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Purely irrotational theories of the effects of viscosity and viscoelasticity
on capillary instability of a liquid cylinder
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Abstract

Capillary instability of a liquid cylinder can arise when either the interior or exterior fluid is a gas of negligible density and viscosity. The
shear stress must vanish at the gas-liquid interface but it does not vanish in irrotational flows. Joseph and Wang [D.D. Joseph, J. Wang, The
dissipation approximation and viscous potential flow, J. Fluid Mech. 505 (2004) 365] derived an additional viscous correction to the irrotational
pressure. They argued that this pressure arises in a boundary layer induced by the unphysical discontinuity of the shear stress. Wang et al. [J.
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ang, D.D. Joseph, T. Funada, Pressure correction for potential flow analysis of capillary instability of viscous fluids, J. Fluid Mech. 5
83] showed that the dispersion relation for capillary instability in the Newtonian case is almost indistinguishable from the exac
hen the additional pressure contribution is included in the irrotational theory. Here we extend the formulation for the additional p
otential flows of viscoelastic fluids in flows governed by linearized equations, and apply this additional pressure to capillary ins
iscoelastic liquid filaments of Jeffreys type. The shear stress at the gas–liquid interface cannot be made to vanish in an irrotationa
he explicit effect of this uncompensated shear stress can be removed from the global equation for the evolution of the energy of d
his line of thought allows us to present the additional pressure theory without appeal to boundary layers. The validity of this purely ir

heory can be judged by comparison with the exact solutions of Navier–Stokes equations. Here we show that our purely irrotation
n remarkably good agreement with the exact solution in linear analysis of the capillary instability of a viscoelastic liquid cylinder.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Capillary instability of a liquid cylinder of mean radius
leading to capillary collapse can be described as a neck-

own due to surface tensionγ in which fluid is ejected from
he throat of the neck, leading to a smaller neck and greater
eckdown capillary force as seen in the diagram inFig. 1.

Capillary instability of Newtonian fluids was studied by
ayleigh [1] following earlier work by Plateau[2] who
howed that a long cylinder of liquid is unstable to distur-
ances with wave lengths greater than 2πR. The analysis of
ayleigh is based on potential flow of an inviscid liquid. To-
otika[3] studied the capillary instability and gave an exact

∗ Corresponding author. Tel.: +1 612 625 0309; fax: +1 612 626 1558.
E-mail address: joseph@aem.umn.edu (D.D. Joseph).

normal mode solution of the linearized Navier–Stokes e
tions.

The linear analysis of capillary instability of viscoelas
fluids has been done by Middleman[4], Goldin et al.[5],
Goren and Gottlieb[6]. They showed that the growth ra
are larger for the viscoelastic fluids than for the equiva
Newtonian fluids.

Funada and Joseph[7,8] presented potential flow ana
yses of capillary instability of viscous and viscoelastic
ids. In their studies, the flow is assumed to be irrotati
but the viscous and viscoelastic effects are retained (vis
or viscoelastic potential flow, VPF). The viscous and
coelastic stresses enter into the analyses through the n
stress balance at the interface. Funada and Joseph com
their results based on potential flow to the unapproxim
normal mode results (Tomotika[3]). They showed that th
results with viscous and viscoelastic effects retained a

377-0257/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Fig. 1. Capillary instability. The forceγ/r drives fluid away from the throat,
leading to collapse.

better agreement with the unapproximated results than those
assuming inviscid fluids.

The capillary instability can be viewed as a free surface
problem when either the interior or the exterior fluid is a gas of
negligible density and viscosity. One difficulty in the potential
flow analyses of free surface problems is that the non-zero ir-
rotational shear stress violates the zero-shear-stress condition
at the free surface. Joseph and Wang[9] derived an additional
viscous correction for the irrotational pressure, which arises
in the boundary layer induced by the unphysical discontinu-
ity of the shear stress. Wang et al.[10] applied this additional
pressure contribution to the potential flow analysis of cap-
illary instability of Newtonian fluids. They showed that the
results computed with the additional pressure contribution
are almost indistinguishable from the exact results. Here we
extend the formulation for the additional pressure correction
to potential flows of viscoelastic fluids in flows governed by
linearized equations (viscoelastic correction of viscoelastic
potential flow, VCVPF), and apply this additional pressure
correction to capillary instability of viscoelastic liquid fila-
ments of Jeffreys type. The results are in remarkably good
agreement with those obtained from the unapproximated nor
mal mode analysis for viscoelastic fluids.

The linear stability analysis given here and elsewhere indi-
cates that the liquid jets are less stable with increasing elas
ticity, which contradicts the observation in experiments. A
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whereu = uer + wez is the velocity,ρ is the density,p is the
pressure, andτ is the extra stress. The extra stress may be
modeled by Jeffreys model

τ + λ1
∂τ

∂t
= 2µ

(
D + λ2

∂D
∂t

)
, (3)

whereD is the rate of strain tensor,µ is the viscosity,λ1
andλ2 are the relaxation and retardation times, respectively.
Suppose that we have normal mode solutions with the growth
rateσ:

τ = exp(σt)τ̃ and D = exp(σt)D̃, (4)

then(3) leads to

τ̃ = 1 + λ2σ

1 + λ1σ
2µD̃ ⇒ τ = 1 + λ2σ

1 + λ1σ
2µD. (5)

The momentum Eq.(2) becomes

ρ
∂u

∂t
= −∇p+ ∇ ·

(
1 + λ2σ

1 + λ1σ
2µD

)

= −∇p+ 1 + λ2σ

1 + λ1σ
µ∇2u. (6)

The shear and normal stress boundary conditions are

1 + λ2σ
(
∂u ∂w

)

g

at

v-

use
ossible explanation of this contradiction is related to
inear stability analysis of a stressed filament at rest (E
11]). One difficulty is that a stressed filament at rest is n
ermanent solution.

. Linear stability equations and the exact solution
Tomotika [3])

In an undisturbed rest state, the long cylinder of a
oelastic liquid is surrounded by a gas of negligible den
nd viscosity. We use cylindrical coordinates (r, θ, z) and con
ider small axisymmetric disturbances. The linearized
rning equations of the interior liquid are

· u = 0, (1)

∂u

∂t
= −∇p+ ∇ · τ (2)
-

-

1 + λ1σ
µ

∂z
+
∂r

= 0; (7)

− p+ 1 + λ2σ

1 + λ1σ
2µ
∂u

∂r
= γ

(
∂2η

∂z2 + η

R2

)
, (8)

where η is the varicose displacement. The governin
Eqs. (1) and (6) and boundary conditions(8) and (7)
are the same as those for a Newtonian fluid except th
(1 + λ2σ)µ/(1 + λ1σ) replacesµ.

Following scales are used to construct dimensionless go
erning equations: the cylinder diameterD for length,U =√
γ/(ρD) for velocity,T = D/U for time andp0 = ρU2 for

pressure. The dimensionless momentum equation is (we
the same symbols for dimensionless variables)

∂u

∂t
= −∇p+ µ̂√

J
∇2u, (9)

where

µ̂ = 1 + λ̂2σ

1 + λ̂1σ
(10)

with

λ̂1 = λ1
U

D
= λ1

√
γ

ρD3 and λ̂2 = λ2
U

D
= λ2

√
γ

ρD3 ,

(11)

and

J = ργD

µ2 (12)
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is the Reynolds number andJ−1/2 is the Ohnesorge num-
ber. The dimensionless boundary conditions at the cylinder
surfaceR = 0.5 are

− p+ 2
µ̂√
J

∂u

∂r
= ∂2η

∂z2 + η

R2 ; (13)

µ̂√
J

(
∂u

∂z
+ ∂w

∂r

)
= 0. (14)

A solution of(9)which satisfies both the boundary conditions
(13) and (14)takes the following form:

ψ = [A1rI1(kr) + A2rI1(kvr)] exp(σt + ikz), u = 1

r

∂ψ

∂z
,

w = −1

r

∂ψ

∂r
, (15)

η = H exp(σt + ikz), (16)

wherek is the wave number andI1 denotes the first kind
modified Bessel function of the first order. Substitution of
(15) and (16)into (13) and (14)leads to the solvability con-
dition, which is given as the dispersion relation ofσ:∣∣∣∣∣

2k2I1(kR) (k2 + k2
v)I1(kvR)

F1 F2

∣∣∣∣∣ = 0 (17)

-
an

s
lso

s

∇
(
∂φ

∂t

)
= −∇pp + µ̂√

J
∇∇2φ ⇒ pp = −∂φ

∂t
, (21)

wherepp denotes the pressure from the potential flow solu-
tion and it is equal to the pressure from the inviscid potential
flow.

The potential flow solution is given by

φ = AiI0(kr) exp(σt + ikz), u = ∂φ

∂r
, w = ∂φ

∂z
, (22)

η = H exp(σt + ikz). (23)

Substitution of the potential flow solution into the normal
stress balance(13) leads to the dispersion relation

I0(kR)

I1(kR)
σ2 (

1 + λ̂1σ
) + (

1 + λ̂2σ
)
σ

2k2
√
J

[
I0(kR)

I1(kR)
− 1

kR

]

− k
(

1

R2 − k2
) (

1 + λ̂1σ
) = 0, (24)

which is a cubic equation ofσ and has explicit solutions.
WhenJ → ∞, Eq.(24) reduces to

I0(kR)

I1(kR)
σ2 = k

(
1

R2 − k2
)
, (25)

which is the dispersion relation for inviscid potential flow
(IPF) solution. The IPF solution does not allow viscous or

u-
ial
si-
stic
a-
viscoelastic effects.

4. Dissipation and the formulation for the additional
pressure contribution

Joseph and Wang[9] derived a viscous pressure contrib
tion in addition to the irrotational pressure for the potent
flow solutions of Newtonian fluids by considering the dis
pation of energy. Here we extend the analysis to a viscoela
fluid of Jeffereys type in flows governed by linearized equ
tions. We start from the momentum equation

ρ
du

dt
= ∇ · T ⇒ u · ρdu

dt
= (∇ · T) · u, (26)

whereT is the total stress. It follows that

ρ
d

dt

(
1

2
u · u

)

= ∇ · (T · u) − ∇u : T

= ∇ · (T · u) − (D + �) : (−p1 + 2µ̂µD)

= ∇ · (T · u) − D : (−p1 + 2µ̂µD)

= ∇ · (T · u) − 2µ̂µD : D.

It follows that

d

dt

∫
V

(ρ
2
u · u

)
dV

=
∫
�

n · (T · u)dΩ− 2µ̂µ
∫
V

D : D dV, (27)
where

F1 = σI0(kR) + 2
µ̂k2
√
J

(
dI1(kR)

d(kR)

)

−
(

1

R2 − k2
)
k

σ
I1(kR), (18)

F2 = 2
µ̂kkv√
J

(
dI1(kvR)

d(kvR)

)
−

(
1

R2 − k2
)
k

σ
I1(kvR), (19)

with kv =
√
k2 + (

√
J/µ̂)σ. This solution satisfies the gov

erning equations and all the boundary conditions and is
exact solution.1

3. Viscoelastic potential flow (VPF)

It is easy to show that the momentum Eq.(9) admits po-
tential flow solutions. Take curl of Eq.(9) and useu = ∇φ,
we obtain

∇ ∧ ∂∇φ
∂t

= ∇ ∧ (−∇p) + µ̂√
J

∇ ∧ ∇2∇φ. (20)

Both sides of(20)are zero, therefore potential flow solution
are compatible in this problem. The pressure integral can a
be easily obtained from(9),

1 In our former paper[10], the exact solution of the linearized equation
was called the fully viscous flow (FVF) solution.
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whereV is the volume occupied by the viscoelastic fluid,Ω

is the boundary ofV, andn is the outward normal ofV on
Ω. We have shown that the potential flow is a solution of the
momentum equation in this problem. Thus we can insert the
velocity and stress tensor evaluated on the potential flow into
(27) to obtain

d

dt

∫
V

(ρ
2
u · u

)
dV

=
∫
Ω

[(−pp + τrr)u+ τrzw]dΩ− 2µ̂µ
∫
V

D : D dV.

(28)

At the free surface, the potential flow leads to a non-zero
irrotational shear stress and does not satisfy the zero-shear-
stress condition. We introduce a pressure contributionpc in
addition to the irrotational pressurepp; pc cancels out the
power due to the unphysical irrotational shear stress in the
energy equation and(27)becomes

d

dt

∫
V

(ρ
2
u · u

)
dV

=
∫
Ω

[(−pp − pc + τrr)u]dΩ− 2µ̂µ
∫
V

D : D dV.

C

w res-
s to-
n f
τ ds.
T n
v irro-
t

5
i

for
t and
W ing
e

∇

I id
u

whereCj are constants. With the additional pressure contri-
bution, the normal stress balance becomes

− pp − pc + 2µ̂
1√
J

∂u

∂r
= ∂2η

∂z2 + η

R2 , (33)

which gives rise to
{
AσI0(kR) + CkI0(kR) + 2µ̂k2

√
J
A

[
I0(kR) − I1(kR)

kR

]}

× exp(σt + ikz) +
∑
j �=k

CjI0(jR) exp(σt + ijz)

= A
k

σ
I1(kR)

(
1

R2 − k2
)

exp(σt + ikz). (34)

By orthogonality of Fourier series,Cj = 0 if j �= k. The co-
efficientCk can be determined using(30). The left hand side
of (30) is∫
�

τrzw
∗ dΩ

= µ̂√
J

4πlRAA∗k3I0(kR)I1(kR) exp(σ + σ∗)t, (35)

where l is the length of one wave period and “∗” denotes
conjugate variables. On the other hand,

I

I

σ

w

E or-
r

e
g

(29)

omparing(28) and (29), we obtain
∫
Ω

τrzwdΩ =
∫
Ω

(−pc)udΩ, (30)

hich is the same as the formulation for the additional p
ure contribution as in the potential flow of a viscous New
ian fluid (Joseph and Wang[9]). However, the calculation o
rz in viscoelastic fluids is different than in Newtonian flui
he additional pressure contributionpc depends strongly o
iscoelastic parameters and is determined solely by the
ational flow.

. The additional pressure contribution for capillary
nstability

Now we consider the additional pressure contribution
he potential flow analysis of capillary instability. Joseph

ang[9] showed that in linearized problems, the govern
quation for the additional pressure contribution is

2pc = 0. (31)

t is easy to show that(31) holds for the viscoelastic flu
nder consideration here. Solving(31), we obtain

− pc =
∞∑
j=0

Cj iI0(jr) exp(σt + ijz), (32)
∫
�

(−pc)u∗ dΩ

= 2πlRCkA
∗kI0(kR)I1(kR) exp(σ + σ∗)t. (36)

t follows thatCk = 2(µ̂/
√
J)Ak2 and

− pc = iAk2 2µ̂√
J
I0(kr) exp(σt + ikz). (37)

nsertingCk into (34), we obtain

I0(kR) + 2µ̂k2
√
J
I0(kR) + 2µ̂k2

√
J

[
I0(kR) − I1(kR)

kR

]

= k

σ
I1(kR)

(
1

R2 − k2
)
,

hich can be written as

I0(kR)

I1(kR)
σ2 (

1 + λ̂1σ
) + (

1 + λ̂2σ
)
σ

2k2
√
J

[
2I0(kR)

I1(kR)
− 1

kR

]

− k
(

1

R2 − k2
) (

1 + λ̂1σ
) = 0. (38)

q. (38) is the dispersion relation from the viscoelastic c
ection of VPF (VCVPF).

If the pressure correction(37) is inserted back into th
overning Eq.(9), we obtain

∂uc

∂t
= −∇pc + µ̂√

J
∇2uc, (39)
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whereuc is the velocity correction induced by the pressure
correctionpc. We can find a potential flow solutionuc =
∇φc, such that∇2uc = ∇∇2φc = 0 and

∇ ∂

∂t
φc = −∇pc. (40)

It can be readily shown that

φc = i

σ
Ak2 2µ̂√

J
I0(kr) exp(σt + ikz). (41)

Thus the pressure correctionpc which is proportional to
J−1/2 induces a velocity correction proportional toJ−1/2.
This velocity correction gives rise to uncompensated shear
stress proportional toJ−1 which may induce a new pres-
sure correction now proportional toJ−1. In this way we may
generate, successively, irrotational solutions proportional to
increasing powers ofJ−1/2. We believe that only the first
pressure correction proportional toJ−1/2 is of physical sig-
nificance; the higher order corrections are not considered in
the normal stress balance(33).

6. Comparison of the growth rate

We compare the dispersion relation(38) from VCVPF

d

F
as

t
he

Fig. 3. The growth rateσ vs.k from inviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact
solution. The results of the exact solution and VCVPF are almost the same.
The fluid is 2% PEO,ρ = 0.99 g cm−1, µ = 350 P,γ = 63.0 dyn cm−1,
λ1 = 0.21 s,λ2 = 0 s,J = 5.091× 10−4, λ̂1 = 1.676.

Capillary instability is controlled by three dimensionless
numbers:J, λ̂1, andλ̂2. We vary these parameters and present
the computed growth rate inFigs. 4–7. The Reynolds number
J ranges from 10−4 to 104, λ̂1 ranges from 0.1 to 1000, andλ̂2
ranges from 0 to 100. In all the cases, the growth rates from
VCVPF are in excellent agreement with the exact solution,
indicating that our additional pressure contribution is valid
for a wide range of controlling parameters.

Figs. 4 and 5show that the growth rates increase withλ̂1
whenJ andλ̂2 are fixed. ComparingFigs. 5 and 6, it can be
seen that the effect ofλ̂2 is opposite to that of̂λ1; the growth
rates decreases witĥλ2. When λ̂1 = λ̂2, the fluid becomes
Newtonian. When the Reynolds number is as high as 104

(Fig. 7), IPF and VPF slightly over-estimate the maximum
growth rate whereas the VCVPF results are almost the same
as the exact solution.

F tic
p xact
s

ig. 4. The growth rateσ vs.k from inviscid potential flow (IPF), viscoelas
otential flow (VPF), viscoelastic correction of VPF (VCVPF) the e
olution.J = 10−4, λ̂1 = 0.1, λ̂2 = 0.
with (24) from VPF,(25) from IPF and(17) from the exact
solution. Eqs.(17), (24), (25) and (38)are solved by numer-
ical methods for the growth rateσ and the values ofσ are
compared.

First we examine two practical cases: 2% PAA in air an
2% PEO in air (following Funada and Joseph[8]). We choose
the diameter of the fluid cylinder to be 1 cm. Theσ versusk
plots for 2% PAA and 2% PEO are shown inFigs. 2 and 3,
respectively. These figures show that the results from VCVP
are almost indistinguishable from the exact solution, where
IPF and VPF overestimatesσ significantly.

Fig. 2. The growth rateσ vs.k from inviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exac
solution. The growth rates for the exact solution and VCVPF are almost t
same. The fluid is 2% PAA,ρ = 0.99 g cm−1,µ = 96 P,γ = 45.0 dyn cm−1,
λ1 = 0.039 s,λ2 = 0 s,J = 4.834× 10−3, λ̂1 = 0.263.
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Fig. 5. The growth rateσ vs.k from inviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact
solution.J = 10−4, λ̂1 = 1000,λ̂2 = 0.

Fig. 6. The growth rateσ vs.k from inviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact
solution.J = 10−4, λ̂1 = 1000,λ̂2 = 100.

In Table 1we present the maximum growth rateσm and
the associated wave numberkm computed from VPF, VCVPF
and the exact solution. The value ofσm given by VPF is
several times larger than the exact result whenJ is small.
VCVPF gives excellent approximation to the values ofσm
andkm in all the cases.

Fig. 7. The growth rateσ vs.k from inviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact
solution.J = 104, λ̂1 = 0.1, λ̂2 = 0. When the Reynolds numberJ is large,
viscoelastic effects are relatively small, and the four curves are close; but
differences among them can be seen near the peak growth rate. The inset is
the amplified plot for the region near the peak growth rate. VCVPF is the
best approximation to the exact solution.

7. Comparison of the stream function

Next we compare the stream functions from VPF, VCVPF
and the exact solution at the same wave number. The wave
number chosen for the comparison iskm at which the maxi-
mum growth rateσm occurs in the exact solution. The relation
between the constantsA1 andA2 in the exact stream function
(15) andA in the potential flow solution(22) must be estab-
lished before one can compare the stream functions. Here
this relation is obtained by assuming that the magnitude of
the disturbanceH is the same in the exact solution and in the
potential flow solution.

We use a superscript ‘E’ for quantities appearing in the
exact solution and(15) and (16)are rewritten as

ψE = [AE
1rI1(kr) + AE

2rI1(kvr)] exp(σEt + ikz), (42)

ηE = HE exp(σEt + ikz). (43)

Table 1
Maximum growth rateσm and the associated wave numberkm for viscoelastic potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact
solution inFigs. 2–7

Figure VPF VCVPF Exact solution

km σm km σ k σ

2 3.439e−01 6.557e−02 2.052e−0
3 2.025e−01 2.283e−02 1.183e−0
4 1.331e−01 9.899e−03 7.831e−0
5 1.309e+00 8.665e−01 1.144e+
6 3.848e−01 8.200e−02 2.101e−0
7 1.386e+00 9.618e−01 1.374e+

For inviscid potential flow (IPF) solution,km = 1.394 andσm = 0.9711 in all th
m m m

1 2.274e−02 2.135e−01 2.278e−02
1 7.554e−03 1.229e−01 7.559e−03
2 3.322e−03 8.154e−02 3.323e−03
00 6.703e−01 1.170e+00 6.850e−01
1 2.384e−02 2.186e−01 2.390e−02
00 9.447e−01 1.375e+00 9.458e−01

e six cases.



112 J. Wang et al. / J. Non-Newtonian Fluid Mech. 129 (2005) 106–116

Table 2
The growth rateσ computed from viscoelastic potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact solution at the same wave number
km

J λ̂1 λ̂2 km σVPF σVCVPF σE

4.834×10−3 0.263 0 0.2135 0.06345 0.02274 0.02278
5.091×10−4 1.676 0 0.1229 0.02252 0.007554 0.007559
10−4 0.1 0 0.08154 0.009843 0.003322 0.003323
10−4 1000 0 1.170 0.8495 0.6696 0.6850
10−4 1000 100 0.2186 0.07718 0.02384 0.02390
104 0.1 0 1.375 0.9617 0.9447 0.9458

In the exact solution,km is the wave number for the maximum growth rate.

The relation betweenAE
1 andAE

2 is determined by the zero-
shear-stress condition atr ≈ R:

AE
2 = −2k2I1(kR)

(k2 + k2
v)I1(kvR)

AE
1 . (44)

Therefore, we can write the stream function as

ψE = AE
1r

[
I1(kr) − 2k2I1(kR)

(k2 + k2
v)I1(kvR)

I1(kvr)

]

× exp(σEt + ikz). (45)

The amplitude of the disturbanceHE is related toAE
1 through

the kinematic condition:

HE = ik

σE

(
1 − 2k2

k2 + k2
v

)
I1(kR)AE

1 . (46)

Now we consider the potential flow solution which is in-
dicated by a superscript ‘P’. The stream function and the
disturbance are given by

ψP = APrI1(kr) exp(σPt + ikz), (47)

ηP = HP exp(σPt + ikz), (48)

respectively. The amplitude of the disturbanceHP is related
toAP through the kinematic condition:

am
us

en

nd

be
nt

to the comparison of the growth rate. InTable 2, we list the
values of the growth rateσ computed from VPF, VCVPF and
the exact solution. In all the cases, the growth rate from VPF
is larger than the exact result, whereas the growth rate from
VCVPF is very close to the exact result. The rest part of the
stream function depends onr and we define

SF(r) = σVPF

σE

(
1 − 2k2

k2 + k2
v

)
rI1(kr) for VPF; (52)

SF(r) = σVCVPF

σE

(
1 − 2k2

k2 + k2
v

)
rI1(kr) for VCVPF;

(53)

SF(r) = r

[
I1(kr) − 2k2I1(kR)

(k2 + k2
v)I1(kvR)

I1(kvr)

]

for the exact solution. (54)

Three examples for the comparison of the function SF(r) are
shown inFigs. 8–10. The curves for SF(r) are very close to
straight lines, indicating power functions. This can also be

F

HP = ik

σPA
PI1(kR). (49)

We assume that the amplitude of the disturbance is the s
in the exact solution and the potential flow solution. Th
HE = HP and it follows that

AP = AE
1
σP

σE

(
1 − 2k2

k2 + k2
v

)
. (50)

Then the stream function of the potential flow can be writt
as

ψP = AE
1
σP

σE

(
1 − 2k2

k2 + k2
v

)
rI1(kr) exp(σPt + ikz). (51)

Now we can compare(45) and (51). The stream function is
decomposed into two parts, the exponential function depe
ing on t andz and the rest part depending onr. Since we are
comparing the stream functions at the same wave num
km, the comparison of the exponential function is equivale
e

-

r

Fig. 8. The part of the stream function depending onr defined in(52)–
(54) for viscoelastic potential flow (VPF), viscoelastic correction of VP
(VCVPF) and the exact solution respectively. The fluid is 2% PAA,J =
4.834× 10−3, λ̂1 = 0.263, λ̂2 = 0. The wave number for the maximum
growth ratekm = 0.2135 is chosen for the comparison.
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Fig. 9. The part of the stream function depending onr defined in(52)–
(54) for viscoelastic potential flow (VPF), viscoelastic correction of VPF
(VCVPF) and the exact solution respectively. In this case,J = 10−4, λ̂1 =
1000,λ̂2 = 0. The wave number for the maximum growth ratekm = 1.170
is chosen for the comparison.

seen from(52)–(54). The expansion of the modified Bessel
function gives

I1(kr) = kr

2
+ k3r3

16
+ k5r5

384
+ O(r7). (55)

Higher order terms ofr may be neglected because 0≤ r ≤
0.5 inside the cylinder. If we only keep the first term in the
expansion, the stream functions(52) and (53)become, re-
spectively

SF(r) = σVPF

σE

(
1 − 2k2

k2 + k2
v

)
kr2

2
+ O(r4) for VPF;

(56)

F
( PF
(
1
0

SF(r) = σVCVPF

σE

(
1 − 2k2

k2 + k2
v

)
kr2

2
+ O(r4)

for VCVPF. (57)

For (54), we also expandI1(kR) andI1(kvR) and keep only
the leading term, which gives rise to

SF(r) = kr2

2
− 2k2(kR/2)

(k2 + k2
v)(kvR/2)

kvr
2

2
+ O(r4)

=
(

1 − 2k2

k2 + k2
v

)
kr2

2
+ O(r4)

for the exact solution. (58)

Eqs. (56)–(58)show that the functions SF(r) are approxi-
mately quadratic functions for smallr and this is confirmed
in Figs. 8–10. The comparison of the leading terms of SF(r)
depends directly on the growth rateσVPF, σVCVPF andσE.
SinceσVPF > σE, the curves for SF(r) of VPF are higher than
those for the exact solution. On the other hand,σVCVPF is very
close toσE and the curves for VCVPF and the exact solution
almost overlap. Combining the comparison of the growth rate
in Table 2and the comparison of the function SF(r) in Figs.
8–10, we show that the stream function given by VCVPF is
in remarkably good agreement with the exact solution. This
result indicates that the vorticity plays a small role in the ex-

ely
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ig. 10. The part of the stream function depending onr defined in(52)–
54) for viscoelastic potential flow (VPF), viscoelastic correction of V
VCVPF) and the exact solution respectively. In this case,J = 10−4, λ̂1 =
000, λ̂2 = 100. The wave number for the maximum growth ratekm =
.2186 is chosen for the comparison.
act solution and our VCVPF solution, which is based sol
on potential flow, can give an excellent approximation to
flow.

8. Discussion

Chang et al.[12] did a long wave study of the stretchin
dynamics of bead-string filaments for FENE and Oldroy
B fluids. They also did a long wave study of linear stabil
and their results can be compared to ours. To this end, we
convert the parameters used by Chang et al. to the param
used by us. In the notation of Chang et al.Ca is the capillary
number,We is the Weissenberg number andS is the retar-
dation number. We linearize the stress equation of Chan
al. and reduce it to a form comparable to our Jeffreys mo
(3), then the relation betweenWe andS used by Chang et a
andλ̂1 andλ̂2 used by us is revealed. After taking the diffe
ent length and time scales into account, we can expres
parameters in Chang et al. in terms of our parameters

Ca = 2

J
, We = 4λ̂1√

J
, and S = λ̂2

λ̂1
. (59)

Then the dispersion relation given by the linear stability an
ysis of Chang et al. (their Eq.(16)) can be written as

λ̂1σ
3 +

(
1 + 3k2 λ̂2√

J

)
σ2 +

[
3k2
√
J

− k2λ̂1

4
(4 − k2)

]
σ

− k2

4
(4 − k2) = 0. (60)
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Now we consider the dispersion relation(38) from the
VCVPF method. The dimensionless radiusR = 1/2 and the
Bessel functions can be expanded for smallk

I0(kR)

I1(kR)
= 4

k
+ k

8
− k3

768
+ O(k5),

2I0(kR)

I1(kR)
− 1

kR
= 6

k
+ k

4
− k3

384
+ O(k5). (61)

Inserting(61) into (38), we can obtain

(
1 + k2

32

)
λ̂1σ

3 +
[
1 + k2

32
+ 3k2 λ̂2√

J

(
1 + k2

24

)]
σ2

+
[

3k2
√
J

(
1 + k2

24

)
− k2λ̂1

4
(4 − k2)

]
σ

− k2

4
(4 − k2) + O(k4) = 0. (62)

The expansion of the Bessel functions can also be applied to
the exact solution and the result will be compared to(60) and
(62). After some arrangement, the dispersion relation(17)of
the exact solution can be written as

4k3kv√
J
µ̂

[
I0(kvR)

I1(kvR)
− 1

kvR

]
− 2k2(k2 + k2

v)√
J

µ̂

A
o

λ

T is
d
b (
i
k s
b ts
o

ing
λ

(

σ )

Fig. 11. The growth rateσ as a function ofk computed using(60) given
by Chang et al.,(38) given by our VCVPF method, and(17) given by the
exact solution. The fluid is water withρ = 1000 kg/m3,µ = 0.001 kg/(m s),
γ = 0.0728 N/m. The diameter of the liquid cylinder is assumed to be 0.01 m
and the Reynolds number isJ = 7.28× 105.

(
1 + k2

32

)
σ2 + 3k2

√
J

(
1 + k2

24

)
σ − k2

4
(4 − k2) + O(k4)

= 0 for VCVPF; (66)

(
1 + k2

32

)
σ2 + 3k2

√
J
σ − k2

4
(4 − k2) + O(k4) = 0

for the exact solution. (67)

The first order differences among the dispersion relations
(65)–(67)are O(k2). The difference between(65) and (67)is
ak2/32 term in the coefficient ofσ2; the difference between
(66) and (67)is ak2/24 term in the coefficient ofσ.

In Figs. 11–15, we plot the growth rateσ as a function ofk
computed using(60)given by Chang et al.,(38)given by our

F
b
t ith
ρ is
J

×
[
I0(kR)

I1(kR)
− 1

kR

]
− 2k3

σ

(
1

R2 − k2
)

+ (k2 + k2
v)
k

σ

(
1

R2 − k2
)

− (k2 + k2
v)σ

I0(kR)

I1(kR)
= 0.

(63)

fter expanding the Bessel functions as power series ofk, we
btain

ˆ1

(
1 + k2

32

)
σ3 +

(
1 + k2

32
+ 3k2 λ̂2√

J

)
σ2

+
[

3k2
√
J

− k2λ̂1

4
(4 − k2)

]
σ − k2

4
(4 − k2) + O(k4) = 0.

(64)

he dispersion relation(64) given by the exact solution
ifferent from both(60)given by Chang et al. and(62)given
y our VCVPF method; the first order differences are Ok2)

n both cases. The differences between(64) and (60)are two
2/32 terms in the coefficients ofσ3 andσ2; the difference
etween(64) and (62)are twok2/24 terms in the coefficien
f σ2 andσ.

The limit of a Newtonian fluid can be obtained by lett
ˆ 1 = λ̂2 = 0. Then the dispersion relations(60), (62) and
64) reduce to, respectively

2 + 3k2
√
J
σ − k2

4
(4 − k2) = 0 for Chang et al.; (65
ig. 12. The growth rateσ as a function ofk computed using(60) given
y Chang et al.,(38) given by our VCVPF method, and(17) given by

he exact solution. The fluid is a Newtonian fluid SO10000 oil w
= 969 kg/m3, µ = 10 kg/(m s),γ = 0.021 N/m. The Reynolds number
= 2.04× 10−3.
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Fig. 13. The growth rateσ as a function ofk computed using(60)given by
Chang et al.,(38)given by our VCVPF method, and(17)given by the exact
solution. The fluid is 2% PAA withJ = 4.834× 10−3, λ̂1 = 0.263,λ̂2 = 0.

VCVPF method, and(17) given by the exact solution. Both
Newtonian fluids and viscoelastic fluids are compared. The
limit of Newtonian fluids is achieved by settingλ̂1 andλ̂2 to
be zero in(60), (38) and (17). There is almost no difference
between the three curves whenk is close to zero, and small
differences can be seen whenk is close to 2. The dispersion
relation of Chang et al. is in better agreement with the exact
solution when the Reynolds numberJ is small (Figs. 12–15),
whereas our VCVPF is in better agreement with the exact
solution whenJ is large (Fig. 11).

In this work, linear stability analysis of the capillary insta-
bility of a viscoelastic thread is carried out under the assump-
tion that the flow is irrotational. The non-zero irrotational
shear stress at the surface of the liquid thread does not agree
with the zero-shear-stress condition. We derive a pressure
contribution in addition to the irrotational pressure. This ad-
ditional pressure contribution depends on the viscoelastic pa-

F
C t
s

Fig. 15. The growth rateσ as a function ofk computed using(60) given
by Chang et al.,(38) given by our VCVPF method, and(17) given by the
exact solution. The fluid is a viscoelastic fluid withJ = 10−4, λ̂1 = 1000,
λ̂2 = 100.

rameters and cancels out the power due to the uncompensated
irrotational shear stress in the energy equation. We include
the additional pressure contribution, the irrotational pressure
and the extra stress evaluated using the irrotational flow in
the normal stress balance at the surface, then a dispersion
relation is obtained. We call this approach as the viscoelastic
correction of the viscoelastic potential flow (VCVPF). The
comparison of the growth rate and the stream function show
that the VCVPF solution is an excellent approximation to the
exact solution. The dispersion relation given by VCVPF is
also compared to that obtained by Chang et al.[12] using a
long wave approximation. The differences between the two
dispersion relations are negligible when the wave numberk
is small and both dispersion relations are in remarkably good
agreement with the exact solution.
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