {1/112,0.001}. To study the effect of the long
axis to the interaction between two ellipsoids, we have

considered three cases with long semi-axes 0.21, 0.22

and 0.23, respectively.

The averaged terminal speeds of two ellipsoids are

4.847, 4.818 and 4.81 for the long semi-axes 0.21, 0.22

and 0.23, respectively, for the last 2 s. The averaged par-

ticle Reynolds numbers are 203.574, 211.992 and 221.26

based on the long semi-axes 0.21, 0.22 and 0.23, respec-

tively. We have observed that two ellipsoids always

interact with each other and stay together. The snap-

shots of the position of two ellipsoids are shown in

Fig. 10 for the case of long semi-axis 0.22. In Fig. 11,

the histories of the x-coordinate of the mass centers of

two ellipsoids are shown. We have observed that for

ellipsoids of long semi-axes 0.21 they interact at one side

of channel and for ellipsoids of long semi-axes 0.23 they

interact more chaotically and oscillate between two

sides. Somewhere around 0.22 is the critical length of

long semi-axis for them to start oscillating between

two sides of the channel. Snapshots of the velocity field

projected on the plane passing through the mass center

of the top ellipsoid are shown in Fig. 12 for the case

of long semi-axes 0.22. The memory used in the simula-

tion is about 186 Mb for hv = 1/112. It takes about 25 s

per time step on a Linux based PC with 2.2 GHz AMD

Opteron 64-bit CPU.
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