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Capillary instability of a liquid cylinder immersed in another liquid is analyzed using viscous
potential flow. An effect of viscosity on the irrotational motion may be introduced by evaluating the
viscous normal stress at the liquid–liquid interface on the irrotational motions. In a second
approximation, the explicit effects of the discontinuity of the shear stress and tangential component
of velocity which cannot be resolved pointwise in irrotational flows, can be removed in the mean
from the power of traction integrals in the energy equation by the selection of two viscous
corrections of the irrotational pressure. The actual resolution of these discontinuities presumably
takes place in a boundary layer which is not computed or needed. We include the irrotational stress
and pressure correction in the normal stress balance and compare the computed growth rates to the
growth rates of the exact viscous flow solution. The agreement is excellent when one of the liquids
is a gas; for two viscous liquids, the agreement is good to reasonable for the maximum growth rates
but poor for long waves. Calculations show that good agreement is obtained when the vorticity is
relatively small or the irrotational part is dominant in the exact viscous solution. We show that the
irrotational viscous flow with pressure corrections gives rise to exactly the same dispersion relation
as the dissipation method in which no pressure at all is required and the viscous effect is accounted
for by evaluating the viscous dissipation using the irrotational flow. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1914573g

I. INTRODUCTION

A liquid thread of mean radiusR immersed in another
liquid is subject to capillary instability. The capillary col-
lapse can be described as a neck-down due to the surface
tensiong in which the liquid is ejected from the throat of the
neck, as seen in Fig. 1. Capillary instability is responsible for
drop formation in applications such as ink-jet printing, fiber
spinning, and silicon chip technology.

The dynamical theory of instability of a long cylindrical
column of liquid of radiusR under the action of capillary
force was given by Rayleigh1 following earlier work by
Plateau2 who showed that a long cylinder of liquid is un-
stable to disturbances with wavelengths greater than 2pR.
Rayleigh showed that the effect of inertia is such that the
wavelengthl corresponding to the mode of maximum insta-
bility is l=4.5132R, exceeding considerably the circumfer-
ence of the cylinder. The idea that the wavelength associated
with fastest growing growth rate would become dominant
and be observed in practice was first put forward by
Rayleigh.1 The analysis of Rayleigh is based on potential
flow of an inviscid liquid neglecting the effect of the outside
fluid. An attempt to account for viscous effects was made by
Rayleigh3 again neglecting the effect of the surrounding

fluid. One of the effects considered is meant to account for
the forward motion of an inviscid fluid with a resistance
proportional to velocity. The effect of viscosity is treated in
the special case in which the viscosity is so great that inertia
may be neglected. He showed that the wavelength for maxi-
mum growth is very large, strictly infinite. Weber4 extended
Rayleigh’s theory by considering an effect of viscosity and
that of surrounding air on the stability of a columnar jet. The
effect of viscosity on the stability of a liquid cylinder when
the surrounding fluid is neglected and on a hollowsdynami-
cally passived cylinder in a viscous liquid was treated briefly
by Chandrasekhar.5 Eggers6 has given a comprehensive re-
view of nonlinear dynamics and breakup of free surface
flows.

Tomotika7 studied capillary instability and gave an exact
normal mode solution of the linearized Navier–Stokes equa-
tions. Funada and Joseph8 analyzed the same problem as-
suming that the flow is irrotational. In their potential flow
analyses, the growth rate of the instability is obtained by
considering the normal stress balance at the interface. If the
viscosities of the liquids are ignored and only the irrotational
pressure and capillary force enter the balance, the analysis is
called an inviscid potential flow analysissIPFd. If the viscous
stress is included in the normal stress balance, the analysis is
called a viscous potential flow analysissVPFd. Funada and
Joseph8 showed that the growth rates computed using VPF
are more accurate than using IPF.
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Wang, Joseph, and Funada9 computed a viscous correc-
tion of the irrotational pressure using a formulation proposed
by Joseph and Wang.10 This viscous correction of VPF,
called VCVPF, is also an irrotational flow which differs from
VPF only by the additional viscous pressures. These addi-
tional pressures are presumably induced in a boundary layer
by the discrepancy between the nonzero irrotational shear
stress and the zero-shear-stress condition at a free surface.
The boundary layer is not studied and is not needed in de-
termining the pressure correction. Wang, Joseph, and
Funada9 considered capillary instability in cases in which
one liquid is viscous and the other is a gas of negligible
density and viscosity. They included the pressure correction
in the normal stress balance at the free surface and showed
that the growth rates computed using VCVPF are almost
indistinguishable from the exact solution.

Here, we extend the VCVPF analysis to cases involving
the interface of two viscous fluids. The formulation for the
pressure correction is derived and used to compute growth
rates for capillary instability of two viscous fluids. The com-
puted values of the maximum growth rate and the associated
wave number computed from VCVPF are close to those
from the exact solution; but the growth rates at small wave
numbers are not in good agreement.

Another way to obtain a viscous correction of VPF is by
evaluating the viscous dissipation in the liquid using the ir-
rotational flow. The dissipation method was introduced by
Lamb11 in his study of the effect of viscosity on the decay of
irrotational waves on water. We carry out the dissipation cal-
culation for the capillary instability of two viscous fluids and
show that the growth rates are the same as from VCVPF.

Our theory of VCVPF is a purely irrotational approxi-
mation to the exact viscous solution. Other approximations
for interfacial flows have been studied by many investigators
in the context of drop oscillationssLamb,11 Miller and
Scriven,12 Prosperetti,13 Lundgren and Mansour14d. Miller
and Scriven12 studied the oscillation of a liquid droplet im-
mersed in another fluid. They found that the approximation
based on irrotational profiles is adequate when the interface
is free and either the interior or exterior fluid is a gas of
negligible density and viscosity. When the viscosities of the
two fluids are comparable, the viscous dissipation in the
boundary layer near the interface gives significant contribu-
tion to the damping rate of the oscillation. The irrotational
flows, which do not account for the boundary-layer flow, do
not lead to a good approximations of the damping rate.
Miller and Scriven’s conclusions are generally consistent
with our results for capillary instability: the agreement be-

tween VCVPF and the exact solution is remarkably good in
gas–liquid cases; it is not as good in liquid–liquid cases, but
a reasonable approximation can still be obtained from the
purely irrotational solution in a neighborhood of the maxi-
mum growth rate.

II. LINEARIZED EQUATIONS GOVERNING CAPILLARY
INSTABILITY

Consider the stability of a liquid cylinder of radiusR
with viscosityml and densityrl surrounded by another fluid
with viscosityma and densityra under capillary forces gen-
erated by interfacial tensiong. Note that we use the subscript
“ l” for the inside fluid and “a” for the outside fluid. The
analysis is done in cylindrical coordinatessr ,u ,zd and only
axisymmetric disturbances independent ofu are considered.
The linearized Navier–Stokes equations and interfacial con-
ditions are made dimensionless with the following scales:

flength,velocity,time,pressureg = fD,U,D/U,p0g,

where D is the diameter of the liquid cylinder,U
=Îg / srlDd, p0=rlU

2=g /D. The three dimensionless param-
eters controlling the solution arem=ma/ml, l =ra/rl, and a
Reynolds numberJ=VDrl /ml =Oh2 whereV=g /ml and Oh
is the Ohnesorge number. The governing equations are
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with ¹2=s]2/]r2d+s1/rds] /]rd+s]2/]z2d. The kinematic
condition at the interfacer =1/2+h swhereh is the varicose
displacementd is given by
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The normal stress balance at the interface is given by
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The tangential stress balance at the interface is given by
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D . s7d

The continuity of the velocity at the interface requires

FIG. 1. Capillary instability. The forceg / r drives fluid away from the
throat, leading to collapse.
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ul = ua, s8d

wl = wa. s9d

III. FULLY VISCOUS FLOW ANALYSIS

Tomotika7 gave a normal mode solution to the linearized
governing equations. This is an exact solution which satisfies
all the four interfacial conditions ins6d–s9d. He expressed the
velocities with a stream functioncsr ,z,td,

u =
1

r

]c

]z
, w = −

1

r

]c

]r
, s10d

and the basic variables are expressed in normal modes,

cl = fA1rI 1skrd + A2rI 1sklrdgexpsst + ikzd, s11d

ca = fB1rK1skrd + B2rK1skardgexpsst + ikzd, s12d

h = H expsst + ikzd, s13d

wheres is the complex growth rate andk is the wave num-
ber; the modified Bessel functions of the first order are de-
noted by I1 for the first kind andK1 for the second kind.
Substitution ofs11d–s13d to s6d–s9d leads to the solvability
condition, which is given as the dispersion relation,

*
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with

kl = sk2 + ÎJsd1/2, ka = Sk2 +
l

m
ÎJsD1/2

. s18d

IV. VISCOUS POTENTIAL FLOW ANALYSIS

The potential flow solutionsFunada and Joseph8d is
given byu= =f, ¹2f=0, wheref is the velocity potential.
The normal stress balances6d and normal velocity continuity
s8d are satisfied; the shear stress and tangential velocity con-
ditions s7d ands9d cannot be enforced. The potential solution
can be expressed as

cl = A1rI 1skrdexpsst + ikzd, s19d

ca = B1rK1skrdexpsst + ikzd, s20d

h = H expsst + ikzd, s21d

for which the dispersion relation is given by

sal + laads2 +
2k2

ÎJ
sbl + mbads = S 1

R2 − k2Dk, s22d

with
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I0skRd
I1skRd
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K0skRd
K1skRd
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1

kR
,

s23d

ba = aa +
1

kR
.

Solving s22d, we obtain

s = −
k2sbl + mbad
ÎJsal + laad

± HFk2sbl + mbad
ÎJsal + laad

G2

+ S 1

R2 − k2D k

al + laa
J1/2

. s24d

Thus instability arises in 0,kR,1, for which the dimen-
sionless critical wave numberkc=1/R=2. When ÎJ→`,
s24d reduces to

s = ±ÎS 1

R2 − k2D k

al + laa
, s25d

which is just the dispersion relation in IPF; the same disper-
sion relation was obtained by Christiansen and Hixson.15
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V. PRESSURE CORRECTION FOR VISCOUS
POTENTIAL FLOW

Joseph and Wang10 derived a viscous correction for the
irrotational pressure at free surfaces of steady flows, which is
induced by the discrepancy between the nonzero irrotational
shear stress and the zero-shear-stress condition at free sur-
faces. In the VPF analysis of capillary instability, the inter-
face between two viscous fluids is involved and the two po-
tential flows are unsteady. We will derive the pressure
correction for capillary instability from the basic mechanical
energy equation.

If we ignore the small deformationh in the linear prob-
lem, we haven1=er as the outward normal at the interface
for the inside fluid;n2=−n1 is the outward normal for the
outside fluid;t=ez is the unit tangential vector. We use the
superscript “i” for “irrotational” and “v” for “viscous.” The
normal and shear parts of the viscous stress are represented
by tn andts, respectively.

The velocities and stresses are evaluated using the po-
tentials, which are expressed by stream functionss19d and
s20d. The mechanical energy equations for the outside and
inside fluids are, respectively,

d
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With the continuity of the normal velocity

ua ·n1 = ul ·n1 = un, s28d

the sum ofs26d and s27d can be written as
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Now consider the boundary layer approximation of vis-
cous potential flow. We propose two pressure corrections,pl

v

and pa
v, for the inside and outside potential flows, respec-

tively, together with the continuity conditions

ta
s = tl

s = ts, ua · t = ul · t = us. s30d

We assume that the boundary layer approximation has a neg-
ligible effect on the flow in the bulk liquid but it changes the
pressure and continuity conditions at the interface. Hence,
the mechanical energy equations become
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The sum ofs31d and s32d can be written as
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Comparings29d and s33d, we obtain an equation which re-
lates the pressure corrections to the uncompensated irrota-
tional shear stresses

E
A

uns− pl
v + pa

vddA=E
A

sul · ttl
s − ua · tta

sddA. s34d

Joseph and Wang10 showed that in linearized problems,
the governing equation for the pressure corrections is

¹2pv = 0. s35d

Solving Eq.s35d, we obtain the two pressure corrections,
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2p
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where Cj8 and Dj8 are constants to be determined,j is an
integer, andl is the period inz direction. Suppose 2p j0/l
=k, Cj0

8 =Ck, andDj0
8 =Dk, then the two pressure corrections

can be written as

− pl
v = CkiI 0skrdexpsst + ikzd

+ o
jÞ j0
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− pa
v = DkiK0skrdexpsst + ikzd
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With the pressure corrections, the normal stress balance
has the following form:
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which gives rise to
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By orthogonality of the Fourier series, we obtain
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l
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Equations42d replaces the normal stress balance and can be
solved for the growth rates. However, the undetermined
part CkI0skRd−DkK0skRd has to be computed froms34d be-
fore we can solves42d. Substitution ofs38d, s39d, and s43d
into the left-hand side ofs34d gives rise to
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whereūn is the conjugate ofun. The right-hand side ofs34d
can be evaluated,
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Combinings44d and s45d, we obtain
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The normal velocity continuity conditions28d leads to
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Substitution ofs47d into s46d leads to
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+
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Inserting s47d and s48d into s42d, we obtain the disper-
sion relation

sal + laads2 +
2k2

ÎJ
fsal + bld + msaa + badgs

= S 1

R2 − k2Dk, s49d

whereal, aa, ba, andbl are defined ins23d. Solvings49d, we
obtain the growth rate

s = −
k2fsal + bld + msaa + badg

ÎJsal + laad

± HFk2fsal + bld + msaa + badg
ÎJsal + laad

G2

+ S 1

R2 − k2D k

al + laa
J1/2

. s50d

VI. COMPARISON OF GROWTH RATES

We calculate the growth rates using IPFs25d, VPF s24d,
and VCVPFs50d and compare these results with the exact
solution s14d. We choose five pairs of fluids to study capil-
lary instability and the properties of the fluids, and control-
ling dimensionless parameters are listed in Table I.

We are essentially comparing solutions assuming irrota-
tional flows to the exact solution. To better understand the
potential flow approximation to the fully viscous flow, we
may evaluate the vorticity,
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v =
]ur

]z
−

]uz

]r
=

]u

]z
−

]w

]r
, s51d

in the interior and exterior fluids from the exact solution.
When the vorticity is great, the potential flow cannot give a
satisfactory approximation.

The vorticity is

vl = A2I1sklrdskl
2 − k2dexpsst + ikzd

= A2I1sklrdÎJs expsst + ikzd s52d

in the interior fluid and is

va = B2K1skardska
2 − k2dexpsst + ikzd

= B2K1skard
l

m
ÎJs expsst + ikzd s53d

in the exterior fluid. The magnitudes ofvl and va are pro-
portional toA2 andB2, respectively. We normalize them by
B2 so that the two magnitudes are measured by the same
scale and can be compared. The normalized magnitudes of
the vorticities at the interfacesr <Rd are

vl
* = −

A2

B2
I1sklRdÎJs, va

* = K1skaRd
l

m
ÎJs. s54d

Note that we add a minus sign forvl
* . The reason is that the

vorticity vectors in the interior and exterior fluids are in op-
posite directions, leading to vorticities of opposite signs. By
adding a minus sign forvl

* , we obtain the absolute value of
the vorticity in the interior fluid. To computes54d, we need to
know the value ofA2/B2. This can be achieved by manipu-
lation of the dispersion relations14d,

3 I1skRd I1sklRd K1skRd
kI0skRd klI0sklRd − kK0skRd

2k2I1skRd sk2 + kl
2dI1sklRd 2mk2K1skRd

43A1/B2

A2/B2

B1/B2
4

= 3 − K1skaRd
kaK0skaRd

− msk2 + ka
2dK1skaRd

4 , s55d

from which we can solve forA1/B2, A2/B2, andB1/B2.

We note that the stream functionss11d and s12d in the
exact solution can be divided into the irrotational part and
rotational part:

c l
i = A1rI 1skrdexpsst + ikzd,

s56d
c l

r = A2rI 1sklrdexpsst + ikzd;

c a
i = B1rK1skrdexpsst + ikzd,

s57d
c a

r = B2rK1skardexpsst + ikzd.

The irrotational parts are exactly the potential flow solution,
whereas the vorticities are solely determined by the rota-
tional parts. When the irrotational parts dominate, potential
flows can give good approximation to the exact solution;
when the rotational parts are important, the approximation
cannot be satisfactory. We define two ratios of the irrota-
tional part to the rotational part:

f l = U c l
isr = Rd

c l
rsr = Rd

U = U A1I1skRd
A2I1sklRd

U , s58d

fa = Uc a
i sr = Rd

c a
r sr = Rd

U = U B1K1skRd
B2K1skaRd

U . s59d

These two ratios characterize the relative importance of the
irrotational and rotational parts at the interface. When the
Reynolds number is large, we expect the values of the ratios
to be high.

We present the comparison of the growth rates computed
from IPF, VPF, VCVPF, and the exact solution in Figs. 2–6
for the five pairs of fluids listed in Table I. In each case, a
growth rate vs wave-number plot, a vorticity vs wave-
number plot, and a plot for the two ratiosf l and fa vs wave
number are shown. The vorticity plot and the plot for the two
ratios can help to understand the agreement and disagree-
ment between the growth rates from potential-based solu-
tions and from the exact solution.

When the Reynolds number is highsFigs. 2 and 3d, the
three potential flow based solutions are essentially the same;
they are in good agreement with the exact solution in the
maximum growth regionssee Table IId but deviate from the

TABLE I. The properties of the five pairs of fluids used to study capillary instability and the controlling
dimensionless parametersl, m, andJ.

Case 1 2 3 4 5

Fluids
Mercury-

water
Water-

benzene
Glycerin-
mercury

Goldensyrup-
paraffin

Goldensyrup-
BBoil

rl skg m−3d 13 500 1000 1 257 1400 1400

ra skg m−3d 1 000 0.001 13 500 1600 900

ml skg/m sd 0.001 56 860 0.782 11.0 11.0

ma skg/m sd 0.001 0.000 65 0.001 56 0.0034 6.0

g sN/md 0.375 0.032 8 0.375 0.023 0.017

l =ra/rl 0.074 07 0.86 10.74 1.143 0.6429

m=ma/ml 0.641 0 0.65 1.995310−3 3.091310−4 0.5455

J=rlgD /ml
2 2.0803107 3.2803105 7.708 2.661310−3 1.967310−3
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exact solution whenk!1. When the Reynolds number is
lower sFigs. 4 and 5d IPF and VPF deviate from the exact
solution in the maximum growth region whereas VCVPF can
give almost the same maximum growth ratesm and the as-
sociated wave numberkm as the exact solution. However,
VCVPF dose not differ greatly from IPF or VPF whenk
!1. Figure 6 shows the results for case 5 in which the Rey-
nolds number is low and the viscosity ratiom,Os1d;
VCVPF does not give the correct values ofsm andkm in this
case.

The vorticity as a function of the wave numberk helps to
understand the nonuniform agreement between the VCVPF
results and the exact results. In cases 1, 2, and 3sFigs. 2–4d,
the magnitude of the vorticity is large whenk!1 and small
in the maximum growth region. This could explain the good
agreement in the maximum growth region and poor agree-
ment whenk!1. In cases 4 and 5sFigs. 5 and 6d, the mag-
nitude of the vorticity is large at almost all the values ofk
except whenk is very close tokc=2. The distribution of the
vorticity is helpful for understanding the growth rate calcu-
lation but a clear explanation for the nonuniform agreement
is not obtained in cases 4 and 5.

We find that the values of the two ratiosf l and fa are
close to 1 whenk!1 in all the cases, indicating that the
rotational parts are important for long waves even at high
Reynolds number. This is consistent with our growth rate
calculation, which shows that the agreement between

VCVPF and the exact solution is poor for long waves. In the
maximum growth regionsk close to 1d, the values off l and
fa are larger than for long waves. When the Reynolds num-
ber is large, the maximum value off l and fa is large, indi-
cating that the irrotational parts dominate the solution; at the
same time, we observe good agreement between VCVPF and
the exact solution for wave numbers nearkm. When the Rey-
nolds number is small, the values off l and fa are close to 1
in the whole range ofk; at the same time, we observe that the
agreement between VCVPF and the exact solution is poor at
almost all the values ofk.

VII. DISSIPATION CALCULATION FOR CAPILLARY
INSTABILITY

The dissipation method is a way to include viscous ef-
fects into solutions assuming potential flows. Joseph and
Wang10 showed that VCVPF and dissipation method give the
same results in a few problems involving free surfaces, such
as the drag force on a spherical or oblate ellipsoidal gas
bubble and the decay rate of free gravity waves on water.
Wang, Joseph, and Funada9 showed that the dissipation cal-
culation gives the same growth rates as VCVPF for capillary
instability involving a gas and a viscous fluid. Here we ex-
tend the dissipation calculation to capillary instability of two
viscous fluids.

The sum of the mechanical energy equations of the inte-
rior and exterior fluids can be written as

FIG. 2. sad The growth rates vs k for case 1, mercury in water. The three
potential-flow-based analyses agree with the exact solution well but deviate
from it slightly whenk!1. sbd The vorticitiesvl

* andva
* vs k for case 1. The

magnitude of the vorticity is large whenk!1 and small whenk is about 1.
scd The two ratiosf l and fa vs k for case 1. The irrotational parts dominate
when k is close to 1; the irrotational and rotational parts are comparable
whenk!1 or k<2. The dominance of the irrotational part in the maximum
growth region is understandable because the Reynolds number is very high,
2.0803107. Both the vorticities and the two ratios could help to understand
the deviation of the potential based analyses from the exact solution when
k!1.

FIG. 3. sad The growth rates vs k for case 2, water in benzene. The three
potential-flow-based analyses agree with the exact solution in the maximum
growth region but deviate from it considerably whenk is small. sbd The
vorticitiesvl

* andva
* vs k for case 2. The magnitude of the vorticity is large

whenk!1 and small in the maximum growth region.scd The two ratiosf l

and fa vs k for case 2. The ratios are high whenk is close to 1 but close to
1 whenk!1 or k<2. The maximum value off l is 10.37 here, smaller than
the value 66.82 in case 1. The reason is that the Reynolds number in case 2
is smaller than in case 1. Both the vorticities and the two ratios could help to
understand the good agreement in the maximum growth region and poor
agreement whenk!1 as shown insad.
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d

dt
E

Va

ra

2
uuau2dV+

d

dt
E

Vl

rl

2
uulu2dV

=E
A

funs− pl + tl
n + pa − ta

nd + ul · ttl
s − ua · tta

sgdA

−E
Va

2maDa:DadV−E
Vl

2mlDl:DldV. s60d

We assume that the normal stress balance

pa − ta
n − pl + tl

n =
]2h

]z2 +
h

R2 , s61d

and the continuity of the tangential velocity and stress,

ta
s = tl

s = ts, ua · t = ul · t = us, s62d

are all satisfied at the interface. At the same time, the flow in
the bulk of the fluids are approximated by potential flow, for
which the following identity can be easily proved:

E
V

2mD:D dV=E
A

n · 2mD ·u dA, s63d

whereA is the surface ofV andn is the unit normal pointing
outward. Insertings61d–s63d into s60d, we obtain

d

dt
E

Va

ra

2
uuau2dV+

d

dt
E

Vl

rl

2
uulu2dV

=E
A

ungS ]2h

]z2 +
h

R2DdA

+E
A

n1 · 2maDa ·uadV−E
A

n1 · 2mlDl ·uldV. s64d

The dimensionless form ofs64d is

l
d

dt
E

Va

1

2
uuau2dV+

d

dt
E

Vl

1

2
uulu2dV

=E
A

unS ]2h

]z2 +
h

R2DdA+
m
ÎJ
E

A

n1 · 2Da ·uadA

−
1
ÎJ
E

A

n1 · 2Dl ·uldA. s65d

The integrals ins65d are evaluated

FIG. 4. sad The growth rates vs k for case 3, glycerin in mercury. In the
maximum region, IPF and VPF overestimate the growth rate whereas
VCVPF gives almost the same value as EXACT. IPF, VPF, and VCVPF
deviate from the exact solution considerably whenk!1. sbd The vorticities
vl

* and va
* vs k for case 3. The magnitude of the vorticity is large whenk

!1 and small in the maximum growth region.scd The two ratiosf l and fa vs
k for case 3. The ratios are high whenk is close to 1 but close to 1 when
k!1 or k<2. The maximum value off l is 1.83, much smaller than in case
1 and case 2. At the same time the Reynolds number is also much smaller
than in case 1 and case 2. It is noted that the maximum value offa is 17.19,
much larger thanf l. The reason is that the value offa should correspond to
the Reynolds number based onra and ma, which is 2.083107 in case 3.
Both the vorticities and the two ratios could help to understand the good
agreement in the maximum growth region and poor agreement whenk!1
as shown insad.

FIG. 5. sad The growth rates vs k for case 4, goldensyrup in paraffin. IPF
and VPF deviate from the exact solution considerably in the whole range of
køkc=2. VCVPF is still in good agreement with the exact solution in the
maximum growth region.sbd The vorticitiesvl

* andva
* vs k for case 4. The

magnitude of the vorticity is large at almost all the values ofk except when
k is very close tokc=2. scd The two ratiosf l and fa vs k for case 4. The
maximum value off l and fa does not exceed 1.3, indicating that the rota-
tional parts are important in the whole range ofk. This could explain the
deviation of IPF and VPF from the exact solution in the whole range. At the
same time, the curve forfa shows that the ratio is higher in the maximum
growth region than in the region wherek!1 or k<2. This may help to
understand the good agreement between VCVPF and the exact solution in
the neighborhood of the maximum growth rate.
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d

dt
E

Vl

uulu2

2
dV=

d

dt
E

0

2p

duE
z

z+l E
0

R uulu2

2
r dr dz

= uA1u2plR2kI0skRdI1skRdss + s̄d

3expss + s̄dt, s66d

l
d

dt
E

Va

uuau2

2
dV= l

d

dt
E

0

2p

duE
z

z+l E
R

` uuau2

2
r dr dz

= l uB1u2plR2kK0skRdK1skRdss + s̄d

3expss + s̄dt, s67d

E
A
S ]2h

]z2 +
h

R2DuldA= 2uA1u2plR
k2

s
I1
2skRd

3S 1

R2 − k2Dexpss + s̄dt, s68d

1
ÎJ
E

A

n1 · 2Dl ·uldA=
4
ÎJ

uA1u2plRk3I1skRdF2I0skRd

−
I1skRd

kR
Gexpss + s̄dt, s69d

m
ÎJ
E

A

n1 · 2Da ·uadA=
4m
ÎJ

uA1u2plRk3K1skRdF2K0skRd

+
K1skRd

kR
Gexpss + s̄dt. s70d

Insertings66d–s70d into s65d, we obtain

sal + laad
s + s̄

2
+

2k2

ÎJ
fsal + bld + msaa + badg

= S 1

R2 − k2D k

s
, s71d

whereal, aa, ba, and bl are defined ins23d. If we assume
thats is real,s71d is the same as the dispersion relations49d
from the VCVPF solution. The solution of the dispersion
relation is given ins50d. In the range 0,kø1/R=2, s is
real and our assumption is satisfied. Therefore, the growth

FIG. 6. sad The growth rates vs k for case 5, goldensyrup in BBoil. The
agreement between IPF, VPF, and VCVPF with the exact solution is poor at
almost all the values ofk. sbd The vorticitiesvl

* andva
* vs k for case 5. The

magnitude of the vorticity is relatively large at almost all the values ofk, and
becomes small only whenk is very close tokc=2. scd The two ratiosf l and
fa vs k for case 5. The maximum value off l and fa does not exceed
1.000 035, indicating that the irrotational and rotational parts are almost
equally important in the whole range ofk. Both the vorticities and the two
ratios could help to understand the poor agreement between IPF, VPF, and
VCVPF with the exact solution shown insad.

TABLE II. Data of the maximum growth rate and the associated wave number.

Case

IPF EXACT

km sm km sm

1 1.390 961 6E+00 9.637 740 0E−01 1.389 398 6E+00 9.551 739 9E−01

2 1.358 505 0E+00 8.958 972 2E−01 1.350 889 5E+00 8.491 858 5E−01

3 1.189 718 1E+00 5.573 461 6E−01 9.949 639 4E−01 3.414 019 4E−01

4 1.349 371 6E+00 8.750 763 3E−01 2.703 269 7E−01 1.655 220 8E−02

5 1.366 163 4E+00 9.130 386 9E−01 1.063 202 4E+00 4.348 411 6E−03

Case

VPF VCVPF

km sm km sm

1 1.390 961 6E+00 9.633 718 6E−01 1.389 398 6E+00 9.628 999 2E−01

2 1.356 978 5E+00 8.932 529 3E−01 1.353 930 6E+00 8.901 762 5E−01

3 1.071 603 0E+00 4.757 527 0E−01 9.186 273 5E−01 3.676 062 9E−01

4 2.964 342 9E−01 4.873 370 2E−02 1.769 323 9E−01 1.687 814 1E−02

5 2.020 340 3E−01 2.757 518 7E−02 1.343 316 8E−01 1.229 110 3E−02
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rate computed by the dissipation calculation is the same as
that computed by the VCVPF.

VIII. DISCUSSION OF THE PRESSURE CORRECTIONS
AT THE INTERFACE OF TWO VISCOUS FLUIDS

Our pressure corrections arise in a boundary layer in-
duced by the discontinuity of the tangential velocity and
shear stress at the interface evaluated using the potential so-
lution. We assume that the boundary layer is thin and when
the boundary layer is considered, the tangential velocity and
shear stress are continuous at the interface. This assumption
leads to good agreements between the exact solution and
VCVPF for the liquid–gas cases and less good agreements,
better than what might be expected, in the cases of two fluids
for which the boundary layer assumptions do not hold uni-
formly and will be discussed in this section. In the boundary
layer near the interface, we divide the velocity and pressure
into irrotational part and viscous correction part,

u = ui + uv, w = wi + wv, p = pi + pv. s72d

The irrotational tangential velocities at the interface are

wl
i = − A1kI0skRdexpsst + ikzd, s73d

wa
i = A1k

I1skRd
K1skRd

K0skRdexpsst + ikzd. s74d

The tangential stresses at the interface evaluated using the
potential flows are

tl
s = − s2/ÎJdA1k

2I1skRdexpsst + ikzd, s75d

ta
s = − s2m/ÎJdA1k

2I1skRdexpsst + ikzd. s76d

The continuity of the tangential velocity requires

wl
i + wl

v = wa
i + wa

v, s77d

which gives rise to

wl
v − A1kI0skRdexpsst + ikzd = wa

v + A1k
I1skRd
K1skRd

K0skRd

3expsst + ikzd. s78d

If we assumewa
v=qwl

v, s78d can be written as

wl
vs1 − qd = A1kFI0skRd +

I1skRd
K1skRd

K0skRdGexpsst + ikzd.

s79d

The continuity of the shear stress requires

1
ÎJ
S ]ul

v

]z
+

]wl
v

]r
D −

2
ÎJ

A1k
2I1skRdexpsst + ikzd

=
m
ÎJ
S ]ua

v

]z
+

]wa
v

]r
D − 2

m
ÎJ

A1k
2I1skRdexpsst + ikzd.

s80d

Since the potential flow solution satisfies the continuity of
the normal velocityul

i =ua
i , the viscous corrections to the nor-

mal velocity in the boundary layer should be very small.

Thus]ul
v /]z and]ua

v /]z can be ignored ands80d becomes

]

]r
swl

v − mwa
vd = 2s1 − mdA1k

2I1skRdexpsst + ikzd. s81d

Assuming that the boundary layer thicknessd is small, we
can writes81d approximately as

wl
vs1 − mqd/d = 2s1 − mdA1k

2I1skRdexpsst + ikzd. s82d

Comparings79d and s82d, we obtain

1 − mq

s1 − qds1 − md
1

d
=

2kI1skRd

I0skRd + I1skRd
K0skRd
K1skRd

. s83d

Therefore,s83d needs to be satisfied if the continuities of the
tangential velocity and stress are to be enforced. In other
words, the assumptions on which VCVPF is based are valid
only if s83d is satisfied. Since we do not solve the boundary
layer problem,q andd are unknown and we are not able to
determine ifs83d is satisfied. However, we may assume that
d is very small and estimate the possibility of satisfyings83d
under different conditions, i.e., different values ofm and k.
We have the following observations regardings83d.

s1d Since d is supposed to be small,s83d is easier to
satisfy when the right-hand side is larger. Calculation shows
that the right-hand side ofs83d is 5310−7 whenk=0.001 and
is 1.36 whenk=2. Therefore,s83d can be satisfied fork close
to kc=2 but is very difficult to satisfy for smallk. This ob-
servation could help to understand the results of the growth
rate calculation, i.e., the agreement between VCVPF and the
exact solution is good fork close tokc but is poor when
k!1.

s2d The term on the left-hand side ofs83d

1 − mq

s1 − qds1 − md
s84d

should be comparable to or even smaller thand, so thats83d
can be satisfied. We find that for certain values ofq, s84d is
small whenm is much smaller than 1 and is large whenm is
close to 1. For example, if we fixq at 10, the value ofs84d is
0.0125 whenm=0.11 and is 8.89 whenm=0.9. This obser-
vation may help to understand our growth rate calculation at
low Reynolds numbers. In case 4,m=3.091310−4 and
VCVPF is in good agreement with the exact solution in the
region of maximum growth; in case 5,m=0.5455 and
VCVPF does not give the correct maximum growth ratesm

and the associated wave numberkm. The value ofm does not
seem to be important at high Reynolds numbers. In cases 1
and 2, IPF, VPF, VCVPF all agree well with the exact solu-
tion in the region of maximum growth even when the value
of m is relatively close to 1. This is because the boundary
layer and the viscous correction are not important at high
Reynolds numbers.

We have shown that the conditions83d can be satisfied in
some casessk close tokc=2 andm!1d, and is very difficult
to satisfy in other casessk!1 or m close to 1d. Whens83d is
satisfied, the assumption of continuous tangential velocity
and stress is realized approximately and our calculation does
show good agreement between VCVPF and VPF. Whens83d
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is difficult to satisfy, VCVPF may not give a good approxi-
mation to the exact solution, especially at low Reynolds
numbers. Thus, viscous potential flows with pressure correc-
tions can be used to approximate viscous flows in problems
involving the interface of two viscous fluids, but this ap-
proximation is not uniformly valid.

When the viscous corrections for the velocity and pres-
sure are added to the irrotational flow, the complete form of
the normal stress balance is

pa
i + pa

v − pl
i − pl

v +
2
ÎJ
S ]ul

i

]r
+

]ul
v

]r
D −

2m
ÎJ

S ]ua
i

]r
+

]ua
v

]r
D

=
]2h

]z2 +
h

R2 . s85d

The viscous corrections of the velocity satisfy the continuity
equation

]ul
v

]r
+

ul
v

r
+

]wl
v

]z
= 0. s86d

We may estimate the order of the terms ins86d,

2
ul

v

d
,

wl
v

l
. s87d

Combinings82d and s87d, we obtain

]ul
v

]r
,

ul
v

d
,

d

l

1 − m

1 − mq
A1k

2I1skRd. s88d

At the same time, we have

]ul
i

]r
, A1k

2SI0skRd −
I1skRd

kR
D . s89d

If s1−md / s1−mqd is not a very big value,]ul
v /]r may be

significantly smaller than]ul
i /]r. A similar argument can

show that]ua
v /]r could be significantly smaller than]ua

i /]r.
Therefore,]ul

v /]r and]ua
v /]r can be ignored ins85d and we

obtain the normal stress balance equations40d used in
VCVPF calculation. Admittedly, omission of]ul

v /]r and
]ua

v /]r is not justified for certain values ofm and q, which
may be partially responsible for the poor agreement between
VCVPF and the exact solution in some cases.

IX. CONCLUSIONS

A method for computing a viscous correction of viscous
potential flow is derived for problems in which the interface
of two fluids is involved and the flows of the two fluids are
assumed to be irrotational. The potential flow solutionu
= =f, ¹2f=0 generally cannot satisfy the zero-shear-stress
condition at gas–liquid interfaces or the continuity of the
tangential velocity and shear stress at liquid–liquid inter-
faces. We assume that the flow can be approximated by a
thin boundary layer near the interface and potential flow in
the bulk liquids. Within this boundary layer, all the physical
boundary conditions are satisfied. The velocity and pressure
fields in the boundary layer can be decomposed into viscous
and potential parts, where the potential part is already
known. Substitution of this decomposition into the Navier–

Stokes equations gives rise to equations for unknown viscous
pressure and velocity fields. This procedure is similar to the
analysis of Moore,16 Prosperetti,17 and Kang and Leal.18

However, our method is simpler because the viscous part of
the velocity field in the boundary layer is not needed since
the leading order direct effects are accommodated by the
viscous part of the normal stress evaluated on the irrotational
motion, but the viscous part of the pressure at the interface is
of the same order as the irrotational normal stress and it is
needed. The linearized equations coupling the viscous part of
the solenoidal velocity field to the viscous part of the pres-
sure imply that this pressure is harmonic. The Laplace equa-
tion for this is solved to obtain the viscous pressure field in
the form of a harmonics series with arbitrary coefficients. For
nonlinear problems, the viscous pressure at the interface is
expanded directly in a surface harmonics series with arbi-
trary coefficients. To determine the arbitrary coefficients, we
formulate two mechanical energy equations usings1d VPF
and s2d VCVPF, respectively. In cases1d, only the potential
flow solutions are used in the mechanical energy equation
giving rise to a relation which equates the volume integrals
of the dissipation and the rate of change of kinetic energy to
the power of the normal and tangential tractions exerted by
the potential flows on either side of the interface. In cases2d,
the potential flow with the viscous correction of the pressure
which arises in the boundary layer appears at the interface in
the traction integral that appears in the mechanical energy
equation. The tangential velocities and stresses are continu-
ous and no terms due to tractions from the shear stresses
appear. The viscous normal stress arising from the viscous
component of the velocity field in the boundary layer is as-
sumed to be small and neglected. For example, in the analy-
sis of the decay of free gravity waves, Joseph and Wang10

showed that this extra viscous normal stress is in the order of
the boundary layer thicknessd and negligible. The power
due to the normal tractions then includes contributions from
the pressure and viscous normal stress evaluated using the
potential solutions and from the extra viscous pressure. We
assume the boundary layer is so thin that the volume inte-
grals inside the boundary layer are negligible compared to
those in the bulk liquids. Therefore, the volume integrals of
the dissipation and the rate of change of kinetic energy are
approximately equal to those evaluated using potential flow
solutions. Comparing the above two mechanical energy
equations, one finds that the power due to the traction of the
extra viscous pressure at the interface is equal to the power
due to the tangential traction of the irrotational shear
stresses. This relation is then used to determine the coeffi-
cient of the principal mode in the harmonic series expression
for the extra viscous pressure; the principal mode is defined
as the mode matched to the velocity potential. The principle
mode of the extra viscous pressure is then determined and
can be used in calculations of the hydrodynamics for the
problem, such as the normal stress balance at the interface in
capillary instability and the direct calculation of drag on
bubbles and drops.

This viscous pressure correction is applied to capillary
instability and gives rise to growth rate curves closer to the
exact solution than inviscid or viscous potential flow. The
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viscous correction of the pressure leads to an excellent ap-
proximation of the exact solution, uniform in the wave num-
ber, when one of the two fluids is a gas. For two viscous
liquids the approximation of the maximum growth rates is
reasonable to good but the long waves are not well approxi-
mated. The nonuniform improvements which we get with
pressure corrections at liquid–liquid interfaces is unantici-
pated. Unlike the free surface problems in which the bound-
ary layer is considered to be weak, the boundary layer near a
liquid–liquid interface is often the major source of the vis-
cous dissipation of the flow, and the irrotational flow solution
is considered to be a very poor approximation to the exact
solution. However, our analysis shows that viscous potential
flows with pressure corrections can approximate the exact
solution in some cases, even though the approximation is not
uniformly valid.

Our pressure corrections arise in a boundary layer in-
duced by the discontinuity of the tangential velocity and
shear stress at the interface evaluated using the potential so-
lution. We assume that the boundary layer is thin and when
the boundary layer is considered, the tangential velocity and
shear stress are continuous at the interface. We find that in
the problem of capillary instability, this assumption is diffi-
cult to satisfy for long waves but is possible to satisfy near
the region of maximum growth. This observation helps to
explain why the approximation using the pressure correction
is not uniform in the wave number. We evaluate the vorticity
using the exact solution; when the vorticity is great, viscous
potential flow with a pressure correction does not give a
uniformly good approximation. We divide the stream func-
tions of the exact solution into irrotational and rotational
parts; the ratio of the irrotational part to the rotational part is
computed. Larger ratios indicate that the irrotational parts
dominate the solution and potential flow can give a good
approximation. Both the vorticity and the ratio calculation
are helpful in understanding the nonuniform improvement by
the pressure correction.

We carry out dissipation calculation for capillary insta-
bility of two fluids. The growth rates from dissipation calcu-

lations are the same as those from viscous potential flow
with pressure corrections.
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