Available online at www.sciencedirect.com

International Journal of Multiphase Flow 31 (2005) 1276-1303

www.elsevier.com/locate/ijmulflow

Composite power law holdup correlations in horizontal pipes

F. García^{a,*}, R. García^b, D.D. Joseph^c

^a School of Mechanical Engineering, Central University of Venezuela, Caracas 1051, Venezuela
 ^b Fluid Mechanics Institute, Central University of Venezuela, Caracas 1051, Venezuela
 ^c Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street SE, Minneapolis, MN 55455, USA

Received 9 March 2004; received in revised form 19 July 2005

Abstract

A wide range of experimental holdup data, from different sources, are analyzed based on a theoretical model proposed in this work to evaluate the holdup in horizontal pipes. 2276 gas–liquid flow experiments in horizontal pipelines with a wide range of operational conditions and fluid properties are included in the database. The experiments are classified by mixture Reynolds number ranges and composite analytical expressions for the relationship between the liquid holdup and no-slip liquid holdup vs. the gas–liquid volumetric flow rate are obtained by fitting the data with logistic dose curves. The Reynolds number appropriate to classify the experimental data for gas–liquid flows in horizontal pipes is based on the mixture velocity and the liquid kinematic viscosity. Composite power law holdup correlations for flows sorted by flow pattern are also obtained. Error estimates for the predicted vs. measured holdup correlations developed in this study is compared with the accuracy of 26 previous correlations and models in the literature. Our correlations predict the liquid holdup in horizontal pipes with much greater accuracy than those presented by previous authors.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Holdup; Gas-liquid; Power law; Pipe flow; Flow type

* Corresponding author.

0301-9322/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijmultiphaseflow.2005.07.007

E-mail addresses: garciaga@ucv.ve (F. García), joseph@aem.umn.edu (D.D. Joseph).

1. Introduction

This study deals with the prediction of liquid holdup in horizontal pipes. This problem is of great interest in many industries, especially in the oil industry in which the estimate of the production is intimately related with this parameter.

Numerous efforts have been made in to develop methods to determine liquid holdup in pipes. Empirical and semiempirical correlations based on experimental data and diverse theoretical models with different degrees of complexity for predicting liquid holdup in pipes have been suggested by a number of investigators. Some authors have attempted to find general correlations for liquid holdup in two-phase flow by curve fitting of experimental data (e.g. Lockhart and Martinelli, 1949; Beggs and Brill, 1973; Abdul-Majeed, 1996). Other authors have developed models and correlations specific for each flow type: Stratified flow (e.g. Agrawal, 1971; Chen and Spedding, 1981), Annular flow (e.g. Kadambi, 1985; Tandon et al., 1985) and slug flow (e.g. Bonnecaze et al., 1971; Mattar and Gregory, 1974; Gregory et al., 1978; Gómez et al., 2000).

The correlations are strongly dependent on the composition of the database used. Most of these correlations and models have been developed and/or validated using experimental data with a limited range of operational conditions.

In this work, data from 2276 experiments for a wide range of operational conditions and fluid properties taken from different sources, are analyzed using a theoretical model proposed to evaluate the holdup in horizontal pipes. The theoretical model relates the liquid holdup and no-slip liquid holdup (H_L/λ_L) to the gas-liquid volumetric flow rates relation (Q_G/Q_L) for different mixture Reynolds numbers ranges. The Reynolds number appropriate for gas-liquid flows in horizontal pipes is based on the mixture velocity and the liquid kinematic viscosity. This Reynolds number is same to that defined by García et al. (2003). The proposed theoretical model fits well the experimental data for values of $Q_G/Q_L < 10$ and Re < 300000. However, for values of $Q_G/Q_L < 1$ and $Re \ge 300000$ and $Q_G/Q_L > 10$ for all Reynolds numbers, the experimental values distributions of H_L/λ_L vs. Q_G/Q_L and the distributions obtained applying the proposed theoretical model are significantly different.

When the experimental values of H_L/λ_L vs. Q_G/Q_L for different intervals of Reynolds numbers are plotted, typical composite power laws formed using logistic dose curves are obtained (Patankar et al., 2002). Excellent results in the study of two-phase flow problems have been obtained by adjusting the experimental data using this kind of curves (Joseph, 2002; Patankar et al., 2001a,b, 2002; Wang et al., 2002; Pan et al., 2002; Viana et al., 2003; Mata et al., submitted for publication; García et al., 2003).

In this study we obtained a group of composite power law correlations of H_L/λ_L vs. Q_G/Q_L for different intervals of Reynolds numbers fitting 2276 experimental data without sorting according to flow type.

It is well known that the liquid holdup depends on the flow type. The experimental data were processed and sorted according to flow type and we obtained a group of composite power law correlations of H_L/λ_L vs. Q_G/Q_L for different intervals of Reynolds numbers for each flow type. Of course, the correlations for separate flow patterns are more accurate but possibly less useful than those for which previous knowledge of actual flow pattern is not required. A correlation for which a flow pattern is not specified is exactly what is needed in a field situation in which the flow pattern is unknown.

The accuracy of the correlations developed in this paper is evaluated in two ways; by comparing predictions with the data from which the correlations are derived and by comparing the predictions of our correlations with the predictions of models and correlations of other authors. We compared our predictions of holdup with those obtained from the correlations of Armand (1946), Lockhart and Martinelli (1949), Flanigan (1958), Hoogendoorn (1959), Levy (1960), Hughmark (1962), Zivi (1963), Guzhov et al. (1967), Eaton et al. (1967), Bonnecaze et al. (1971), Beggs and Brill (1973), Mattar and Gregory (1974), Butterworth (1975), Gregory et al. (1978), Chen and Spedding (1981), Chen and Spedding (1983), Spedding and Chen (1984), Minami and Brill (1987), Hart et al. (1989), Spedding et al. (1998) and Gómez et al. (2000) as well as with the predictions of the homogeneous flow model and with the predictions of the models of Nishino and Yamazaki (1963), Turner and Wallis (1965) and Tandon et al. (1985), Abdul-Majeed (1996). For completeness and comparison purposes these correlations and models are presented in Appendix A.

Statistical parameters to evaluate the prediction of the liquid holdup of 2276 experimental data by our correlations and of the correlations and models in the literature were determined. The comparison of the holdup prediction of the models was carried out using the average absolute percent error. In general, our correlations predict the holdup with much greater accuracy than those presented by previous authors.

2. Theoretical model

1278

Butterworth (1975) by intuitive reasoning proposed that the more commonly used holdup prediction equations may be represented by the relation,

$$\frac{H_{\rm L}}{H_{\rm G}} = A \left[\frac{1-x}{x} \right]^p \left[\frac{\rho_{\rm G}}{\rho_{\rm L}} \right]^q \left[\frac{\mu_{\rm L}}{\mu_{\rm G}} \right]^r \tag{1}$$

where H is the holdup, x the dryness fraction, ρ the density and μ the dynamic viscosity. The subscripts L and G refer to the liquid phase and gas phase, respectively. A, p, q and r are dependent parameters of flow pattern considered.

Later, Chen and Spedding (1983) justified the Butterworth (1975) correlation for certain conditions and expressed this equations in terms of the volumetric flow rate, Q, instead of dryness fraction,

$$\frac{1}{H_{\rm L}} = 1 + K \left[\frac{Q_{\rm G}}{Q_{\rm L}}\right]^a \left[\frac{\rho_{\rm G}}{\rho_{\rm L}}\right]^b \left[\frac{\mu_{\rm G}}{\mu_{\rm L}}\right]^c \tag{2}$$

In this work, combining eq. (2) with the no-slip holdup λ_L equation, a new relation between holdup, no-slip holdup and Q_G/Q_L is proposed:

$$\frac{H_{\rm L}}{\lambda_{\rm L}} = \frac{1 + (Q_{\rm G}/Q_{\rm L})}{1 + C(Q_{\rm G}/Q_{\rm L})^a}$$
(3)

where a and $C = K \left[\frac{\rho_G}{\rho_L}\right]^b \left[\frac{\mu_G}{\mu_L}\right]^c$ are parameters that depends on the fluid properties and the flow pattern.

1279

In order to obtain *a* and *C*, we use gas flow rate Q_G , liquid flow rate Q_L and holdup measurements H_L corresponding to 2276 experimental points taken from Intevep's databank, the Stanford multiphase flow database (SMFD), the database of the Tulsa University fluid flow projects (TUFFP) and other literature sources for gas-liquid flow in horizontal pipes. These data are summarized Tables 1–4. The columns in the tables are self explanatory except that "No Exp" means the number of experiments, ε/D is the average size of pipe wall roughness over pipe diameter, FP means "flow pattern" and AN, DB, SL, SS and SW stand for annular, dispersed bubble, slug, stratified smooth and stratified wavy flow, respectively.

According to the literature review, this database gathers the widest range of operational conditions and fluid properties so far compiled for holdup correlations: $1 \le \mu_L \le 1200 \text{ cP}$, $0.01 \le Q_G/Q_L \le 33493$, $0.002 \le H_L \le 0.99$, $0.0232 \le D \le 0.1402 \text{ m}$, $0 \le \epsilon/D \le 1.710^{-3}$.

Fig. 1 shows the H_L/λ_L relation against Q_G/Q_L for the entire database (2276 experimental points).

The scatter shown in Fig. 1 could be significantly reduced if the experimental data are classified in ranges of mixture Reynolds numbers defined as:

$$Re = \frac{U_{\rm M}D}{v_{\rm L}} \tag{4}$$

where $v_L = \mu_L / \rho_L$ is the kinematic viscosity of the liquid. This Reynolds number definition is similar to that used by García et al. (2003) to correlate the Fanning friction factor for laminar and turbulent gas-liquid flow in horizontal pipelines.

In this work, reasonably good correlations are obtained fitting the data with the theoretical model defined by Eq. (3) for eight different ranges of mixture Reynolds numbers. The parameters a and C for this correlations were obtained fitting Eq. (3) to the 2276 data points using the non linear optimization method of Microsoft[®] Excel Solver minimizing the residual mean square, and are presented in Table 5.

The theoretical model correlations (TMC) for each Reynolds number range are shown in Figs. 2 and 3.

In order to compare predicted liquid holdup $(H_L)_{pred}$ with experimental data $(H_L)_{expe}$, we use the following eight commonly used statistical parameters (Gregory and Fogarasi, 1985; Xiao

Table 1

Intevep date								
Source	No. exp	Fluids	$\mu_{\rm L} [{\rm cP}]$	$Q_{\rm G}/Q_{\rm L}$	$H_{\rm L}$	<i>D</i> [m]	ϵ/D	FP
Rivero et al. (1995)	74	Air–water Air–oil	1–200	7–442	0.05–0.34	0.0508	0	SW
Ortega et al. (2000)	23	Air–oil	500	0.38-49	0.62-0.99	0.0508	0	SL
Cabello et al. (2001)	17	Air-kerosene	1	0.46-26	0.67-0.95	0.0508	0	SL
Ortega et al. (2001)	24	Air-oil	1200	0.57-18	0.75-0.97	0.0508	0	SL
Mata et al. (submitted for publication)	22	Air-oil	100	0.12-31	0.41 - 0.98	0.0254	0	SL
Dos Santos (2002)	22	Air-oil	100	0.01 - 11	0.49-0.99	0.0254	0	DB
								SL

Table 2

Sanford data

Source	No. exp	Fluids	$\mu_{\rm L} [{ m cP}]$	$Q_{\rm G}/Q_{\rm L}$	$H_{\rm L}$	<i>D</i> [m]	ε/D	FP
Alves (1954)	27	Air–oil	80	0.10–556	0.12–0.93	0.0266	1.7×10^{-3}	AN SL SW
Govier and Omer (1962)	56	Air-water	1	0.07–1702	0.03–0.96	0.0261	0	AN SL SS SW
Eaton (1966)	51	Gas-water	1	0.58-432	0.01-0.73	0.0508	8.0×10^{-4}	SL SS SW
Agrawal (1971)	19	Air-oil	5	3.21-440	0.15-0.85	0.0258	0	SS
Yu (1972)	15	Air-oil	5	0.23–6	0.41-0.89	0.0258	0	SL
Mattar (1973)	8	Air-oil	5	0.32–26	0.24-0.77	0.0258	0	SL
Aziz et al. (1974)	120	Air-oil	5	0.01–243	0.33–0.99	0.0258	0	DB SL
Companies ^a	139 144 54 208 442 117	Air–HL Air–water Air–oil	3-19 3-19 1-25 1 3-15 3-22	0.08-578 0.07-547 0.07-222 0.08-22092 0.02-1561 0.04-1398	$\begin{array}{c} 0.05 - 0.99 \\ 0.05 - 0.99 \\ 0.02 - 0.99 \\ 0.004 - 0.95 \\ 0.01 - 0.99 \\ 0.01 - 0.97 \end{array}$	0.0232 0.0237 0.0381 0.0455 0.0502 0.0909	$\begin{array}{c} 6.5 \times 10^{-5} \\ 6.5 \times 10^{-5} \\ 1.2 \times 10^{-3} \\ 0 \\ 3.0 \times 10^{-5} \\ 1.7 \times 10^{-5} \end{array}$	AN SS SL SW
	151		3–20	0.02–197	0.07 - 0.99	0.1402	1.1×10^{-5}	

HL: Hydrocarbon liquid.

^a Data set are identified as: SU28, SU29, SU184-187, SU199, SU24, SU25 and SU26.

et al., 1990; Ouyang, 1995; García et al., 2003; García, 2004). The statistical parameters are defined as:

Average percent error E_1 ,

$$E_1 = \frac{1}{n} \sum_{i=1}^{n} r_i$$
(5)

Average absolute percent error E_2 ,

$$E_2 = \frac{1}{n} \sum_{i=1}^{n} |r_i|$$
(6)

Standard percent deviation E_3

$$E_3 = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (r_i - E_1)^2}$$
(7)

Table 3 Tulsa data

Source	No. exp	$\mu_{\rm L} [{ m cP}]$	$Q_{\rm G}/Q_{\rm L}$	$H_{\rm L}$	<i>D</i> [m]	ϵ/D	FP
Beggs (1972)	19 22	1	0.62–664 0.23–669	0.02–0.68 0.02–0.83	0.0254 0.0381	0	AN DB SL SS
Cheremisinoff (1977)	148	1	58-1000	0.01-0.20	0.0635	0	SS SW
Mukherjee (1979)	33	1	0.14–424	0.03–0.92	0.0381	3.0×10^{-5}	AN SL SS SW
Andritsos (1986)	90 14	1–70 80	130–33493 361–18922	0.002–0.36 0.003–0.21	0.0252 0.0953	0	AN SL SS SW
Kokal (1987)	10 13	8	19–384 13–179	0.05–0.37 0.09–0.35	0.0512 0.0763	0	SS SW

Table 4

Other sources

Source	No. exp	Fluids	$\mu_{\rm L} [{\rm cP}]$	$Q_{\rm G}/Q_{\rm L}$	$H_{\rm L}$	<i>D</i> [m]	ε/D	FP
Minami and Brill (1987)	57 54	Air-kerosene Air-water	1	7–2564 7–1737	0.01–0.44 0.01–0.45	0.0779	4.6×10^{-5}	AN SL SS SW
Abdul-Majeed (1996)	83	Air-kerosene	1	0.98–2534	0.01–0.61	0.0508	4.6×10^{-5}	AN SL SS SW

Root mean square percent error E_4 ,

$$E_4 = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (r_i)^2}$$
(8)

Average error E_5 ,

$$E_{5} = \frac{1}{n} \sum_{i=1}^{n} e_{i}$$
(9)

Fig. 1. $H_{\rm L}/\lambda_{\rm L}$ relation against $Q_{\rm G}/Q_{\rm L}$ for the entire database.

Table 5 Parameters a and C of theoretical model, Eq. (3)

Range	С	а	
Re < 2000	0.3372	0.6390	
$2000 \leqslant Re < 5000$	0.4379	0.4583	
$5000 \leqslant Re < 10000$	0.4424	0.5568	
$10000 \leqslant Re < 20000$	0.5693	0.5147	
$20000 \leqslant Re < 40000$	0.6215	0.5395	
$40000 \leqslant Re < 100000$	0.7095	0.5673	
$100000 \leqslant Re < 300000$	0.6735	0.6252	
$300000 \leqslant Re \le 2670000$	1.1916	0.5407	

Average absolute error E_6 ,

$$E_6 = \frac{1}{n} \sum_{i=1}^{n} |e_i| \tag{10}$$

Standard deviation E_7 ,

$$E_7 = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (e_i - E_5)^2}$$
(11)

Root mean square error E_8

$$E_8 = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (e_i)^2}$$
(12)

where, $r_i = \left[\frac{(H_L)_{\text{pred}} - (H_L)_{\text{exp}e}}{(H_L)_{\text{exp}e}}\right]100$, $e_i = (H_L)_{\text{pred}} - (H_L)_{\text{exp}e}$ and *n* is the number of the experimental data.

Fig. 2. Theoretical model correlations for (a) Re < 2000, (b) $2000 \le Re < 5000$, (c) $5000 \le Re < 10\,000$, (d) $10\,000 \le Re < 20\,000$.

The average percent error E_1 is a measure of the agreement between predicted and measured data. It indicates the degree of overprediction (positive values) or underprediction (negative values). Similarly, the average absolute percent error E_2 is a measure of the agreement between predicted and measured data. However, in this parameter the positive errors and the negative errors do not cancel each other. For this reason, the average absolute percent error is considered a key parameter in order to evaluate the prediction capability of models and correlations. The standard deviation percent error E_3 indicates how large the errors are on the average. The root mean square percent error E_4 indicates how close the predictions are to the experimental data. The statistical parameters E_5 , E_6 , E_7 and E_8 are similar to E_1 , E_2 , E_3 and E_4 but the difference is that they are not based on the errors relative to the experimental liquid holdup.

The statistical parameters $E_1 - E_8$ for theoretical model correlations are presented in Table 6.

The theoretical model correlations have an average error of -5.5% and an average absolute error of 24%. Only 68.7% of the points (1563 experimental points) are in the band between $\pm 30\%$. The best agreements are obtained for slug and dispersed bubble flow data, with an average absolute error of 14.7% and 2.2%, respectively. The worst agreements are obtained for annular and stratified flow data, with an average absolute error of 35% and 36.4%, respectively.

Fig. 3. Theoretical model correlations for (a) $20000 \le Re \le 40\,000$, (b) $40\,000 \le Re \le 100\,000$, (c) $100\,000 \le Re \le 300\,000$, (d) $Re \ge 300\,000$.

Table 6Statistical parameters for theoretical model correlations

Range	E_1 [%]	E_2 [%]	E_3 [%]	E_4 [%]	E_5	E_6	E_7	E_8	
Re < 2000	-10.65	18.53	25.17	27.34	-2.23	2.50	6.62	6.99	
$2000 \leqslant Re < 5000$	0.01	14.64	29.16	29.16	-2.40	2.86	18.38	18.54	
$5000 \leqslant Re < 10000$	0.41	17.87	31.07	31.07	-1.64	3.68	12.36	12.47	
$10000 \leqslant Re < 20000$	-4.01	19.34	29.01	29.29	-5.05	6.71	27.38	27.84	
$20000 \leqslant Re < 40000$	-4.78	21.20	30.32	30.69	-3.45	4.87	16.76	17.11	
$40000 \leqslant Re \leq 100000$	-6.45	25.75	35.84	36.41	-2.48	3.68	8.81	9.16	
$100000 \leqslant Re < 300000$	-8.60	29.46	39.13	40.07	-3.22	4.30	8.74	9.32	
$300000 \leqslant Re < 2670000$	-8.20	34.50	44.18	44.93	-2.89	5.04	6.31	6.94	

Analyzing the experimental data distribution in Figs. 2 and 3, it is evident that in general the theoretical model does not fit the data well for $Q_G/Q_L > 10$. On the other hand, for large values of Q_G/Q_L , the slope of the equation proposal should be positive. The zone between the extreme values is not clearly defined. An equation in which the H_L/λ_L relation approaches 1 for very small values of Q_G/Q_L is required. Consequently, particular composite power laws for each mixture Reynolds number range could be obtained fitting the experimental data with logistic dose response curves applying a technique described by Barree (Patankar et al., 2002).

3. Universal (all flow patterns) composite holdup correlations (UCHC)

Single equations (called composite) that can be used to predict H_L/λ_L for a wide range of gas and liquid flow rates, viscosity values and different flow patterns were obtained fitting data with logistic dose response curves for different mixture Reynolds number ranges. The particular composite power laws equation is given by

$$\frac{H_{\rm L}}{\lambda_{\rm L}} = F + \frac{(1-F)}{\left(1 + \left(\frac{1}{t}\left(\frac{Q_{\rm G}}{Q_{\rm L}}\right)\right)^c\right)^d}$$
(13)

where F is a power law defined as

$$F = aRe^b \tag{14}$$

a, *b*, *c*, *d* and *t* are parameters obtained fitting Eq. (13) to the 2276 data points using the non linear optimization method of Microsoft[®] Excel Solver minimizing the residual mean square. The parameters *a*, *b*, *c*, *d* and *t* for this correlation are presented in Table 7.

The universal composite correlations (UCC) for each Reynolds number range are shown in Figs. 4 and 5.

The average percent error E_1 , the average absolute percent error E_2 , the standard percent deviation E_3 , the root mean square percent error E_4 , the average error E_5 , the average absolute error E_6 , the standard deviation E_7 , the root mean square error E_8 for each correlation are presented in Table 8.

The universal holdup correlations have an average error of -4.1% and an average absolute error of 21.0%. 73.9% of the points (1682 experimental points) are in the band between $\pm 30\%$. The best agreements are obtained for slug and dispersed bubble flow data, with an average absolute error of 13.1% and 1.9%, respectively. The worst agreements are obtained for annular and stratified flow data, with an average absolute error of 34.9% and 31.3%, respectively.

4. Holdup correlations sorted by flow pattern (FPHC)

Each and every experiment was classified by flow type: 1305 slug flow, 20 dispersed bubble, 692 stratified flow and 259 annular flow. The experimental data for each flow pattern were classified

ratalieters of the universal composite correlations for holdup										
Range	а	b	С	d	t					
<i>Re</i> < 2000	85.5969	0.4503	0.4240	0.0781	432.0226					
$2000 \leqslant Re < 5000$	73.9792	0.2936	0.6536	0.2634	429.8162					
$5000 \leqslant Re < 10000$	74.1824	0.0001	0.9458	1.5020	430.7731					
$10000 \leqslant Re < 20000$	70.5777	0.1238	1.04086	0.3322	107.5723					
$20000 \leqslant Re < 40000$	70.5791	0.04267	1.0423	0.3410	107.5740					
$40000 \leqslant Re < 100000$	17.5825	0.1077	0.8963	0.9592	151.007					
$100000 \leqslant Re < 300000$	2.5383	0.3001	0.8655	3.5587	100.0044					
$300000\leqslant Re<2670000$	1.4976	0.3820	0.9985	2.5626	99.9486					

Parameters of the universal composite correlations for holdup

Table 7

Fig. 4. Universal composite correlations for (a) Re < 2000, (b) $2000 \le Re < 5000$, (c) $5000 \le Re < 10\,000$, (d) $10\,000 \le Re < 20\,000$.

by ranges of mixture Reynolds number and composite correlations were created for each flow type. The parameters a, b, c, d and t of each correlation are presented in Table 9.

The statistical parameters E_1 - E_8 for each correlation are presented in Table 10.

The slug flow holdup correlations have an average error of -3.5% and an average absolute error of 12.7%. 79.5% of the points (1038 experimental points) are in the band between $\pm 20\%$. The dispersed bubble flow holdup correlation has an average error of -0.2 and an average absolute error of 0.7%. 85% of the points (17 points) are in the band between $\pm 1.4\%$. The average error for stratified flow is -1.1% and the average absolute error is 29.4%. 82.7% of the 692 points (572 points) are in the band between $\pm 42.3\%$. The average error for annular flow is -4.9% and the average absolute error of 28.1%. However, only 75.3% of the 259 points (195 points) are in the band between $\pm 39.8\%$.

In slug flow a better fit is obtained for $Re \leq 139$. However, the application range is very limited $(0.33 \leq Q_G/Q_L \leq 48.8)$. The parameters *a*, *b*, *c*, *d* and *t* for this correlation are presented in Table 11.

The statistical parameters E_1 - E_8 for slug flow holdup correlation, $Re \le 139$ and $0.33 \le Q_G/Q_L \le 48.8$ are presented in Table 12.

The experiments for $Re \leq 139$ are just a few (50 experimental points) and the zone for $Q_G/Q_L > 48.8$ is not defined.

Fig. 5. Universal composite correlations for (a) $20\,000 \le Re \le 40\,000$, (b) $40\,000 \le Re \le 100\,000$, (c) $100\,000 \le Re \le 300\,000$, (d) $Re \ge 300\,000$.

 Table 8

 Statistical parameters of universal composite correlations

Range	E_1 [%]	E_2 [%]	E_3 [%]	$E_4 [\%]$	E_5	E_6	E_7	E_8
<i>Re</i> < 2000	-6.55	18.11	25.07	25.92	-1.16	1.75	4.11	4.27
$2000 \leqslant Re < 5000$	-0.01	10.75	25.95	25.95	-1.16	2.10	13.89	13.94
$5000 \leqslant Re < 10000$	2.47	14.35	29.12	29.22	-1.49	2.45	10.77	10.88
$10000 \leqslant Re < 20000$	-2.47	13.28	22.77	22.91	-2.22	3.72	20.68	20.80
$20000 \leqslant Re < 40000$	-2.37	15.26	22.91	23.04	-2.66	4.10	18.45	18.64
$40000 \leqslant Re \le 100000$	-3.92	21.39	33.34	33.57	-1.93	2.92	7.70	7.94
$100000 \leqslant Re < 300000$	-10.25	26.26	35.57	37.02	-2.85	4.01	8.69	9.14
$300000 \leqslant Re \le 2670000$	-4.58	32.74	44.98	45.21	-2.40	4.62	5.92	6.39

5. Performance comparison of holdup correlations and models from various sources against the 2276 experimental data

In this section we evaluate the performance of the 2276 holdup experimental points of our correlations and the correlations and the models in the literature. The models and the correlations evaluated are indexed as follows:

Table 9Parameters of the holdup correlations for each flow pattern

FP	Range	а	b	С	d	t
SL	<i>Re</i> < 2000	85.8986	0.2236	0.8079	0.2549	115.1514
	$2000 \leqslant Re < 10000$	87.4521	0.1197	0.8812	0.2300	100.3408
	$10000 \leqslant Re < 100000$	29.9532	0.8411	0.1036	0.01483	103.4254
	$100000 \leqslant Re < 300000$	22.2924	0.5506	0.3033	0.04402	103.0586
	$300000 \leqslant Re \le 1600000$	16.4879	0.7116	0.03704	0.01333	103.2149
DB	$Re \leqslant 40000$	0.4189	0.7474	15.3580	0.6820	-0.6416
ST	Re < 40000	72.6460	0.07633	1.0797	0.3618	100.2523
	$40000 \leqslant Re < 100000$	10.9333	0.2091	99.9363	0.8191	0.9032
	$100000 \leqslant Re < 300000$	7.6656	0.3091	0.3142	0.5750	166.0573
	$300000 \leqslant Re \le 1970000$	5.5983	0.3424	0.02663	0.6472	100.0544
AN	Re < 40000	29.3073	0.1273	0.7551	0.7236	194.0617
	$40000 \leqslant Re < 100000$	5.1204	0.2441	1.9999	3.6295	150.4515
	$100000 \leqslant Re < 300000$	11.5159	0.02339	2.6863	2.0494	153.9041
	$300000 \leqslant Re \le 2670000$	4.4926	0.3743	0.3804	0.3223	155.4373

 Table 10

 Statistical parameters of the holdup correlations for each flow pattern

FP	Range	E_1 [%]	E_2 [%]	E_3 [%]	$E_4 [\%]$	E_5	E_6	E_7	E_8
SL	<i>Re</i> < 2000	-7.61	12.20	17.70	19.28	-0.89	1.03	3.18	3.30
	$2000 \leqslant Re < 10000$	-1.32	7.34	11.27	11.35	-0.19	0.55	2.73	2.74
	$10000 \leqslant Re < 100000$	-2.31	11.60	18.16	18.30	-0.23	0.40	1.35	1.37
	$100000 \leqslant Re < 300000$	-5.41	18.19	25.85	26.41	-0.36	0.55	1.03	1.09
	$300000 \leqslant Re \le 1600000$	-6.46	27.46	37.92	38.48	-0.80	1.18	1.92	2.09
DB	$Re \leqslant 40000$	-0.24	0.75	1.36	1.39	0.00	0.01	0.01	0.01
ST	Re < 40000	-1.67	29.06	43.40	43.43	-6.02	10.22	32.77	33.32
	$40000 \leqslant Re < 100000$	5.75	29.28	48.64	48.98	-1.37	3.59	5.15	5.33
	$100000 \leqslant Re < 300000$	-8.49	28.49	35.50	36.51	-4.39	6.94	9.73	10.69
	$300000 \leqslant Re < 1970000$	0.26	30.09	41.18	41.18	-1.78	4.88	5.57	5.85
AN	Re < 40000	-6.05	23.93	29.58	30.21	-9.48	13.64	22.76	24.71
	$40000 \leqslant Re < 100000$	-8.35	30.91	43.88	44.69	-7.09	9.94	16.67	18.14
	$100000 \leqslant Re < 300000$	-13.62	23.78	27.72	30.98	-3.37	4.28	5.95	6.87
	$300000 \leqslant Re < 2670000$	-1.32	28.98	41.92	41.94	-1.18	4.82	8.19	8.28

Table 11 Parameters of the holdup correlations for slug flow, $Re \leq 139$ and $0.33 \leq Q_G/Q_L \leq 48.8$

Range	a	b	С	d	t
$Re \leqslant 139$	85.8992	0.3717	0.7275	0.3116	115.1512

Table 12

Statistical parameters of the holdup correlations for slug flow, $Re \le 139$ and $0.33 \le Q_G/Q_L \le 48.8$

FP	Range	E_1 [%]	E_2 [%]	<i>E</i> ₃ [%]	E4 [%]	E_5	E_6	E_7	E_8
SL	$Re \leqslant 139$	5.64	9.04	16.71	17.66	0.15	0.31	0.52	0.54

HOM (homogeneous model), ARM (Armand, 1946), L&M (Lockhart and Martinelli, 1949), FLA (Flanigan, 1958), HOO (Hoogendoorn, 1959), LEV (Levy, 1960), HUG (Hughmark, 1962), BAR (Transformed Baroczy correlation, Butterworth, 1975), N&Y (Nishino and Yamazaki, 1963), THO (Transformed Thom correlation, Butterworth, 1975), ZIV (Zivi, 1963), T&W (Turner and Wallis, 1965), GUZ (Guzhov et al., 1967), EAT (Eaton et al., 1967), BON (Bonnecaze et al., 1971), B&B (Beggs and Brill, 1973), M&G (Mattar and Gregory, 1974), GRE (Gregory et al., 1978), C&SC (Chen and Spedding, 1981), C&SM (Chen and Spedding model, Chen and Spedding, 1983; Spedding and Chen, 1984), TAN (Tandon et al., 1985), M&B (Minami and Brill, 1987), HAR (Hart et al., 1989), ABD (Abdul-Majeed, 1996), SPE (Spedding et al., 1998), GOM (Gómez et al., 2000), TMC (theoretical model correlations, Eq. (3), Table 5), UCHC (universal composite holdup correlations, Eq. (13), Table 7), FPHC (composite holdup correlations sorted by flow pattern, Eq. (13), Table 9).

The comparison of the accuracy of holdup prediction of the correlations and the models from different authors against 2276 points is shown in Table 13, that also includes the statistical parameters E_1-E_8 for each correlation.

The performance of our correlation FPHC sorted by flow pattern is the best with an average absolute error of 19.0%. The universal correlations UCHC in which the flow pattern are ignored is second best and the theoretical models TMC is the third best with average absolute errors of 21.0% and 24.0%, respectively. The Beggs and Brill (1973) correlation obtain the fourth best performance with average absolute error of 31.9%. The homogeneous model and the models and the

Table 13

The comparison of the accuracy of holdup prediction of the correlations and the models from different authors against 2276 points

Model or correlation	Statistical parameters								
	E_1 [%]	E_2 [%]	E_3 [%]	E_4 [%]	E_5	E_6	E_7	E_8	
FPHC	-2.1	19.0	30.7	30.7	-0.02	0.05	0.08	0.08	
UCHC	-4.1	21.0	33.0	33.2	-0.03	0.05	0.09	0.10	
TMC	-5.5	24.0	35.2	35.6	-0.03	0.06	0.10	0.10	
BBC	-26.5	31.9	31.3	41.0	-0.08	0.09	0.11	0.14	
N&Y	7.7	31.9	51.4	52.0	-0.01	0.07	0.12	0.12	
BAR	9.5	33.5	47.6	48.6	0.04	0.09	0.12	0.12	
C&SM	15.2	36.0	64.1	65.9	-0.02	0.09	0.14	0.15	
ABD	-8.4	37.8	68.1	68.7	-0.08	0.16	0.22	0.24	
L&M	30.3	40.5	95.5	100.2	0.02	0.07	0.09	0.10	
THO	-11.0	44.9	54.3	55.4	0.03	0.11	0.14	0.15	
ZIV	2.4	45.3	57.7	57.7	0.06	0.13	0.16	0.17	
LEV	-40.4	46.0	40.4	57.1	-0.07	0.10	0.12	0.14	
TAN	28.2	53.2	70.1	75.5	0.03	0.21	0.31	0.31	
EAT	52.1	55.5	65.5	83.8	0.11	0.12	0.12	0.16	
HOM	-57.1	57.1	35.8	67.4	-0.14	0.14	0.14	0.20	
HUG	44.6	59.9	137.2	144.3	-0.01	0.06	0.09	0.09	
SPE	57.0	68.5	88.9	105.6	0.18	0.20	0.22	0.29	
M&B	82.9	84.5	104.7	133.5	0.12	0.13	0.11	0.16	
HOO	126.9	134.3	325.2	349.1	0.07	0.11	0.14	0.16	
T&W	155.0	155.3	266.9	308.7	0.21	0.22	0.15	0.26	
C&SC	157.7	159.1	251.1	296.6	0.20	0.20	0.14	0.24	
BON	145.7	167.3	524.5	544.4	-0.02	0.10	0.14	0.14	
ARM	145.7	167.3	524.5	544.4	-0.02	0.10	0.14	0.14	
GUZ	178.0	193.1	599.3	625.2	0.01	0.10	0.13	0.14	
GRE	306.2	312.9	690.4	755.3	0.21	0.27	0.25	0.33	
GOM	457.4	462.7	1740.8	1799.9	0.34	0.36	0.29	0.44	
HAR	634.7	634.8	1103.7	1273.2	0.51	0.51	0.29	0.59	
M&G	790.9	844.0	2426.9	2552.5	0.07	0.50	0.56	0.56	
FLA	1111.8	1127.1	3205.3	3392.7	0.40	0.53	0.48	0.62	

correlations developed by Armand (1946), Flanigan (1958), Hoogendoorn (1959), Hughmark (1962), Turner and Wallis (1965), Guzhov et al. (1967), Eaton et al. (1967), Bonnecaze et al. (1971), Mattar and Gregory (1974), Gregory et al. (1978), Chen and Spedding (1981), Tandon et al. (1985), Minami and Brill (1987), Spedding et al. (1998), Hart et al. (1989) and Gómez et al. (2000) obtain average absolute errors higher to 50%.

We turn now to an evaluation of the predictors when the experimental data is sorted by flow pattern. The following data were used: 1305 slug flow data points, 20 dispersed bubble data points, 692 stratified flow data points and 259 annular flow data points. The statistical parameters E_1-E_8 for each flow pattern are presented in Tables 14–17. This kind of comparison naturally favors correlations like FPHC, which recognize the flow pattern.

The correlations FPHC developed in this work which have been sorted by flow type, again show the best performance with average absolute errors of 12.0%, 0.7%, 29.4% and 28.1% for slug

Model or correlation	Statistical parameters									
	E_1 [%]	E_2 [%]	E_3 [%]	E_4 [%]	E_5	E_6	E_7	E_8		
FPHC	-2.2	12.0	19.5	19.7	-0.02	0.05	0.09	0.09		
UCHC	-3.5	13.3	21.9	22.2	-0.04	0.06	0.11	0.12		
HUG	-2.1	14.4	24.2	24.3	-0.04	0.06	0.10	0.10		
TMC	2.3	14.7	24.5	24.6	-0.01	0.06	0.09	0.09		
BBC	-15.6	20.3	23.4	28.2	-0.09	0.10	0.12	0.16		
L&M	15.1	20.5	31.6	35.0	0.04	0.08	0.10	0.11		
GUZ	0.9	20.8	49.7	49.7	-0.05	0.08	0.12	0.13		
C&SM	-4.6	20.9	44.3	44.6	-0.07	0.09	0.13	0.15		
BON	-4.6	20.9	44.3	44.6	-0.07	0.09	0.13	0.15		
ARM	-4.6	20.9	44.3	44.6	-0.07	0.09	0.13	0.15		
HOO	11.3	21.0	39.9	41.5	0.02	0.08	0.12	0.12		
N&Y	8.2	21.3	36.0	36.9	0.01	0.09	0.13	0.13		
LEV	-19.0	25.3	29.3	34.9	-0.07	0.11	0.13	0.15		
BAR	24.1	29.6	40.5	47.2	0.08	0.11	0.12	0.15		
THO	22.3	31.3	37.3	43.5	0.10	0.14	0.14	0.17		
HOM	-34.4	34.4	28.0	44.4	-0.16	0.16	0.15	0.22		
ABD	-20.7	34.7	36.0	41.5	-0.15	0.22	0.23	0.27		
ZIV	33.0	39.2	44.8	55.6	0.14	0.17	0.15	0.21		
EAT	37.7	39.5	40.6	55.4	0.15	0.16	0.11	0.18		
M&B	40.8	42.5	49.3	64.0	0.14	0.16	0.11	0.18		
TAN	24.1	54.0	62.0	66.5	0.02	0.30	0.38	0.38		
GRE	44.1	54.4	91.4	101.5	0.11	0.20	0.22	0.25		
C&SC	68.1	68.6	85.8	109.6	0.22	0.22	0.15	0.26		
T&W	72.4	72.7	84.5	111.3	0.24	0.25	0.15	0.29		
SPE	76.0	78.6	90.4	118.1	0.28	0.30	0.22	0.36		
GOM	82.0	86.6	129.1	153.0	0.26	0.29	0.25	0.36		
M&G	22.7	108.6	220.4	221.5	-0.24	0.46	0.47	0.53		
FLA	85.4	111.3	261.7	275.3	0.10	0.32	0.38	0.39		
HAR	139.7	139.7	261.0	296.0	0.39	0.39	0.26	0.47		

Table 14 Evaluation of the correlations and the models using slug flow data

flow, dispersed bubble flow, stratified flow and annular flow, respectively. The universal correlations UCHC present the second best performance for slug flow and stratified flow with average absolute errors of 13.3% and 31.3%, respectively. For annular flow the Abdul-Majeed (1996) correlation show the second best performance with an average absolute error of 32.3%, followed in third place by the universal correlations UCHC with an average absolute error of 34.9%. For dispersed bubble flow the Beggs and Brill (1973) correlation obtain the second best performance with an average absolute error of 1.4%. Although for dispersed bubble flow the universal correlations UCHC fall to ninth place, these have an average absolute error of 1.9%.

6. Summary and conclusions

Data from 2276 gas–liquid flow experiments in horizontal pipelines were sorted by flow pattern and a data structure suitable for the study of liquid holdup was created.

E_1 [%]	E_2 [%]	E_3 [%]	E_4 [%]	E_5	E_6	E_7	E_8		
-0.2	0.7	1.4	1.4	0.00	0.01	0.01	0.01		
-0.9	1.4	2.1	2.3	-0.01	0.01	0.02	0.02		
0.5	1.7	3.3	3.4	0.00	0.01	0.02	0.02		
0.5	1.7	3.3	3.4	0.00	0.01	0.02	0.02		
0.5	1.7	3.3	3.4	0.00	0.01	0.02	0.02		
-1.8	1.8	2.1	2.8	-0.01	0.01	0.02	0.02		
0.9	1.9	3.9	4.0	0.00	0.01	0.02	0.02		
1.3	1.9	3.5	3.7	0.01	0.01	0.02	0.02		
1.3	1.9	2.9	3.2	0.01	0.02	0.02	0.02		
-0.2	2.2	4.0	4.0	-0.01	0.02	0.03	0.03		
2.6	3.0	5.6	6.2	0.02	0.02	0.03	0.04		
4.2	4.4	9.5	10.4	0.03	0.03	0.05	0.06		
-4.4	4.7	9.5	10.5	-0.03	0.03	0.05	0.06		
4.6	4.9	10.9	11.9	0.03	0.03	0.06	0.07		
-2.7	5.4	5.9	6.6	-0.03	0.05	0.04	0.05		
6.8	6.8	11.5	13.4	0.05	0.05	0.06	0.08		
7.2	7.2	12.8	14.8	0.05	0.05	0.07	0.09		
7.3	7.3	13.8	15.7	0.05	0.05	0.08	0.09		
7.4	7.4	12.6	14.7	0.05	0.05	0.07	0.09		
6.1	7.6	16.6	17.8	0.04	0.05	0.09	0.10		
8.2	8.4	18.5	20.3	0.05	0.05	0.10	0.12		
8.5	8.5	16.7	18.8	0.06	0.06	0.09	0.11		
-8.0	9.7	16.0	18.0	-0.06	0.07	0.11	0.13		
-2.5	9.9	13.2	13.4	-0.04	0.08	0.10	0.11		
11.9	11.9	24.8	27.6	0.08	0.08	0.14	0.16		
11.9	11.9	24.8	27.6	0.08	0.08	0.14	0.16		
-27.0	27.5	15.5	31.8	-0.26	0.27	0.16	0.31		
-74.3	82.0	47.5	89.8	-0.74	0.79	0.43	0.88		
-91.2	91.2	18.1	95.3	-0.86	0.86	0.23	0.92		
		Statistical parameters E_1 [%] E_2 [%] -0.2 0.7 -0.9 1.4 0.5 1.7 0.5 1.7 0.5 1.7 0.5 1.7 0.5 1.7 -1.8 1.8 0.9 1.9 1.3 1.9 -0.2 2.2 2.6 3.0 4.2 4.4 -4.4 4.7 4.6 4.9 -2.7 5.4 6.8 6.8 7.2 7.2 7.3 7.3 7.4 7.4 6.1 7.6 8.2 8.4 8.5 8.5 -8.0 9.7 -2.5 9.9 11.9 11.9 11.9 11.9 11.9 11.9 -74.3 82.0 -91.2 91.2 <td>Statistical parameters E_1 [%] E_2 [%] E_3 [%] -0.2 0.7 1.4 -0.9 1.4 2.1 0.5 1.7 3.3 0.5 1.7 3.3 0.5 1.7 3.3 0.5 1.7 3.3 0.5 1.7 3.3 -1.8 1.8 2.1 0.9 1.9 3.9 1.3 1.9 2.5 1.3 1.9 2.9 -0.2 2.2 4.0 2.6 3.0 5.6 4.2 4.4 9.5 -4.4 4.7 9.5 4.6 4.9 10.9 -2.7 5.4 5.9 6.8 6.8 11.5 7.2 7.2 12.8 7.3 7.3 13.8 7.4 7.4 12.6 6.1 7.6 16.6 8.2 8.4</td> <td>Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] -0.2 0.7 1.4 1.4 -0.9 1.4 2.1 2.3 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.9 3.9 4.0 1.3 1.9 2.9 3.2 -0.2 2.2 4.0 4.0 2.6 3.0 5.6 6.2<td>Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] E_5 -0.2 0.7 1.4 1.4 0.00 -0.9 1.4 2.1 2.3 -0.01 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 -1.8 1.8 2.1 2.8 -0.01 0.9 1.9 3.9 4.0 0.00 1.3 1.9 2.9 3.2 0.01 -0.2 2.2 4.0 4.0 -0.01 2.6 3.0 5.6 6.2 0.02 4.2 4.4 9.5 10.4 0.03 -4.4 4.7 9.5 10.5 -0.03 6.8 6.8</td><td>Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] E_5 E_6 -0.2 0.7 1.4 1.4 0.00 0.01 -0.9 1.4 2.1 2.3 -0.01 0.01 0.5 1.7 3.3 3.4 0.00 0.01 0.5 1.7 3.3 3.4 0.00 0.01 -1.8 1.8 2.1 2.8 -0.01 0.01 0.9 1.9 3.9 4.0 0.00 0.01 1.3 1.9 2.9 3.2 0.01 0.02 -0.2 2.2 4.0 4.0 -0.01 0.02 2.6 3.0 5.6 6.2 0.02 0.02 4.2 4.4 9.5 10.4 0.03 0.03 -4.4 4.7 9.5 10.5 -0.03 0.05 7.2 7.2 12.8 14.8 0.05 0.05 7</td><td>Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] E_5 E_6 E_7 -0.2 0.7 1.4 1.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 -1.8 1.8 2.1 2.8 -0.01 0.01 0.02 0.9 1.9 3.9 4.0 0.00 0.01 0.02 1.3 1.9 2.9 3.2 0.01 0.02 0.03 2.6 3.0 5.6 6.2 0.02 0.03 0.05 -4.4 4.7 9.5 10.5 -0.03 0.03 0.05 -2.7 5.4 5.9</td></td>	Statistical parameters E_1 [%] E_2 [%] E_3 [%] -0.2 0.7 1.4 -0.9 1.4 2.1 0.5 1.7 3.3 0.5 1.7 3.3 0.5 1.7 3.3 0.5 1.7 3.3 0.5 1.7 3.3 -1.8 1.8 2.1 0.9 1.9 3.9 1.3 1.9 2.5 1.3 1.9 2.9 -0.2 2.2 4.0 2.6 3.0 5.6 4.2 4.4 9.5 -4.4 4.7 9.5 4.6 4.9 10.9 -2.7 5.4 5.9 6.8 6.8 11.5 7.2 7.2 12.8 7.3 7.3 13.8 7.4 7.4 12.6 6.1 7.6 16.6 8.2 8.4	Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] -0.2 0.7 1.4 1.4 -0.9 1.4 2.1 2.3 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.7 3.3 3.4 0.5 1.9 3.9 4.0 1.3 1.9 2.9 3.2 -0.2 2.2 4.0 4.0 2.6 3.0 5.6 6.2 <td>Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] E_5 -0.2 0.7 1.4 1.4 0.00 -0.9 1.4 2.1 2.3 -0.01 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 -1.8 1.8 2.1 2.8 -0.01 0.9 1.9 3.9 4.0 0.00 1.3 1.9 2.9 3.2 0.01 -0.2 2.2 4.0 4.0 -0.01 2.6 3.0 5.6 6.2 0.02 4.2 4.4 9.5 10.4 0.03 -4.4 4.7 9.5 10.5 -0.03 6.8 6.8</td> <td>Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] E_5 E_6 -0.2 0.7 1.4 1.4 0.00 0.01 -0.9 1.4 2.1 2.3 -0.01 0.01 0.5 1.7 3.3 3.4 0.00 0.01 0.5 1.7 3.3 3.4 0.00 0.01 -1.8 1.8 2.1 2.8 -0.01 0.01 0.9 1.9 3.9 4.0 0.00 0.01 1.3 1.9 2.9 3.2 0.01 0.02 -0.2 2.2 4.0 4.0 -0.01 0.02 2.6 3.0 5.6 6.2 0.02 0.02 4.2 4.4 9.5 10.4 0.03 0.03 -4.4 4.7 9.5 10.5 -0.03 0.05 7.2 7.2 12.8 14.8 0.05 0.05 7</td> <td>Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] E_5 E_6 E_7 -0.2 0.7 1.4 1.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 -1.8 1.8 2.1 2.8 -0.01 0.01 0.02 0.9 1.9 3.9 4.0 0.00 0.01 0.02 1.3 1.9 2.9 3.2 0.01 0.02 0.03 2.6 3.0 5.6 6.2 0.02 0.03 0.05 -4.4 4.7 9.5 10.5 -0.03 0.03 0.05 -2.7 5.4 5.9</td>	Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] E_5 -0.2 0.7 1.4 1.4 0.00 -0.9 1.4 2.1 2.3 -0.01 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 0.5 1.7 3.3 3.4 0.00 -1.8 1.8 2.1 2.8 -0.01 0.9 1.9 3.9 4.0 0.00 1.3 1.9 2.9 3.2 0.01 -0.2 2.2 4.0 4.0 -0.01 2.6 3.0 5.6 6.2 0.02 4.2 4.4 9.5 10.4 0.03 -4.4 4.7 9.5 10.5 -0.03 6.8 6.8	Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] E_5 E_6 -0.2 0.7 1.4 1.4 0.00 0.01 -0.9 1.4 2.1 2.3 -0.01 0.01 0.5 1.7 3.3 3.4 0.00 0.01 0.5 1.7 3.3 3.4 0.00 0.01 -1.8 1.8 2.1 2.8 -0.01 0.01 0.9 1.9 3.9 4.0 0.00 0.01 1.3 1.9 2.9 3.2 0.01 0.02 -0.2 2.2 4.0 4.0 -0.01 0.02 2.6 3.0 5.6 6.2 0.02 0.02 4.2 4.4 9.5 10.4 0.03 0.03 -4.4 4.7 9.5 10.5 -0.03 0.05 7.2 7.2 12.8 14.8 0.05 0.05 7	Statistical parameters E_1 [%] E_2 [%] E_3 [%] E_4 [%] E_5 E_6 E_7 -0.2 0.7 1.4 1.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 0.5 1.7 3.3 3.4 0.00 0.01 0.02 -1.8 1.8 2.1 2.8 -0.01 0.01 0.02 0.9 1.9 3.9 4.0 0.00 0.01 0.02 1.3 1.9 2.9 3.2 0.01 0.02 0.03 2.6 3.0 5.6 6.2 0.02 0.03 0.05 -4.4 4.7 9.5 10.5 -0.03 0.03 0.05 -2.7 5.4 5.9		

 Table 15

 Evaluation of the correlations and the models using dispersed bubble flow data

 Model on correlation

 Statistical parameters

This paper proposes a theoretical model which relates the liquid holdup and no-slip liquid holdup (H_L/λ_L) with the gas-liquid volumetric flow rates relation (Q_G/Q_L) for different mixture Reynolds numbers (*Re*) ranges. This model is based on the developed works by Butterworth (1975) and Chen and Spedding (1983). The Reynolds number appropriate for gas-liquid flows in horizontal pipes is based on the mixture velocity and the liquid kinematic viscosity. The proposed theoretical model fits the experimental data well for values of $Q_G/Q_L < 10$ when $Re < 300\,000$. However, for $Q_G/Q_L < 1$ when $Re \ge 300\,000$ and $Q_G/Q_L > 10$ for all *Re*, the theoretical model does not perform well.

The experimental values of H_L/λ_L vs. Q_G/Q_L for different Reynolds numbers ranges are described by composite power laws generated by logistic dose curves. Three regions are clearly defined by distributions of the experimental values.

The first region includes experiments where $Q_G/Q_L \ll 1$. In this region, H_L/λ_L approaches 1 for all *Re*.

Model or correlation	Statistical parameters									
	E_1 [%]	E_2 [%]	E_3 [%]	E_4 [%]	E_5	E_6	E_7	E_8		
FPHC	-1.1	29.4	42.3	42.3	-0.02	0.05	0.08	0.08		
UCHC	-12.0	31.3	38.4	40.3	-0.03	0.05	0.08	0.08		
TMC	-22.1	36.4	38.4	44.3	-0.04	0.06	0.08	0.09		
BAR	-19.2	37.2	40.1	44.5	-0.03	0.06	0.09	0.10		
N&Y	-8.5	39.4	50.6	51.3	-0.05	0.06	0.09	0.10		
TAN	25.6	44.2	71.7	76.1	0.05	0.09	0.16	0.17		
L&M	23.1	44.8	81.3	84.5	0.00	0.06	0.09	0.09		
ABD	16.8	46.7	105.9	107.2	0.04	0.09	0.20	0.20		
SPE	21.6	48.0	70.5	73.7	0.04	0.09	0.15	0.15		
BBC	-43.2	49.6	34.4	55.2	-0.08	0.08	0.09	0.12		
ZIV	-40.9	54.1	44.8	60.6	-0.05	0.08	0.10	0.12		
C&SM	49.8	59.9	77.1	91.8	0.08	0.09	0.14	0.16		
THO	-57.2	64.6	38.5	69.0	-0.07	0.09	0.10	0.12		
EAT	70.0	75.6	81.2	107.3	0.08	0.09	0.12	0.14		
LEV	-69.7	75.7	36.5	78.8	-0.09	0.11	0.10	0.14		
HOM	-89.0	89.0	14.2	90.2	-0.14	0.14	0.12	0.19		
HUG	81.3	97.2	151.2	171.7	0.01	0.07	0.09	0.09		
M&B	128.2	129.6	112.7	170.8	0.12	0.12	0.10	0.16		
T&W	191.9	192.1	208.3	283.3	0.18	0.18	0.14	0.23		
BON	216.9	238.6	546.1	587.6	0.02	0.10	0.13	0.13		
ARM	216.9	238.6	546.1	587.6	0.02	0.10	0.13	0.13		
C&SC	248.7	249.0	297.1	387.6	0.20	0.20	0.12	0.23		
HOO	273.3	276.1	429.5	509.2	0.17	0.17	0.15	0.23		
GUZ	270.0	281.3	621.8	678.0	0.07	0.11	0.12	0.14		
GRE	671.0	671.0	939.2	1154.5	0.44	0.44	0.19	0.48		
GOM	673.4	674.1	1529.1	1671.0	0.47	0.47	0.26	0.54		
HAR	1016.3	1016.4	1071.2	1477.2	0.69	0.69	0.21	0.72		
M&G	1218.2	1225.4	2470.6	2755.0	0.46	0.51	0.29	0.55		
FLA	1728.5	1728.5	3288.4	3715.6	0.80	0.80	0.18	0.82		

 Table 16

 Evaluation of the correlations and the models using stratified flow data

The second region includes data where $Q_G/Q_L > 1$ and approximately $Q_G/Q_L < 1000$ for $Re < 300\,000$. This is a transition region in which the values of H_L/λ_L increase significantly with the increment of Q_G/Q_L . In this region a marked effect of slip between the phases exists. For $Re > 300\,000$, the superior limit of the transition region is $Q_G/Q_L \gg 1000$, but this limit could not be established accurately because we did not have enough experimental data.

The third region includes experiments where $Q_G/Q_L > 1000$ for $Re < 300\,000$. In this region of high gas flow rate and low liquid flow rate, the dominant flow patterns are stratified wavy and annular flow. In this region a marked increment of H_L/λ_L with the increment of Q_G/Q_L is not evidenced. Spedding and Chen (1984) affirm that for $Q_G/Q_L > 15000$, H_L remains constant. This would imply that H_L/λ_L should diminish with the increment of Q_G/Q_L since λ_L increases. However, this tendency is not observed in this work. This could be due to the lack of experimental data in this region when $Re < 300\,000$. However, although there are several experiments for Model on convolution

woder of correlation									
	E_1 [%]	E_2 [%]	E_3 [%]	E_4 [%]	E_5	E_6	E_7	E_8	
FPHC	-4.9	28.1	39.5	39.8	-0.01	0.02	0.03	0.03	
ABD	-13.7	32.3	42.9	45.0	-0.02	0.02	0.05	0.05	
UCHC	13.8	34.9	52.1	53.8	0.00	0.02	0.03	0.03	
TMC	6.1	35.0	50.9	51.3	-0.01	0.02	0.04	0.04	
BAR	13.2	45.1	63.8	65.2	0.00	0.03	0.05	0.05	
BBC	-38.9	45.4	33.7	51.6	-0.03	0.03	0.05	0.06	
C&SM	24.2	50.6	71.2	75.2	0.00	0.03	0.05	0.05	
ZIV	-36.8	55.2	50.5	62.5	-0.02	0.03	0.06	0.06	
THO	-56.5	63.2	38.5	68.5	-0.03	0.04	0.05	0.06	
N&Y	48.3	67.3	86.7	99.3	0.00	0.03	0.05	0.05	
TAN	63.2	71.0	88.3	108.6	0.03	0.04	0.07	0.08	
LEV	-72.6	73.9	26.6	77.4	-0.04	0.04	0.04	0.06	
SPE	59.5	77.3	98.3	114.9	0.03	0.05	0.10	0.10	
EAT	80.4	86.2	94.9	124.5	0.03	0.04	0.05	0.06	
HOM	-90.5	90.5	10.6	91.3	-0.06	0.06	0.06	0.08	
L&M	128.7	132.6	215.8	251.3	0.03	0.04	0.04	0.05	
M&B	179.4	181.9	161.4	241.6	0.06	0.07	0.06	0.09	
HUG	185.5	193.6	258.9	318.7	0.03	0.04	0.04	0.05	
HOO	327.5	336.7	513.8	609.6	0.05	0.07	0.06	0.08	
C&SC	378.1	387.3	411.0	559.0	0.10	0.12	0.11	0.15	
T&W	484.4	484.4	572.0	750.2	0.16	0.16	0.11	0.19	
GRE	676.4	682.0	974.3	1186.8	0.15	0.16	0.13	0.20	
BON	723.9	726.8	1073.4	1295.5	0.11	0.12	0.06	0.13	
ARM	723.9	726.8	1073.4	1295.5	0.11	0.12	0.06	0.13	
GUZ	837.9	839.9	1224.1	1484.3	0.13	0.14	0.06	0.15	
GOM	1806.8	1828.6	4206.4	4579.4	0.40	0.41	0.35	0.53	
HAR	2157.6	2157.6	1826.1	2829.8	0.67	0.67	0.26	0.72	
M&G	3588.4	3588.6	4893.7	6072.5	0.68	0.68	0.10	0.69	
FLA	4723.6	4723.6	6460.6	8008.6	0.89	0.89	0.13	0.90	

Table 17 Evaluation of the correlations and the models using annular flow data Statistical manamatan

 $300000 \leqslant Re < 2670000$, this tendency is not observed. It is possible that for high mixture Reynolds numbers the third region may exist for values of $Q_{\rm G}/Q_{\rm L} \gg 15000$.

Two thousand two hundred and seventy-six experimental values were fit to composite power law correlations, H_L/λ_L vs. Q_G/Q_L in which power laws are joined by logistic dose curves. The correlations that ignore flow types are called universal. Composite correlations which depend on the flow type were also generated The Reynolds number range for each correlation was selected to minimize the spread of experimental data.

Power law correlations were determined for subsets of the 2276 points corresponding to stratified, slug, disperse bubble and annular flow. Composite power laws are very practical because the transition region is predicted to a statistical accuracy consistent with spread of the data.

The predictions of the correlations developed in this work were tested for the spread of the actual data against the predictions. The same tests were carried out for the correlations sorted by flow type. The standard deviations are small for bubble flow (1.4%) and slug flow (19.5%).

The prediction of our correlations were also tested against correlations and models from the literature. The composite correlations sorted by flow type are more accurate than any other predictor for all cases ($E_2 = 19\%$). The universal composite correlation is second best in the data set in which all flow types are included ($E_2 = 21.0\%$), followed in third place by the theoretical model ($E_2 = 24\%$). Although, the Beggs and Brill (1973) correlation present the fourth best performance ($E_2 = 31.9\%$), for annular flow and stratified flow falls to sixth ($E_2 = 45.4\%$) and tenth ($E_2 = 49.6\%$) place, respectively. In general, the Flanigan (1958) correlation has the biggest errors.

Although the correlations developed in this work show the best performance in stratified flow and annular flow, the average absolute errors for the FPHC correlations are 29.4% and 28.1%, respectively. In these flow types the effect of the gravity and superficial tension, neglected in this paper, could be important. Including this effect through of Froude number, Morton number or Weber number, could give rise to improved holdup correlations.

Universal (independent of flow type) and composite (for all Reynolds numbers) correlations are very useful for field operations for which the flow type may not be known. It is a best guess for the liquid holdup when the flow type is unknown or different flow types are encountered in one line.

Acknowledgements

F. García would like to acknowledge the CDCH-UCV projects No. 08.15.5195.05 and 08.00.5653.04, Escuela de Ingeniería Mecánica de la Universidad Central de Venezuela and PDVSA-Intevep for supporting his Doctoral Study. The work of D.D. Joseph was supported by the PDVSA-Intevep and the Engineering Research Program of the Office of Basic Energy Sciences at the DOE, and under an NSF/GOALI grant from the division of Chemical Transport Systems. Reinaldo Garcia would like to acknowledge support through the Millennium project FONACIT.

Appendix A. Previous holdup correlations and models

This appendix summarizes 26 literature holdup models and correlations including the homogeneous model that are compared in this work with the proposed model.

The holdup $H_{\rm L}$ in the homogeneous model for two-phase flow could be expressed as

$$H_{\rm L} = \lambda_{\rm L} = \frac{Q_{\rm L}}{Q_{\rm L} + Q_{\rm G}} \tag{A.1}$$

where $\lambda_{\rm L}$ is the no-slip holdup, $Q_{\rm L}$ and $Q_{\rm G}$ are the gas and liquid flow rates, respectively.

Armand (1946) derived a simple holdup correlation for two-phase flow in horizontal pipes given by

$$\frac{H_{\rm G}}{H_{\rm L}} = \frac{1}{0.2 + 1.2(Q_{\rm G}/Q_{\rm L})} \tag{A.2}$$

which is a special case of the theoretical development due to Nguyen and Spedding (1977) and is recommended for bubble and slug flows (Spedding and Chen, 1984). $H_G = 1 - H_L$ is the void fraction.

Lockhart and Martinelli (1949) holdup correlation has the following form:

$$\frac{H_{\rm L}}{H_{\rm G}} = f(X) \tag{A.3}$$

where $X = [(dp/dl)_{SL}/(dp/dl)_{SG}]^{1/2}$ is the Lockhart and Martinelli parameter.

Butterworth (1975) showed that the Holdup Lockhart and Martinelli correlation is closely approximated by

$$\frac{H_{\rm L}}{H_{\rm G}} = 0.28X^{0.71} \tag{A.4}$$

Flanigan (1958) developed a holdup correlation based in field data acquired on a pipe with an inner diameter of 16 in. The liquid holdup correlation is given by

$$H_{\rm L} = \frac{1}{1 + 0.3264 U_{\rm SL}^{1.006}} \tag{A.5}$$

where $U_{\rm SL}$ is the superficial liquid velocity.

Hoogendoorn (1959) derived an implicit equation to evaluate the void fraction in horizontal pipes,

$$\frac{H_{\rm G}}{H_{\rm L}} = 0.60 \left[U_{\rm SG} \left(1 - \frac{H_{\rm G}}{1 - H_{\rm G}} \frac{U_{\rm SL}}{U_{\rm SG}} \right) \right]^{0.85} \tag{A.6}$$

where U_{SL} and U_{SG} are the superficial velocities of the liquid and gas phases in meter by second, respectively.

Levy (1960) developed a simple correlation from theoretical considerations,

$$H_{\rm G} = \frac{\phi_{\rm L} - 1}{\phi_{\rm L}} \tag{A.7}$$

where $\phi_{\rm L} = [(dp/dl)_{\rm TP}/(dp/dl)_{\rm SL}]^{1/2}$ is the Lockhart and Martinelli parameter, which is evaluated with the Chisholm (1967) correlation.

Hughmark (1962) presented a void fraction correlation based on the Bankoff (1960) correlation,

$$\frac{1}{x} = 1 - \frac{\rho_{\rm L}}{\rho_{\rm G}} \left(1 - \frac{K}{H_{\rm G}} \right) \tag{A.8}$$

or

$$K = \frac{H_{\rm G}}{\lambda_{\rm G}} \tag{A.9}$$

where x is the quality, ρ_L and ρ_G are the liquid and gas density, respectively, $\lambda_G = Q_G/(Q_L + Q_G)$ is the no-slip void fraction and K is a dimensionless flow parameter.

Hughmark (1962) used several sources of data to correlate K and found that it could be correlated against a variable $Z = Re^{1/6}Fr^{1/8}\lambda_L^{-1/4}$, where $Re = GD/(H_L\rho_L + H_G\rho_G)$ is the Reynolds number and $Fr = (U_{SL} + U_{SG})^2/(gD)$ is the Froude number. G is the total mass flux per unit area and g is the gravitational acceleration. Hughmark (1962) correlation requires an iterative procedure

to obtain H_G . Although this correlation was also developed for vertical flow, it is widely used for horizontal flow applications (Brill and Beggs, 1988). We found that the dimensionless flow parameter K could be adjusted by a fifth order logarithmic equation.

$$K = 0.1746 - 0.1301 \ln(Z) + 0.7508 \ln(Z)^{2} - 0.4308 \ln(Z)^{3} + 0.09553 \ln(Z)^{4} - 0.007452 \ln(Z)^{5}$$
(A.10)

Butterworth (1975) developed an equation that has an excellent agreement with Baroczy's curves (1963) for void fractions less than 0.9.

$$\frac{H_{\rm L}}{H_{\rm G}} = \left(\frac{1-x}{x}\right)^{0.74} \left(\frac{\rho_{\rm G}}{\rho_{\rm L}}\right)^{0.65} \left(\frac{\mu_{\rm L}}{\mu_{\rm G}}\right)^{0.13} \tag{A.11}$$

Nishino and Yamazaki (1963) presented a simple void fraction model,

$$H_{\rm G} = 1 - \left[\frac{(1-x)\rho_{\rm G}}{x\rho_{\rm L} + (1+x)\rho_{\rm G}}\right]^{1/2} \tag{A.12}$$

Zivi (1963) derived simple void fraction models of which the simplest is defined as

$$\frac{H_{\rm L}}{H_{\rm G}} = \left(\frac{1-x}{x}\right) \left(\frac{\rho_{\rm G}}{\rho_{\rm L}}\right)^{2/3} \tag{A.13}$$

Butterworth (1975) showed that the Thom (1964) correlation may be approximated by

$$\frac{H_{\rm L}}{H_{\rm G}} = \left(\frac{1-x}{x}\right) \left(\frac{\rho_{\rm G}}{\rho_{\rm L}}\right)^{0.89} \left(\frac{\mu_{\rm L}}{\mu_{\rm G}}\right)^{0.18} \tag{A.14}$$

Turner and Wallis (1965) developed a void fraction models based in the Lockhart and Martinelli parameter X, which for turbulent flow may be written as (Butterworth, 1975)

$$\frac{H_{\rm L}}{H_{\rm G}} = X^{0.8} \tag{A.15}$$

Guzhov et al. (1967) derived a void fraction correlation for transportation in gas-liquid systems.

$$\frac{H_{\rm G}}{\lambda_{\rm G}} = 0.81[1 - \exp(-2.2\sqrt{Fr})] \tag{A.16}$$

Eaton et al. (1967) developed a correlation to evaluate the holdup in horizontal pipes. The holdup was correlated with the following dimensionless group $\frac{1.84N_{\text{USI}}^{0.057}}{N_{\text{USI}}^{0.0277}} \left[\frac{p}{p_{\text{atm}}}\right]^{0.05} N_{\text{L}}^{0.1}$, based in the liquid velocity number N_{USG} , the gas velocity number N_{USG} , the pipe diameter number N_{D} and the liquid viscosity number N_{L} defined by Ros (1961), where p is the system pressure and p_{atm} is the reference atmospheric pressure (101008 Pa). We found that the Eaton et al. (1967) correlation could be adjusted by

$$H_{\rm L} = \frac{Z}{0.2578 + 0.9555Z + 0.1397Z^{1/2}} \tag{A.17}$$

Bonnecaze et al. (1971) derived a correlation to evaluate the holdup for two-phase slug flow in inclined pipes.

$$H_{\rm L} = 1 - \frac{(1 - \lambda_{\rm L})}{1.2 + 0.35(1 - \rho_{\rm G}/\rho_{\rm L})\delta/\sqrt{Fr}}$$
(A.18)

where $\delta = 0$ for horizontal flow, $\delta = 1$ for uphill flow and $\delta = -1$ for downhill flow.

Beggs and Brill (1973) formulated a correlation to evaluate the holdup for two-phase flow in inclined pipes.

$$H_{\rm L} = H_{\rm L(0)}\psi\tag{A.19}$$

where $H_{L(0)}$ is the holdup which would exist at the same conditions in a horizontal pipe and ψ is the correction factor for the effect of pipe inclination. $\psi = 1$ for horizontal pipes. $H_{L(0)}$ is given by

$$H_{\rm L(0)} = \frac{a\lambda_{\rm L}^o}{Fr^c} \tag{A.20}$$

where a, b and c are flow pattern dependent parameters.

Mattar and Gregory (1974) generated a correlation to evaluate the holdup for air-oil slug flow in an upward-inclined pipe.

$$H_{\rm L} = 1 - \frac{U_{\rm SG}}{1.3(U_{\rm SG} + U_{\rm SL}) + 0.7} \tag{A.21}$$

Gregory et al. (1978) developed a simple correlation to evaluate the holdup in the slug for horizontal gas-liquid slug flow.

$$H_{\rm LLS} = \frac{1}{1 + \left(\frac{U_{\rm M}}{8.66}\right)^{1.39}} \tag{A.22}$$

where the mixture velocity $U_{\rm M}$ has units of meters per second.

Chen and Spedding (1981) developed a correlation to determine the holdup for stratified and annular flow based in the Lockhart–Martinelli parameter. Chen and Spedding (1981) recommend to use the following correlation for stratified flow:

$$H_{\rm L} = \frac{X^{2/3}}{1 + X^{2/3}} \tag{A.23}$$

Chen and Spedding (1981) propose to include an experimental adjustment factor k_i to improve the performance of the correlation in annular flow,

$$H_{\rm L} = \frac{X^{2/3}}{k_i + X^{2/3}} \tag{A.24}$$

where $k_i = 2.5$ for big diameter pipes ($D \ge 0.2$ m), $k_i = 6$ for small diameter pipes ($D \le 0.045$ m), while $k_i = 1$ for diameter pipes between 0.045 m and 0.2 m.

Chen and Spedding (1983) carried out a theoretical study of the correlation proposal by Butterworth (1975),

$$\frac{H_{\rm L}}{H_{\rm G}} = A \left[\frac{1-x}{x} \right]^p \left[\frac{\rho_{\rm G}}{\rho_{\rm L}} \right]^q \left[\frac{\mu_{\rm L}}{\mu_{\rm G}} \right]^r \tag{A.25}$$

1299

where A, p, q and r are dependent parameters of flow pattern considered. Chen and Spedding (1983) expressed the Butterworth (1975) correlation for turbulent–turbulent and laminar–laminar stratified flow in terms of the volumetric flow rate, Q, instead of the quality x,

$$\frac{H_{\rm G}}{H_{\rm L}} = K \left[\frac{Q_{\rm G}}{Q_{\rm L}}\right]^a \left[\frac{\rho_{\rm G}}{\rho_{\rm L}}\right]^b \left[\frac{\mu_{\rm G}}{\mu_{\rm L}}\right]^c \tag{A.26}$$

where K, a, b and c are dependent constants of flow regimen and the H_G/H_L range. For gasliquid, turbulent-laminar stratified flow Chen and Spedding (1983) derived the following correlation:

$$\frac{H_{\rm G}}{H_{\rm L}} = \left[W_1 \frac{\rho_{\rm G}}{\rho_{\rm L}} \frac{q_{\rm G}^{1.8}}{q_{\rm L}} \frac{v_{\rm G}^{0.2}}{v_{\rm L} D^{0.8}} \right]^{1/\omega_1} \tag{A.27}$$

where $v = \mu/\rho$ is the kinematic viscosity, D the pipe diameter. For gas–liquid, laminar–turbulent flow Chen and Spedding (1983) proposed:

$$\frac{H_{\rm G}}{H_{\rm L}} = \left[W_2 \frac{\rho_{\rm G}}{\rho_{\rm L}} \frac{q_{\rm G}}{q_{\rm L}^{1.8}} \frac{v_{\rm G}}{v_{\rm L}^{0.2}} D^{0.8} \right]^{1/\omega_2} \tag{A.28}$$

where W_1, ω_1, W_2 and ω_2 are dependent constants of H_G/H_L .

Spedding and Chen (1984) applied the equation due to Armand (1946) Eq. (A.2) for bubble and slug types flows. The correlation proposed in annular flow for values of $H_G/H_L \ge 4$ is given by

$$\frac{H_{\rm G}}{H_{\rm L}} = 0.45 \left[\frac{q_{\rm G}}{q_{\rm L}}\right]^{0.65} \tag{A.29}$$

Tandon et al. (1985) developed an analytical model to predict the void fraction in two-phase annular flow. This model is based in the Lockhart and Martinelli (1949) method.

$$H_{\rm G} = 1 - 1.928 R e_{\rm L}^{-0.315} [F(X_{\rm TT})]^{-1} + 0.9293 R e_{\rm L}^{-0.63} [F(X_{\rm TT})]^{-2}, \quad 50 < R e_{\rm L} < 1125$$
(A.30)

$$H_{\rm G} = 1 - 0.38 R e_{\rm L}^{-0.088} [F(X_{\rm TT})]^{-1} + 0.0361 R e_{\rm L}^{-0.176} [F(X_{\rm TT})]^{-2}, \quad R e_{\rm L} > 1125$$
(A.31)

 $F(X_{TT})$ is a function of Lockhart–Martinelli X_{TT} parameter defined by

$$F(X_{\rm TT}) = 0.15[X_{\rm TT}^{-1} + 2.85X_{\rm TT}^{-0.476}]$$
(A.32)

where

$$X_{\rm TT} = \left(\frac{\mu_{\rm L}}{\mu_{\rm G}}\right)^{0.1} \left(\frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_{\rm G}}{\rho_{\rm L}}\right)^{0.5}$$
(A.33)

Minami and Brill (1987) conduced an experimental study of two-phase flow to investigate liquid holdup in wet-gas pipelines and proposed a holdup correlation for horizontal flow,

$$H_{\rm L} = 1 - \exp\left[-\left(\frac{\ln Z + 9.21}{8.7115}\right)^{4.3374}\right]$$
(A.34)

where Z is the Eaton et al. (1967) abscisse.

Hart et al. (1989) derived a holdup for horizontal gas-liquid pipe flow with a small liquid holdup ($H_L < 0.06$).

$$\frac{H_{\rm L}}{H_{\rm G}} = \frac{U_{\rm SL}}{U_{\rm SG}} \left[1 + 10.4Re_{\rm SL}^{0.363} \left(\frac{\rho_{\rm L}}{\rho_{\rm G}}\right)^{1/2} \right]$$
(A.35)

where $Re_{SL} = \mu_L U_{SL} D / \rho_L$ is the superficial Reynolds number of the liquid phase.

Abdul-Majeed (1996) simplified and improved the mechanistic model developed by Taitel and Dukler (1976) for estimating the holdup in horizontal two-phase flow. Abdul-Majeed (1996) demonstrated that the Taitel and Dukler (1976) model can be accurately represented by single explicit equations.

For turbulent flow:

$$H_{\rm L} = \exp(-0.9304919 + 0.5285852R - 9.219634 \times 10^{-2}R^2 + 9.02418 \times 10^{-4}R^4)$$
(A.36)

For laminar flow:

$$H_{\rm L} = \exp(-1.099924 + 0.6788495R - 0.1232191 \times 10^{-2}R^2 - 1.778653 \times 10^{-3}R^3 + 1.626819 \times 10^{-3}R^4)$$
(A.37)

where $R = \ln(X)$ and X is the Lockhart–Martinelli parameter defined as follows:

$$X^{2} = \left[\frac{U_{\text{SG}}}{U_{\text{SL}}}\frac{\rho_{\text{G}}}{\rho_{\text{L}}}\frac{\mu_{\text{L}}}{\mu_{\text{G}}}\right]^{m}\frac{\rho_{\text{L}}U_{\text{SL}}^{2}}{\rho_{\text{G}}U_{\text{SG}}^{2}}$$
(A.38)

m = 0.2 for turbulent flow, whereas m = 1 for laminar flow.

Spedding et al. (1998) proposed a new relation between holdup, $Q_L/(Q_L + Q_G)$ and pipe diameter for $U_{SG} \ge 6$ m/s,

$$H_{\rm L} = (3.5+D) \left(\frac{Q_{\rm L}}{Q_T}\right)^{0.7} \tag{A.39}$$

Gómez et al. (2000) developed a correlation to evaluate the liquid holdup in the slug body from horizontal to upward vertical flow,

$$H_{\rm L} = \exp(-0.45\theta_R - 2.48.10^{-6}Re_{\rm LS})0 \leqslant \theta_{\rm R} \leqslant 157$$
(A.40)

where $\theta_{\rm R}$ is the inclination angle in radians and $Re_{\rm LS} = \rho_{\rm L} U_{\rm M} D/\mu_{\rm L}$ is the liquid slug Reynolds number.

References

Abdul-Majeed, G., 1996. Liquid holdup in horizontal two-phase gas-liquid flow. J. Petrol. Sci. Eng. 15, 271-280.

Agrawal, S.S., 1971. Horizontal Two Phase Stratified Flow in Pipe M.Sc. Thesis, University of Calgary.

Alves, G.E., 1954. Concurrent liquid-gas flow in a pipe-line contactor. Chem. Eng. Prog. 50, 449-456.

Andritsos, N., 1986. Effect of Pipe Diameter and Liquid Viscosity on Horizontal Stratified Flow. Ph.D. Dissertation, University of Illinois at Champaign-Urbana.

- Armand, A., 1946. The resistance during the movement of two-phase system in horizontal pipes. Izv. Vse. Tepl. Inst. 1, 16–23. AERE Trans. 828.
- Aziz, K., Gregory, G.A., Nicholson, M., 1974. Some observation on the motion of elongated bubbles in horizontal pipes. Can. J. Chem. Eng. 52, 695–702.
- Bankoff, S.G., 1960. Variable density single fluid model for two-phase flow with particular reference to steam-water flow. Trans. ASME 82, 265.
- Baroczy, C., 1963. Correlation of liquid fraction in two-phase flow with application to liquid metals. NAA-SR-8171.
- Beggs, H., 1972. An Experimental Study of Two-phase Flow in Inclined Pipes, Ph.D. Dissertation, University of Tulsa. Beggs, H., Brill, J., 1973. A study of two-phase flow in inclined pipes. J. Petrol. Tech. 25, 607–617.
- Bonnecaze, R., Erskine, W., Greskovich, E., 1971. Holdup and pressure drop for two-phase slug flow in inclined pipelines. AIChE J. 17, 1109–1113.
- Brill, J., Beggs, H., 1988. Two-Phase Flow in Pipes, sixth ed., Copyright 1978 by J. Brill, H. Beggs.
- Butterworth, D., 1975. A comparison of some void-fraction relationships for concurrent gas liquid flow. Int. J. Multiphase Flow 1, 845–850.
- Cabello, R., Cárdenas, C., Lombano, G., Ortega, P., Brito, A., Trallero, J., Colmenares, J., 2001. Pruebas experimentales con kerosén/aire para el estudio de flujo tapón con sensores capacitivos en una tubería horizontal, INT-8898,2001. PDVSA INTEVEP, 50 p.
- Chen, J., Spedding, P., 1981. An extension of the Lockahart–Martinelli theory of two phase pressure drop and holdup. Int. J. Multiphase Flow 7, 659–675.
- Chen, J., Spedding, P., 1983. An analysis of holdup in horizontal two-phase gas-liquid flow. Int. J. Multiphase Flow 9, 147-159.
- Cheremisinoff, N., 1977. An Experimental and Theoretical Investigation of Horizontal Stratified and Annular Two Phase Flow with Heat Transfer. Ph.D. Dissertation, Clarkson College of Technology.
- Chisholm, D., 1967. A theoretical basis for the Lockhart–Martinelli correlation for two-phase flow. Int. J. Heat Mass Transfer 10, 1767–1778.
- Dos Santos, A., 2002. Estudio experimental del flujo gas-líquido en tubería horizontal sobre terreno desnivelado. Tesis de Ingeniería de Petróleo, Escuela de Ingeniería de Petróleo, Universidad Central de Venezuela.
- Eaton, B., 1966. The Prediction of Flow Patterns, Liquid Holdup and Pressure Losses Occurring During Continuous Two-Phase Flow in Horizontal Pipelines. Ph.D. Thesis, University of Texas, 169p.
- Eaton, B., Andrews, D., Knowles, C., Silberberg, I., Brown, K., 1967. The prediction of flow patterns, liquid holdup and pressure losses occurring during continuous two-phase flow in horizontal pipelines. Trans. AIME 240, 815–828.
- Flanigan, O., 1958. Effect of uphill flow on pressure drop in design of two-phase gathering systems. Oil Gas J. 56, 132.
- García, F., 2004. Factor de fricción para flujo bifásico de gas y de líquido en tuberías horizontales para régimen laminar y turbulento. Tesis Doctoral, Universidad Central de Venezuela.
- García, F., García, R., Padrino, J.C., Mata, C., Trallero, J., Joseph, D., 2003. Power law and composite power law friction factor correlations for laminar and turbulent gas–liquid flow in horizontal pipelines. Int. J. Multiphase Flow 29, 1605–1624.
- Gómez, L., Shohan, O., Taitel, Y., 2000. Prediction of slug liquid holdup: horizontal to upward vertical flow. Int. J. Multiphase Flow 26, 517–521.
- Govier, G., Omer, M., 1962. The horizontal pipeline flow of air-water mixture. Can. J. Chem Eng. 40, 93-104.
- Gregory, G., Fogarasi, M., 1985. A critical evaluation of multiphase gas-liquid pipeline calculation methods. In: 2nd International Conference on Multiphase Flows, London. pp. 93–108.
- Gregory, G., Nicholson, M., Aziz, K., 1978. Correlation of the liquid volume fraction in the slug for horizontal gasliquid slug flow. Int. J. Multiphase Flow 4, 33–39.
- Guzhov, A., Mamayev, V., Odishariya, G., 1967. A study of transportation in gas-liquid systems. In: 10th International Gas Conference, Hamburg, Germany.
- Hart, J., Hamersma, P., Fortuin, J., 1989. Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup. Int. J. Multiphase Flow 15, 947–964.
- Hoogendoorn, C., 1959. Gas-liquid flow in horizontal pipes. Chem. Eng. Sci. 9, 205-217.
- Hughmark, G., 1962. Holdup in gas-liquid flow. Chem. Eng. Prog. 58, 62-65.

- Joseph, D.D., 2002. Interrogations of direct numerical simulation of solid-liquid flow. Published by eFluids.com. Available from: http://www.efluids.com/books/joseph.htm>.
- Kadambi, V., 1985. Prediction of pressure drop and void-fraction in annular two-phase flow. Can. J. Chem Eng. 63, 728–734.
- Kokal, S.L., 1987. An Experimental Study of Two-Phase Flow in Inclined Pipes, Ph.D. Dissertation, University of Calgary, Alberta, Canada.
- Levy, S., 1960. Steam slip-theoretical prediction from momentum model. J. Heat Transfer 82, 113-124.
- Lockhart, R., Martinelli, R., 1949. Proposed correlation of data for isothermal two-phase two component flow in pipes. Chem. Eng. Prog. 45, 39–48.
- Mata, C., Vielma, J., Joseph, D., 2002. Power law correlations for gas/liquid flow in a flexible pipeline simulating terrain variation, Int. J. Multiphase Flow, submitted for publication. Also available from: http://www.aem.um-n.edu/people/faculty/joseph/PL-correlations/docs-ln/PLC-FlexPipe.pdf>.
- Mattar, L., 1973. Slug Flow Uphill in an Inclined Pipe. M.Sc. Thesis, University of Calgary.
- Mattar, L., Gregory, G., 1974. Air-oil slug flow in an upward-inclined pipe-I: slug velocity, holdup and pressure gradient. J. Can. Petrol. Technol. (January-March), 69–76.
- Minami, K., Brill, J., 1987. Liquid holdup in wet-gas pipelines. SPE Production Engineering. February, SPE 14535, pp. 36–44.
- Mukherjee, H., 1979. An Experimental Study of Inclined Two-Phase Flow, Ph.D. Dissertation, University of Tulsa.
- Nguyen, V., Spedding, P., 1977. Holdup in two-phase flow-A theoretical aspects. Chem. Eng. Sci. 32, 1003-1014.
- Nishino, H., Yamazaki, Y., 1963. A new method of evaluating steam volume fractions in boiling systems. J. Soc. Atom Energy Jpn. 5, 39–46.
- Ortega, P., Trallero, J., Colmenares, J., Brito, A., Cabello, R., González, P., 2001. Experimentos y validación de modelo para predicción del gradiente de presión de flujo tapón en tuberías horizontales para un sistema bifásico altamente viscoso aceite (1200 cP)/aire, INT-8879,2001. PDVSA INTEVEP, 37p.
- Ortega, P., Trallero, J., Colmenares, J., Cabello, R., González, P., 2000. Modelo para la predicción de la caída de presión en flujo tapón para una tubería horizontal. INT-8123,2000. PDVSA INTEVEP, 19p.
- Ouyang, L., 1995. Stratified flow model and interfacial friction factor correlations. A Report submitted to the Department of Petroleum Engineering in partial fulfillment of the requirements for the Degree of Master of Science, Stanford University.
- Pan, T., Joseph, D., Bai, R., Glowinski, R., Sarin, V., 2002. Fluidization of 1204 spheres: simulation and experiment. J. Fluid Mech. 451, 169–191.
- Patankar, N.A., Huang, P.Y., Ko, T., Joseph, D.D., 2001a. Lift-off of a single particle in Newtonian and viscoelastic fluids by direct numerical simulation. J. Fluid Mech. 438, 67–100.
- Patankar, N.A., Ko, T., Choi, H.G., Joseph, D.D., 2001b. A correlation for the lift-off of many particles in plane Poiseuille flows of Newtonian fluids. J. Fluid Mech. 445, 55–76.
- Patankar, N., Joseph, D., Wang, J., Barree, R., Conway, M., Asadi, M., 2002. Power law correlations for sediment transport in pressure driven channel flows. Int. J. Multiphase Flow 28, 1269–1292.
- Rivero, M., Laya, A., Ocando, D., 1995. Experimental study on the stratified-slug transition for gas-viscous liquid flow in horizontal pipelines. BHR Group Conf. Ser. Publ. 14, 293–304.
- Ros, N., 1961. Simultaneous flow of gas and liquid as encountered in well tubing. J. Petrol. Technol., 1037–1049.

Spedding, P., Chen, J., 1984. Hold up in two-phase flow. Int. J. Multiphase Flow 10, 307–339.

- Spedding, P., Watterson, J., Raghunathan, S., Fergusonn, M., 1998. Two-phase co-current flow in inclined pipe. Int. J. Heat Mass Transfer 41, 4205–4228.
- Taitel, Y., Dukler, A., 1976. A model for prediction of flow regime transitions in horizontal and near horizontal gasliquid flow. AIChE J. 22, 47–55.
- Tandon, T., Varma, H., Gupta, C., 1985. A void fraction model for annular two-phase flow. Int. J. Heat Mass Transfer 28, 191–198.
- Thom, J., 1964. Prediction of pressure drop during forced circulation boiling water. Int. J. Heat Mass Transfer 7, 709–724.
- Turner, J., Wallis, G., 1965. The separate-cylinders model of two-phase flow, paper No. NYO-3114-6, Thayer's School Eng., Daetmouth College.

- Viana, F., Pardo, R., Yánez, R., Trallero, J., Joseph, D., 2003. Universal correlation for the rise velocity of Taylor bubbles in round pipes. J. Fluid Mech. 494, 379–398.
- Wang, J., Joseph, D., Patankar, N., Conway, M., Barree, B., 2002. Bi-power law correlations for sedimentation transport in pressure driven channel flows. Int. J. Multiphase Flow 29, 475–494.
- Xiao, J., Shoham, O., Brill, J., 1990. A comprehensive mechanistic model for two-phase flow in pipelines. In: The 65th SPE Annual Technical Conference and Exhibition, New Orleans, LA, September 23–26. Paper SPE 20631, pp. 167– 180.
- Yu, C., 1972. Horizontal Flow of Air–Oil Mixtures in the Elongated Bubble Flow Pattern. M.Sc. Thesis, University of Calgary.
- Zivi, S., 1963. Estimation of steady-state steam void fraction by means of the principal of minimum entropy production, ASME Preprint63-HT-16. In: 6th National Heat Transfer Conference, AIChE-ASME, Boston.