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Capillary instability of a liquid cylinder immersed in another liquid is analyzed using viscous
potential flow. An effect of viscosity on the irrotational motion may be introduced by evaluating the
viscous normal stress at the liquid—liquid interface on the irrotational motions. In a second
approximation, the explicit effects of the discontinuity of the shear stress and tangential component
of velocity which cannot be resolved pointwise in irrotational flows, can be removed in the mean
from the power of traction integrals in the energy equation by the selection of two viscous
corrections of the irrotational pressure. The actual resolution of these discontinuities presumably
takes place in a boundary layer which is not computed or needed. We include the irrotational stress
and pressure correction in the normal stress balance and compare the computed growth rates to the
growth rates of the exact viscous flow solution. The agreement is excellent when one of the liquids
is a gas; for two viscous liquids, the agreement is good to reasonable for the maximum growth rates
but poor for long waves. Calculations show that good agreement is obtained when the vorticity is
relatively small or the irrotational part is dominant in the exact viscous solution. We show that the
irrotational viscous flow with pressure corrections gives rise to exactly the same dispersion relation
as the dissipation method in which no pressure at all is required and the viscous effect is accounted
for by evaluating the viscous dissipation using the irrotational flon2G®5 American Institute of
Physics [DOI: 10.1063/1.1914573

I. INTRODUCTION fluid. One of the effects considered is meant to account for
the forward motion of an inviscid fluid with a resistance
A liquid thread of mean radiuR immersed in another proportional to velocity. The effect of viscosity is treated in
liquid is subject to capillary instability. The capillary col- the special case in which the viscosity is so great that inertia
lapse can be described as a neck-down due to the surfaeeay be neglected. He showed that the wavelength for maxi-
tensiony in which the liquid is ejected from the throat of the mum growth is very large, strictly infinite. Weleextended
neck, as seen in Fig. 1. Capillary instability is responsible forRayleigh’s theory by considering an effect of viscosity and
drop formation in applications such as ink-jet printing, fiberthat of surrounding air on the stability of a columnar jet. The
spinning, and silicon chip technology. effect of viscosity on the stability of a liquid cylinder when
The dynamical theory of instability of a long cylindrical the surrounding fluid is neglected and on a holl@ynami-
column of liquid of radiusR under the action of capillary cally passivégcylinder in a viscous liquid was treated briefly
force was given by Rayleig}hfollowing earlier work by by ChandrasekharEgger§ has given a comprehensive re-
Platead who showed that a long cylinder of liquid is un- view of nonlinear dynamics and breakup of free surface
stable to disturbances with wavelengths greater thaR.2 flows.
Rayleigh showed that the effect of inertia is such that the  Tomotika studied capillary instability and gave an exact
wavelength\ corresponding to the mode of maximum insta- normal mode solution of the linearized Navier—Stokes equa-
bility is N\=4.51X 2R, exceeding considerably the circumfer- tions. Funada and José’phnalyzed the same problem as-
ence of the cylinder. The idea that the wavelength associatesiming that the flow is irrotational. In their potential flow
with fastest growing growth rate would become dominantanalyses, the growth rate of the instability is obtained by
and be observed in practice was first put forward byconsidering the normal stress balance at the interface. If the
Rayleigh® The analysis of Rayleigh is based on potentialviscosities of the liquids are ignored and only the irrotational
flow of an inviscid liquid neglecting the effect of the outside pressure and capillary force enter the balance, the analysis is
fluid. An attempt to account for viscous effects was made byealled an inviscid potential flow analysigF). If the viscous

Rayleigh°’ again neglecting the effect of the surroundingstress is included in the normal stress balance, the analysis is
called a viscous potential flow analyqi¢PF). Funada and

JAuthor to whom correspondence should be addressed. Teleptgi®: JOSEPH showed that the gr.OWth rates computed using VPF
625-0309. Fax(612) 626-1558. Electronic mail: joseph@aem.umn.edu are more accurate than using IPF.
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tween VCVPF and the exact solution is remarkably good in
gas-liquid cases; it is not as good in liquid—liquid cases, but
a reasonable approximation can still be obtained from the
purely irrotational solution in a neighborhood of the maxi-
mum growth rate.

Capillary Force y/r

FIG. 1. Capillary instability. The forcey/r drives fluid away from the [I. LINEARIZED EQUATIONS GOVERNING CAPILLARY
throat, leading to collapse. INSTABILITY

Consider the stability of a liquid cylinder of radiu®
with viscosity u, and densityp, surrounded by another fluid
dvith viscosity u, and densityp, under capillary forces gen-

tion of the irrotational pressure using a formulation propose ) . . .
L : erated by interfacial tensiop Note that we use the subscript
by Joseph and Warld. This viscous correction of VPR "0 oo ciae i and & for the outside fluid. The

called VCVPF, is also an irrotational flow which differs from nalvsis is done in cvlindrical rdinatés 6,2) and onl
VPF only by the additional viscous pressures. These adg@nalysis Is done in cy cal coordina ,2) and only
isymmetric disturbances independentdodire considered.

tional pressures are presumably induced in a boundary lay ; . . . . .
by the discrepancy between the nonzero irrotational shea _h_e linearized Nav_|er—Stpkes equf';mons and |n.terfaC|aI con-
litions are made dimensionless with the following scales:

stress and the zero-shear-stress condition at a free surfa
The boundary layer is not studied and is not needed in de- [length,velocity,time,pressufe [D,U,D/U, pl,
termining thg pressure CorTeC“O"?: Wang, Jo;eph, .an\(?vhere D is the diameter of the liquid cylinderU
Funadd considered capillary instability in cases in which

=Jv/(0D) = 2= i i -
one liquid is viscous and the other is a gas of negligible” ¥/(pD), po=pU*=7/D. The three dimensionless param

. ; ; : ._eters controlling the solution ama=w,/w,, |=ps/p, and a
density and viscosity. They included the pressure correctio a a
y Y Y P gjeynolds numbed=VDp,/ = O whereV=1y/u, and Oh

in the normal stress balance at the free surface and show the Oh ber. Th . i
that the growth rates computed using VCVPF are almost® N€ ©NNESOrge number. The governing equations are

indistinguishable from the exact solution. a U ow
Here, we extend the VCVPF analysis to cases involving g ¢ © 77 ~
the interface of two viscous fluids. The formulation for the
pressure correction is derived and used to compute growth au, op, 1 ( 5 UI) o, o 1
=2 )

Wang, Joseph, and Funddzomputed a viscous correc-

0, (1)

rates for capillary instability of two viscous fluids. The com- = tF =t TVZWh
. . ot or \VJ at Jdz  \J
puted values of the maximum growth rate and the associated

wave number computed from VCVPF are close to those 2
from the exact solution; but the growth rates at small wave
numbers are not in good agreement. Mg Uy W, _
R . , +—+—=0, 3
Another way to obtain a viscous correction of VPF is by a r oz

evaluating the viscous dissipation in the liquid using the ir-
rotational flow. The dissipation method was introduced by du, _ _ p, m( 5 ua>
THa__Fa, N ,

Lamb' in his study of the effect of viscosity on the decay of ot o
irrotational waves on water. We carry out the dissipation cal-

culation for the capillary instability of two viscous fluids and W 9 m “)
show that the growth rates are the same as from VCVPF. |—2=- Pa —=Vw,,
Our theory of VCVPF is a purely irrotational approxi- a gz \J

mation to the exact viscous solution. Other approximationgitn V2= (321 ar2)+(1Ir)(dl or)+(2122). The kinematic

for interfacial flows have been studied by rquy investigators. o ngition at the interface=1/2+7 (wherez is the varicose
in the context of drop oscillationgLamb,~ Miller and

Scriven'? Prosperettt? Lundgren and Mansotfl. Miller
and Scrivef¥ studied the oscillation of a liquid droplet im- In _ U [/
mersed in another fluid. They found that the approximation  dt g
based on irrotational profiles is adequate when the interfacri: . L

: . o . N he normal stress balance at the interface is given by

is free and either the interior or exterior fluid is a gas of

negligible density and viscosity. When the viscosities of the s 29U 2madu, _ &7 L 5
two fluids are comparable, the viscous dissipation in the Pa= P Vaor oo o2 RE (6)
boundary layer near the interface gives significant contribu- _ _ o

tion to the damping rate of the oscillation. The irrotational The tangential stress balance at the interface is given by
flows, which do not account for the boundary-layer flow, do <% . f7W|) ~ (% . awa)

displacementis given by

Us. 5

not lead to a good approximations of the damping rate. (7)
Miller and Scriven’s conclusions are generally consistent

with our results for capillary instability: the agreement be-The continuity of the velocity at the interface requires

gz a gz o
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U = Uy, (8) P =[Aqrlo(kr) + Agrl (k) Jexplot + ik2), (11

W = Wj,. (9)
= [BirK(kr) + BorK 1 (kyr) lexplot + ikz), (12
IIl. FULLY VISCOUS FLOW ANALYSIS

Tomotikd gave a normal mode solution to the linearized B )
governing equations. This is an exact solution which satisfies 7= H explot +ik2), (13

all the four interfacial conditions it6)—(9). He expressed the
velocities with a stream functio(r, z,1), whereo is the complex growth rate aridis the wave num-
1 1o ber; the modified Bessel functions of the first order are de-
=T WETI o (10)  noted byl for the first kind andK, for the second kind.
Substitution of(11)—(13) to (6)—(9) leads to the solvability
and the basic variables are expressed in normal modes, condition, which is given as the dispersion relation,

11(kR) 11(kR) Ki(kR) Ki(kaR)
klo(kR) kilo(kR) = kKq(kR) ~ kaKo(kaR) 0 14
2k%,(kR) (KR + KA1 (kR) 2mK (kR m(k2+ KK, (kR) | (149
|
where 7=H exp(ot + ikz), (21)
k_2dll(kR)>_(i_2>_5 . o o
Fi=ioglykR) + 2i ( kR 2 k |UI1(kR), for which the dispersion relation is given by
2
(15 () +1a)o? + %(,& +mBy)o= (é - k2>k, (22)
\!
_ . Kk dly(kR) 1 k
F2=2 \G( d(kR) ) (RZ )' 1R, 10 witn
mié [ dKy(kR) _lo(kR) _ Ko(kR) _ o1
Fa=~iloKo(kR) + 2+ ( d(lkR) ) “TLRT CTKKkR ATYTIR
17) 1 (23
% dK (ke R)) Bzt —.
=270 ( d(k.R) kR
with Solving (22), we obtain
1/2
k =K+ )2 k= (k2 + L\GO’) . (18) __ K*(B, + mBy)
m VG(m +lay)
[kz ﬂ|+mﬁa>} (1o)X 1
IV. VISCOUS POTENTIAL FLOW ANALYSIS ey + ) R a+la,| -

The potential flow solution(Funada and Josefhis  Thus instability arises in &kR<1, for which the dimen-

given byu=V ¢, V2¢=0, where is the velocity potential. = sjonless critical wave numbek,=1/R=2. When \J—,
The normal stress balan¢®) and normal velocity continuity (24) reduces to

(8) are satisfied; the shear stress and tangential velocity con-

ditions(7) and(9) cannot be enforced. The potential solution 1 K
can be expressed as o=z \/ (-2 - 2) , (25)
R atla,
i = Agrly(kryexp(ot + ikz), (19

which is just the dispersion relation in IPF; the same disper-
= BirKy(kr)exp(ot + ikz), (20) sion relation was obtained by Christiansen and HixSon.
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V. PRESSURE CORRECTION FOR VISCOUS and py, for the inside and outside potential flows, respec-
POTENTIAL FLOW tively, together with the continuity conditions
Joseph and Warl§derived a viscous correction for the =7 =7, Uy t=U -t=Ug. (30

irrotational pressure at free surfaces of steady flows, which is o
induced by the discrepancy between the nonzero irrotationa/€ @ssume that the boundary layer approximation has a neg-

shear stress and the zero-shear-stress condition at free sligiPle effect on the flow in the bulk liquid but it changes the
faces. In the VPF analysis of capillary instability, the inter- Préssure and continuity conditions at the interface. Hence,
face between two viscous fluids is involved and the two po!n€ mechanical energy equations become
tential flows are unsteady. We will derive the pressure d
correction for capillary instability from the basic mechanical dat f
energy equation.
If we ignore the small deformatior in the linear prob- J
v

%|u,|2dV: f [ur(—p} = p! + ) + ugr]dA

2,u|D|:D|dV, (31)

lem, we haven,=e, as the outward normal at the interface
for the inside fluid;n,=-n, is the outward normal for the
outside fluid;t=¢, is the unit tangential vector. We use the

superscript i for “irrotational” and “v” for “viscous.” The Ef &|u 2dv = _f [Uy(~ pl - p2+ 77) + ug]dA
normal and shear parts of the viscous stress are represented dt v, 2 : A o TR R
by 7" and 75, respectively.

The velocities and stresses are evaluated using the po- _f 21D 4:D,dV. (32)
tentials, which are expressed by stream functi@® and A
(20). The mechanical energy equations for the outside an

inside fluids are, respectively, q’he sum of(31) and(32) can be written as

d d
d [ Pay 24 —| By |2dV + —f ﬂ|u [2dv
d_tfvaz|ua| dv= A[Ua'Ta'nZ]dA dt A 22 dt v, 2 l
_ f 21D, D,dV = f [un(= p: - pi} + 7'In + pia + pg_ TQ)]dA
A
Va
:_f (U Nyl= P+ 72) + U, - t5]dA —fv 2u,DD.dV- fv 2uDy:D,dV. (33
A a |
Comparing(29) and (33), we obtain an equation which re-
- J 2uD,:D, 4V, (26) lates the pressure corrections to the uncompensated irrota-
Va tional shear stresses
d U U -
1t ﬂ|ul|2dV: f [uj- T -nqJdA- f 2wD:D,dV J Un(= pr+ pa)dA_ f (U 'tTIS_ Ug tT:)dA. (34)
dtJy, 2 A v, A A
i Joseph and Wari{jshowed that in linearized problems,
:f [uj-ny(=pi+7) +uy -t ]dA the governing equation for the pressure corrections is
A
V2p =0. (35)
- fv 2mDy:DdV. (27 Solving Eq.(35), we obtain the two pressure corrections,
|
With the continuity of the normal velocity —p= D Cj’ilo<—77jr)exp<ot+ i—wjz), (36)
Ug Ny =U; Ny = Uy, (28) i=0 A A
the sum of(26) and(27) can be written as o o o
d o d [ p —pg:E Dj’iKo(Tjr)exp<(rt+isz>, (37)
&I Luave S Blupav

where C/ and D/ are constants to be determingdis an
integer, and\ is the period inz direction. Suppose 2j,/A
=Kk, Cj’O:Ck, and DJ’O:Dk, then the two pressure corrections
can be written as

:J [Un(— pi + 7'+ Pl — 7 + Uy - t7F — U, - t73]dA
A

- f 2/.LaDa:DadV_ f 2/.L|D|:D|dv. (29) — pi’ = Ckll O(kr)exqa-t + |kz)
Va Vi
. . . . .. [ 2T, 2T,
Now consider the boundary layer approximation of vis- + > Cjilo| —jr |exp ot +i—jz], (39
cous potential flow. We propose two pressure correctipps, i#io A A
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- p; = DyiKg(kr)exp(at + ikz)

2 2
+ > D]-’iKo(%jr)exp(oHi%jz). (39

i#io

With the pressure corrections, the normal stress balance

has the following form:

20u 2mau, Py 7

£ M _ Ml 40
o (40)

i+ U_ A vt — + L
PatPa—P— P \5 a2 R

which gives rise to
{lBlKo(kR)(T_ DkKo(kR) + A]_O'I O(kR) + Cklo(kR)

2k? Il(kR)}
+ oA 1o(kR) - 22
N 1[ o(kR) KR

2mié K, (kR

+ —=B;| Ko(kR) + ——— t+ik
7 1[ o(kR) KR ]}exmr ikz)

+ > [Cj’l()(%jR) —D]-’K0<2T7TjR>]

i#io

xXexp ot +i—jz
A

= AﬁlﬂkR)(% - kZ) explot + ikz). (41)

By orthogonality of the Fourier series, we obtain
IBlKo(kR)G'_ DkKo(kR) + AlO'I O(kR) + Ckl O(kR)
2k2 Il(kR)}
+ —=A| 1o(kR) - ——
VJ l[ ol kR

2mié K,(kR) ]

+ TB]_[ Ko(kR) +

\ kR

A K 1 0
_Al(Tll(kR)<R2 k), (42)
and

, [ 2w, , 2w, -
Cilo T]R - DjKo T]R =0 whenj #j,. (43

Equation(42) replaces the normal stress balance and can be
solved for the growth rater. However, the undetermined

part C,lo(kR) —DyKy(kR) has to be computed frort84) be-
fore we can solveé42). Substitution of(38), (39), and(43)
into the left-hand side of34) gives rise to

2 Z+N\
f T b+ p)dA= J R d f (- pl + )z
A 0 z

= 277R\[A,Cl o(kR) 11 (KR)
— BiDKo(kRIK, (KR Tk
xXexp(o + ot, (44)

whereu, is the conjugate ofi,. The right-hand side of34)
can be evaluated,

Phys. Fluids 17, 052105 (2005)

— — 4R\ —
J [(u - )7 = (uy - ) 73]dA= T[A1A1|o(kR)|1(kR)
A J

+mB,B,; Ko(kR K, (KR K
xXexp(o + o)t. (45)
Combining(44) and (45), we obtain
ALCUo(kR)13(kR) ~ By DKo(KRIKy(kR)
2m

2 —
= ’—GAlAlkZIO(kR)I (kR + TBlBlszo(kR)Kl(kR).
v v

(46)
The normal velocity continuity conditiof28) leads to
11(kR)
B =A . 47

Substitution of(47) into (46) leads to

2
Cilo(kR) = DKo(kR) = 73A1k2|0(kR)
v

2
+ /—?Alkzl (KRIKo(KRIK, (R
\r

(48)
Inserting (47) and (48) into (42), we obtain the disper-
sion relation

2
(a +laa?+ %na. +B)+mlay+ Blo

= (% - k2>k, (49)

whereq,, a,, B,, andpg, are defined if23). Solving(49), we
obtain the growth rate

Kl )+ Mag* B
\G(m +lay)
+ { [ K% () + B) + M(az + Ba)] ] 2

\G(m +la,)

1/2
. (i - kZ) k . (50)
R? o +la,

VI. COMPARISON OF GROWTH RATES

We calculate the growth rate using IPF(25), VPF (24),
and VCVPF(50) and compare these results with the exact
solution (14). We choose five pairs of fluids to study capil-
lary instability and the properties of the fluids, and control-
ling dimensionless parameters are listed in Table I.

We are essentially comparing solutions assuming irrota-
tional flows to the exact solution. To better understand the
potential flow approximation to the fully viscous flow, we
may evaluate the vorticity,
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TABLE |. The properties of the five pairs of fluids used to study capillary instability and the controlling
dimensionless parametdrsm, andJ.

Case 1 2 3 4 5
Mercury- Water- Glycerin- Goldensyrup- Goldensyrup-

Fluids water benzene mercury paraffin BBoil
o (kgmd) 13 500 1000 1257 1400 1400
pa (kg M) 1000 0.001 13500 1600 900
w (kg/img 0.001 56 860 0.782 11.0 11.0
Ma (kg/m9g 0.001 0.000 65 0.001 56 0.0034 6.0
y (N/m) 0.375 0.0328 0.375 0.023 0.017
I=pa/p 0.074 07 0.86 10.74 1.143 0.6429
m= ./ 0.6410 0.65 1.99% 1073 3.091x 10 0.5455
J=pyD/ uf 2.080x 107 3.280%x 10° 7.708 2.66x 1073 1.967x 1072

U U, U oW We note that the stream functio$l) and (12) in the
W= T T T (51) exact solution can be divided into the irrotational part and

dz o dz o !
rotational part:

in the interior and exterior fluids from the exact solution. lﬂi = Ayrly(kn)explot + ikz)

When the vorticity is great, the potential flow cannot give a

satisfactory approximation. r _ (56)
The vorticity is ¥ = Aol y(kr)explot + ikz);
o= Agly(kin) (K ~ K¥)exp(ot + ik2) ! = BirK(kr)exp(ot + ikz),

= Al; (k) Vo explot + ikz) (52) (57)

5 = BorKy(kar)explat + ikz).

in the interior fluid and is . ) ) )
The irrotational parts are exactly the potential flow solution,

wa:BzKl(kar)(kg—kz)exp(at+ikz) whereas the vorticities are solely determined by the rota-

| tional parts. When the irrotational parts dominate, potential

= ByK(kar) —vVJo explot +ikz) (53)  flows can give good approximation to the exact solution;
m

when the rotational parts are important, the approximation
cannot be satisfactory. We define two ratios of the irrota-

in the exterior fluid. The magnitudes of and w, are pro- *~ )
tional part to the rotational part:

portional toA, and B,, respectively. We normalize them by

B, so that the two magnitudes are measured by the same ¢:(r =R) Al;(KR)
scale and can be compared. The normalized magnitudes of fi= JIr=R) = Al kR | (58)
the vorticities at the interfacé =R) are ! 21
LA -, | - yir=R ‘ B1Ky(kR)
—— J’ = —/ f,= = . 59
o B2|1(|(|R)\JO', w, Kl(kaR)m\Ja'. (54 a ‘w;(r:R) BKy(kR) (59

Note that we add a minus sign faf . The reason is that the These two ratios characterize the relative importance of the
vorticity vectors in the interior and exterior fluids are in op- irrotational and rotational parts at the interface. When the
posite directions, leading to vorticities of opposite signs. ByReynolds number is large, we expect the values of the ratios
adding a minus sign fow,, we obtain the absolute value of to be high.

the vorticity in the interior fluid. To computé4), we need to We present the comparison of the growth rates computed
know the value ofA,/B,. This can be achieved by manipu- from IPF, VPF, VCVPF, and the exact solution in Figs. 2-6
lation of the dispersion relatiofi4), for the five pairs of fluids listed in Table I. In each case, a
growth rate vs wave-number plot, a vorticity vs wave-
11(kR) 11(kR) Ki(kR) || A/B, number plot, and a plot for the two ratiésand f, vs wave
klo(kR) klo(kR) -kKy(kR) || A,/B, number are shown. The vorticity plot and the plot for the two
2K2,(kR) (K2 +K))1,(kR) 2mkK,(kR) || B/B, ratios can help to understand the agreement and disagree-
ment between the growth rates from potential-based solu-
- Ki(kaR) tions and from the exact solution.
= kaKo(kaR) , (55) When the Reynolds number is higRigs. 2 and 3 the
—m(k2 + kﬁ)Kl(kaR) three potential flow based solutions are essentially the same;
they are in good agreement with the exact solution in the
from which we can solve foA;/B,, A,/B,, andB,/B.. maximum growth regiorisee Table Il but deviate from the
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FIG. 2. (a) The growth rater vs k for case 1, mercury in water. The three FIG. 3. (a) The growth rater vs k for case 2, water in benzene. The three
potential-flow-based analyses agree with the exact solution well but deviatpotential-flow-based analyses agree with the exact solution in the maximum
from it slightly whenk<1. (b) The vorticitieSwf andw; vskforcase 1. The  growth region but deviate from it considerably whkris small. (b) The
magnitude of the vorticity is large whdn<1 and small wherk is about 1. vorticities wl* and w; vsk for case 2. The magnitude of the vorticity is large
(c) The two ratiosf; andf, vs k for case 1. The irrotational parts dominate whenk<1 and small in the maximum growth regioft) The two ratiosf,
whenk is close to 1; the irrotational and rotational parts are comparableandf, vsk for case 2. The ratios are high whkiis close to 1 but close to
whenk<1 ork=2. The dominance of the irrotational part in the maximum 1 whenk<1 ork=2. The maximum value of; is 10.37 here, smaller than
growth region is understandable because the Reynolds number is very higthe value 66.82 in case 1. The reason is that the Reynolds number in case 2
2.080x 10’. Both the vorticities and the two ratios could help to understandis smaller than in case 1. Both the vorticities and the two ratios could help to
the deviation of the potential based analyses from the exact solution wheanderstand the good agreement in the maximum growth region and poor
k<1. agreement whek<1 as shown in(a).

exact solution wherk<1. When the Reynolds number is VCVPF and the exact solution is poor for long waves. In the

lower (Figs. 4 and 5 IPF and VPF deviate from the exact Maximum growth regiorik close to 1, the values of, and
solution in the maximum growth region whereas VCVPF can'a &€ larger than for long waves. When the Reynolds num-
give almost the same maximum growth ratg and the as- €T iS large, the maximum value f andf, is large, indi-
sociated wave numbek., as the exact solution. However, Cating 'Fhat the irrotational parts dominate the solution; at the
VCVPF dose not differ greatly from IPF or VPF whén Sametime, we observe good agreement between VCVPF and

<1. Figure 6 shows the results for case 5 in which the ReytN€ €xact solution for wave numbers négr\When the Rey-

nolds number is low and the viscosity ratim~O(1); nolds number is small, the values fpfandf, are close to 1
VCVPF does not give the correct valuesaf andk., in thié in the whole range of; at the same time, we observe that the
case. agreement between VCVPF and the exact solution is poor at

The vorticity as a function of the wave numbenelps to ~ 2imost all the values dt.

understand the nonuniform agreement between the VCVPFE

results and the exact results. In cases 1, 2, a(fdds. 2—4, ?ﬁg?&gﬁjm‘(ﬂON CALCULATION FOR CAPILLARY

the magnitude of the vorticity is large whér<1 and small

in the maximum growth region. This could explain the good  The dissipation method is a way to include viscous ef-

agreement in the maximum growth region and poor agreefects into solutions assuming potential flows. Joseph and

ment wherk< 1. In cases 4 and &-igs. 5 and § the mag- Wang10 showed that VCVPF and dissipation method give the

nitude of the vorticity is large at almost all the valueskof same results in a few problems involving free surfaces, such

except wherk is very close tck,=2. The distribution of the as the drag force on a spherical or oblate ellipsoidal gas

vorticity is helpful for understanding the growth rate calcu- bubble and the decay rate of free gravity waves on water.

lation but a clear explanation for the nonuniform agreemenwWang, Joseph, and Funddshowed that the dissipation cal-

is not obtained in cases 4 and 5. culation gives the same growth rates as VCVPF for capillary
We find that the values of the two ratidgsand f, are  instability involving a gas and a viscous fluid. Here we ex-

close to 1 wherk<1 in all the cases, indicating that the tend the dissipation calculation to capillary instability of two

rotational parts are important for long waves even at highviscous fluids.

Reynolds number. This is consistent with our growth rate  The sum of the mechanical energy equations of the inte-

calculation, which shows that the agreement betweemior and exterior fluids can be written as
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FIG. 4. (a) The growth rates vs k for case 3, glycerin in mercury. In the

FIG. 5. (a) The growth rater vs k for case 4, goldensyrup in paraffin. IPF
maximum region,

IPF and VPF overestimate the growth rate whereasand VPF deviate from the exact solution considerably in the whole range of

VCVPF gives almost the same value as EXACT. IPF, VPF, and VCVPFk=<k.,=2. VCVPF is still in good agreement with the exact solution in the
deviate from the exact solution considerably wikeal. (b) The vorticities

maximum growth region(tb) The vorticities(uf and (u; vsk for case 4. The
w, and w; vs k for case 3. The magnitude of the vorticity is large when magnitude of the vorticity is large at almost all the valuek eikcept when
<1 and small in the maximum growth regidie) The two ratiosf, andf, vs k is very close tok,=2. (c) The two ratiosf; and f, vs k for case 4. The
k for case 3. The ratios are high whens close to 1 but close to 1 when maximum value off, and f, does not exceed 1.3, indicating that the rota-
k<1 ork=2. The maximum value of; is 1.83, much smaller than in case tional parts are important in the whole rangekofThis could explain the
1 and case 2. At the same time the Reynolds number is also much smalléeviation of IPF and VPF from the exact solution in the whole range. At the
than in case 1 and case 2. It is noted that the maximum valf@igiefl7.19, same time, the curve fdr, shows that the ratio is higher in the maximum
much larger tharf|. The reason is that the value ff should correspond to  growth region than in the region wheke<1 or k=2. This may help to
the Reynolds number based pp and u,, which is 2.08< 10’ in case 3. understand the good agreement between VCVPF and the exact solution in
Both the vorticities and the two ratios could help to understand the goodhe neighborhood of the maximum growth rate

agreement in the maximum growth region and poor agreement iz
as shown in(a).

szD:de:f n-2uD -udA, (63)
\ A

whereA is the surface o¥ andn is the unit normal pointing
outward. Inserting61)—(63) into (60), we obtain

d Pa; 12 df P2
— | Zlugdv+—| —|u|dV
dt)y, 2 a dtV2|'|

d d
:j [Up(=pi + 7'+ pa— 70) + U, - t7 — U, - t75]dA —f &‘|ua|2dv+ —f ﬂ|u||2dV
—J 2u.D,:D dV—J 2u,D;:D,dV (60) —f u (az +—>dA
v, Malda- Uy y MmULUav. = R nY 2 R

We assume that the normal stress balance +f ny- ZMaDa-uadV—f Ny - 2wD; - udV. (64)
A A

#n 7 The dimensionless form db4) is
Pamma=P+7 =5+ o5 (61)

d 1 d 1
1= Zlu’dv+—1| Z|uf?dV
i), pesave g | Sl

and the continuity of the tangential velocity and stress

i
:JU<ZZ 2)dA+—fnl 2D, - udA
BET=T, Ug t=Up-t=ug (62) noE R

1
are all satisfied at the interface. At the same time, the flow in - GL ny - 2D - udA. (65
the bulk of the fluids are approximated by potential flow, for

which the following identity can be easily proved: The integrals in65) are evaluated
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FIG. 6. (a) The growth rates vs k for case 5, goldensyrup in BBoil. The

agreement between IPF, VPF, and VCVPF with the exact solution is poor at

almost all the values dt. (b) The vorticities:uf andw; vsk for case 5. The
magnitude of the vorticity is relatively large at almost all the valuels aind
becomes small only whekis very close tc.=2. (c) The two ratiosf, and
f, vs k for case 5. The maximum value df and f, does not exceed

equally important in the whole range kf Both the vorticities and the two

ratios could help to understand the poor agreement between IPF, VPF, and

VCVPF with the exact solution shown iw@).

2 2 z+\N (R 2
Ef Mdv=gf def J Mrdrdz
dtJy, 2 dtJ, , Jo 2

= |A|2m\RkKIo(kR)1 1 (KR) (0 + @)

xXexp(o + ot,

Phys. Fluids 17, 052105 (2005)

d u 2 d 2 ZtN [ u 2
|—f @dv:|—f daf f&rdrdz
dt)y, 2 dt)y  J, Js 2

=1|B,|*m\R?%kKy(kRIK (kR (o + o)

xexp(o+ ot, (67)

#n 7 k2
JA (g + R2 udA= 2|A1|27T)\R;|§(kR)

x(% - k2>eX|3(cr+E)t, (68)

/

1 4
:f n,- 2D, - udA= —F|Al|27-r)\Rk3I1(kR)[2lo(kR)
VIJa VJ

- M}exp(cr+at,

kR (€9

m 4am
T J Ny - 2D, - UdA= ﬁ|A1|27-r)\Rk3K1(kR)[2KO(kR)
A /
K1(kR)
kR

+

]exqo+5§t. (70)

Inserting(66)—(70) into (65), we obtain

1.000 035, indicating that the irrotational and rotational parts are almost

o+o
2

(1 _,\k
‘(Rz ")a

2k?
(a'l + Iaa) + E[(al + IBI) + m(aa+ :Ba)]

(71)

where ¢, a,, B,, and B, are defined in(23). If we assume
that o is real,(71) is the same as the dispersion relat{d)

from the VCVPF solution. The solution of the dispersion
relation is given in(50). In the range &<k<1/R=2, o is
real and our assumption is satisfied. Therefore, the growth

(66)

TABLE II. Data of the maximum growth rate and the associated wave number.

Case

IPF

Km

Om

EXACT

Km

Om

Case

a b W NP

1.390961 &+00
1.358 505 &+00
1.189 718 E+00
1.349 371 &+00
1.366 163 £+00

VPF

9.637 7408-01
8.958 972 E-01
5.573461E-01
8.750 763 B-01
9.130386 E-01

Km

Om

1.389398E+00
1.350889E+00
9.949 639 E-01
2.703 269 E-01
1.063 202 E+00

9.551739EB-01
8.4918586-01
3.414019E-01
1.655220B8-02
4.348411E-03

Km

Om

a b W N

1.390961 &+00
1.356 978 &£+00
1.071603 &+00
2.964 342 €-01
2.020340&-01

9.6337186-01
8.932529B8-01
4.7575278-01
4.873370E-02
2.757 518 E-02

1.389 398 E+00
1.353930E+00
9.186 273 6-01
1.769 323 E-01
1.343316 B-01

9.628 999 E-01
8.901762E6-01
3.676 062 E-01
1.687 814 E-02
1.229110B-02
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rate computed by the dissipation calculation is the same aBhusdu;/dz and du3/dz can be ignored anB0) becomes
that computed by the VCVPF.

air(vv}’ -mw) = 2(1 -m)Ak?l,(kRiexplot +ikz).  (81)

VIIl. DISCUSSION OF THE PRESSURE CORRECTIONS

AT THE INTERFACE OF TWO VISCOUS FLUIDS Assuming that the boundary layer thickne$ss small, we

can write(81) approximately as

Our pressure corrections arise in a boundary layer in- 5 .
duced by the discontinuity of the tangential velocity and ~ W'(1 —=ma)/é=2(1 -m)Aky(kRiexplot +ikz).  (82)

sh_ear stress at the interface evaluated using the_ potential so- Comparing(79) and(82), we obtain
lution. We assume that the boundary layer is thin and when

the boundary layer is considered, the tangential velocity and 1-mq
shear stress are continuous at the interface. This assumption (1 -q)(1-m)
leads to good agreements between the exact solution and

VCVPF for the liquid—gas cases and less good agreements,

better than what m|ght be expected, in the cases of two f|uid§heref0|’e,(83) needs to be satisfied if the continuities of the
for which the boundary layer assumptions do not hold unitangential velocity and stress are to be enforced. In other
formly and will be discussed in this section. In the boundarywords, the assumptions on which VCVPF is based are valid

2K1,(KR)
Ko(kR)
Ki(kR)

1
rS (83

lo(kR) +11(kR)

layer near the interface, we divide the velocity and pressur@nly if (83) is satisfied. Since we do not solve the boundary

into irrotational part and viscous correction part,

usu+w, w=w+w’, p=p +p'. (72)
The irrotational tangential velocities at the interface are
W = - Aklg(kRiexp(ot + ikz), (73

» 1,(kR) .
W, = Alel(kR) Ko(kRexp(at + ikz). (74)

The tangential stresses at the interface evaluated using t

potential flows are

7= - (2WI)AKA (KR exp(ot + ikz), (75)
72 == (2mI)AK2, (KRexp(ot + ik2). (76)
The continuity of the tangential velocity requires
Wi+ W = W+ wh, (77)
which gives rise to
) 1,(kR)

W = Aklo(kRiexp(ot +ikz) = W + Alell R Ko(kR)

xXexp(ot +ikz). (78)

If we assumen?=aqw, (78) can be written as

11(kR)
Ki(kR)

W (1-0q) :Alk[lo(kR) + KO(kR)]exp(crH ikz).

(79)

The continuity of the shear stress requires
1 (auf &w}’) 2
+ —_— ——

A%l (kR exp(ot + ikz)

J\az o) 3
m [ ou aw;) m -
=—=| =2+ —]-2—=AK,(kRexpot +ikz).
\G( pe ar \J’J 1 1( ) IXCT )

(80)

layer problemg and 6 are unknown and we are not able to
determine if(83) is satisfied. However, we may assume that
dis very small and estimate the possibility of satisfy{i8g)
under different conditions, i.e., different valuesrafand k.
We have the following observations regardi&3).

(1) Since ¢ is supposed to be small83) is easier to
satisfy when the right-hand side is larger. Calculation shows
that the right-hand side ¢83) is 5x 1077 whenk=0.001 and
is 1.36 wherk=2. Therefore(83) can be satisfied fdt close
i k.=2 but is very difficult to satisfy for smak. This ob-
servation could help to understand the results of the growth
rate calculation, i.e., the agreement between VCVPF and the
exact solution is good fok close tok; but is poor when
k<1.

(2) The term on the left-hand side 83

1-mq
1-g9@-m

should be comparable to or even smaller tldaso that(83)
can be satisfied. We find that for certain valuegjp{84) is
small whenm is much smaller than 1 and is large wheris
close to 1. For example, if we figat 10, the value 0f84) is
0.0125 whermm=0.11 and is 8.89 whem=0.9. This obser-
vation may help to understand our growth rate calculation at
low Reynolds numbers. In case #)=3.091x10“ and
VCVPF is in good agreement with the exact solution in the
region of maximum growth; in case 5n=0.5455 and
VCVPF does not give the correct maximum growth ratg
and the associated wave numBgr The value ofm does not
seem to be important at high Reynolds numbers. In cases 1
and 2, IPF, VPF, VCVPF all agree well with the exact solu-
tion in the region of maximum growth even when the value
of m is relatively close to 1. This is because the boundary
layer and the viscous correction are not important at high
Reynolds numbers.

We have shown that the conditié®3) can be satisfied in
some casekk close tok.=2 andm<1), and is very difficult
to satisfy in other casd&<1 orm close to 3. When(83) is

(84)

Since the potential flow solution satisfies the continuity ofsatisfied, the assumption of continuous tangential velocity
the normal velocityy;=u, the viscous corrections to the nor- and stress is realized approximately and our calculation does
mal velocity in the boundary layer should be very small.show good agreement between VCVPF and VPF. WB&h
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is difficult to satisfy, VCVPF may not give a good approxi- Stokes equations gives rise to equations for unknown viscous
mation to the exact solution, especially at low Reynoldspressure and velocity fields. This procedure is similar to the
numbers. Thus, viscous potential flows with pressure correcanalysis of Mooré? Prosperettl,” and Kang and Led?
tions can be used to approximate viscous flows in problemblowever, our method is simpler because the viscous part of
involving the interface of two viscous fluids, but this ap- the velocity field in the boundary layer is not needed since
proximation is not uniformly valid. the leading order direct effects are accommodated by the
When the viscous corrections for the velocity and preswviscous part of the normal stress evaluated on the irrotational
sure are added to the irrotational flow, the complete form ofnotion, but the viscous part of the pressure at the interface is

the normal stress balance is of the same order as the irrotational normal stress and it is

. ' 2 (ad o\ 2mfad ool needed. The linearized equations coupling the viscous part of
pL+pPa—p - P+ —r<—' + —') - __(_a + —‘*) the solenoidal velocity field to the viscous part of the pres-

NIV g/ g sure imply that this pressure is harmonic. The Laplace equa-
P tion for this is solved to obtain the viscous pressure field in
2R (85) the form of a harmonics series with arbitrary coefficients. For

nonlinear problems, the viscous pressure at the interface is
The viscous corrections of the velocity satisfy the continuityexpanded directly in a surface harmonics series with arbi-

equation trary coefficients. To determine the arbitrary coefficients, we
oW formulate two mechanical energy equations usihpVPF
—+—+—=0. (86) and(2) VCVPF, respectively. In casgl), only the potential
o2 flow solutions are used in the mechanical energy equation
We may estimate the order of the terms(86), giving rise to a relation which equates the volume integrals
- of the dissipation and the rate of change of kinetic energy to
2”_| ~ 4 (87)  the power of the normal and tangential tractions exerted by
6 A the potential flows on either side of the interface. In o@ge
Combining(82) and (87), we obtain the_ poteptial flow with the viscous correction of thg pressure
which arises in the boundary layer appears at the interface in
a w dl-m oo, the traction integral that appears in the mechanical energy
— e~~~ Akl (KR). (89) . . " .
ar 5 Nl1-mg equation. The tangential velocities and stresses are continu-

ous and no terms due to tractions from the shear stresses
appear. The viscous normal stress arising from the viscous
1,(kR) component of the velocity field in the boundary layer is as-
W) (89 sumed to be small and neglected. For example, in the analy-
sis of the decay of free gravity waves, Joseph and Wang

If (L1-m)/(1-mq) is not a very big valuegu//or may be  showed that this extra viscous normal stress is in the order of
significantly smaller than?u{/&r. A similar argument can the boundary layer thicknes$ and negligible. The power
show thatdug/dr could be significantly smaller thaiu,/dr.  due to the normal tractions then includes contributions from
Therefore,ouj'/or and duy/ or can be ignored i85 and we  the pressure and viscous normal stress evaluated using the
obtain the normal stress balance equatid®) used in  potential solutions and from the extra viscous pressure. We
VCVPF calculation. Admittedly, omission ofu//dr and  assume the boundary layer is so thin that the volume inte-
aug/ar is not justified for certain values oh andg, which  grals inside the boundary layer are negligible compared to
may be partially responsible for the poor agreement betweethose in the bulk liquids. Therefore, the volume integrals of

At the same time, we have

au| (
— ~ Ak 14(kR) -
p 1K 1o(kR)

VCVPF and the exact solution in some cases. the dissipation and the rate of change of kinetic energy are
approximately equal to those evaluated using potential flow
IX. CONCLUSIONS solutions. Comparing the above two mechanical energy

equations, one finds that the power due to the traction of the

A method for computing a viscous correction of viscousextra viscous pressure at the interface is equal to the power
potential flow is derived for problems in which the interface due to the tangential traction of the irrotational shear
of two fluids is involved and the flows of the two fluids are stresses. This relation is then used to determine the coeffi-
assumed to be irrotational. The potential flow solution cient of the principal mode in the harmonic series expression
=V ¢, V2¢=0 generally cannot satisfy the zero-shear-stres§or the extra viscous pressure; the principal mode is defined
condition at gas—liquid interfaces or the continuity of theas the mode matched to the velocity potential. The principle
tangential velocity and shear stress at liquid—liquid inter-mode of the extra viscous pressure is then determined and
faces. We assume that the flow can be approximated by @an be used in calculations of the hydrodynamics for the
thin boundary layer near the interface and potential flow inproblem, such as the normal stress balance at the interface in
the bulk liquids. Within this boundary layer, all the physical capillary instability and the direct calculation of drag on
boundary conditions are satisfied. The velocity and pressureubbles and drops.
fields in the boundary layer can be decomposed into viscous This viscous pressure correction is applied to capillary
and potential parts, where the potential part is alreadynstability and gives rise to growth rate curves closer to the
known. Substitution of this decomposition into the Navier—exact solution than inviscid or viscous potential flow. The
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viscous correction of the pressure leads to an excellent apations are the same as those from viscous potential flow
proximation of the exact solution, uniform in the wave num-with pressure corrections.
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