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Abstract

Capillary instability of a liquid cylinder can arise when either the interior or exterior fluid is a gas of negligible density and viscosity. The
shear stress must vanish at the gas-liquid interface but it does not vanish in irrotational flows. Joseph and Wang [D.D. Joseph, J. Wang, Tt
dissipation approximation and viscous potential flow, J. Fluid Mech. 505 (2004) 365] derived an additional viscous correction to the irrotational
pressure. They argued that this pressure arises in a boundary layer induced by the unphysical discontinuity of the shear stress. Wang et al.
Wang, D.D. Joseph, T. Funada, Pressure correction for potential flow analysis of capillary instability of viscous fluids, J. Fluid Mech. 522 (2005)
383] showed that the dispersion relation for capillary instability in the Newtonian case is almost indistinguishable from the exact solution
when the additional pressure contribution is included in the irrotational theory. Here we extend the formulation for the additional pressure to
potential flows of viscoelastic fluids in flows governed by linearized equations, and apply this additional pressure to capillary instability of
viscoelastic liquid filaments of Jeffreys type. The shear stress at the gas-liquid interface cannot be made to vanish in an irrotational theory, bt
the explicit effect of this uncompensated shear stress can be removed from the global equation for the evolution of the energy of disturbance
This line of thought allows us to present the additional pressure theory without appeal to boundary layers. The validity of this purely irrotational
theory can be judged by comparison with the exact solutions of Navier—Stokes equations. Here we show that our purely irrotational theory i
in remarkably good agreement with the exact solution in linear analysis of the capillary instability of a viscoelastic liquid cylinder.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction normal mode solution of the linearized Navier—Stokes equa-
tions.
Capillary instability of a liquid cylinder of mean radius The linear analysis of capillary instability of viscoelastic

R leading to capillary collapse can be described as a neck-fluids has been done by Middlem#], Goldin et al.[5],
down due to surface tensignin which fluid is ejected from  Goren and Gottlieljg]. They showed that the growth rates
the throat of the neck, leading to a smaller neck and greaterare larger for the viscoelastic fluids than for the equivalent

neckdown capillary force as seen in the diagrarkim 1 Newtonian fluids.
Capillary instability of Newtonian fluids was studied by Funada and Joseff,8] presented potential flow anal-
Rayleigh [1] following earlier work by Plateal2] who yses of capillary instability of viscous and viscoelastic flu-

showed that a long cylinder of liquid is unstable to distur- ids. In their studies, the flow is assumed to be irrotational

bances with wave lengths greater thank2 The analysis of  but the viscous and viscoelastic effects are retained (viscous

Rayleigh is based on potential flow of an inviscid liquid. To- or viscoelastic potential flow, VPF). The viscous and vis-

motika[3] studied the capillary instability and gave an exact coelastic stresses enter into the analyses through the normal
stress balance at the interface. Funada and Joseph compared
their results based on potential flow to the unapproximated

* Corresponding author. Tel.: +1 612 625 0309; fax: +1 612 626 1558. normal mode results (TomotiK&]). They showed that the
E-mail address: joseph@aem.umn.edu (D.D. Joseph). results with viscous and viscoelastic effects retained are in
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whereu = ue, + we; is the velocity is the densityp is the
pressure, and is the extra stress. The extra stress may be
modeled by Jeffreys model

ot oD
M— =20 ({D+ 10— |, 3
T M M( +28t> 3)

_ whereD is the rate of strain tensop, is the viscosity\1
Capillary Force y/r anda, are the relaxation and retardation times, respectively.
Suppose that we have normal mode solutions with the growth

Fig. 1. Capillary instability. The force/r drives fluid away from the throat, rateo:

leading to collapse.
_ _ T =exper)T and D = exppr)D, (4)

better agreement with the unapproximated results than those
assuming inviscid fluids. then(3) leads to

The capillary_instabili_ty can be viewed as a f_reg surface 140 - 1+ Ao
problemwhen either the interior or the exterior fluidisagasof 7 = 2ub = = 2uD
negligible density and viscosity. One difficulty in the potential +ho 1440
flow analyses of free surface problems is that the non-zero ir- The momentum E¢(2) becomes
rotational shear stress violates the zero-shear-stress condition
atthe free surface. Joseph and Wi8]glerived an additional pal =-Vp+V- (1 +h20 2,uD>
viscous correction for the irrotational pressure, which arises 97 1+ 210
?n the boundary layer induced by the unphysical disgontinu- 14+r0 o 5
ity of the shear _stre_ss. Wang et[dl0] e_ipplled this ado_lltlonal =-Vp+ 1+ Alaﬂv u. (6)
pressure contribution to the potential flow analysis of cap-
illary instability of Newtonian fluids. They showed that the The shear and normal stress boundary conditions are
results compu_teq wi'gh the additional pressure contribution 1+ o . dw
are almost indistinguishable from the exact results. Here we ( ) =0; (7)
extend the formulation for the additional pressure correction
to potential flows of viscoelastic fluids in flows governed by 1+ Aoo_ ou 9%y n
linearized equations (viscoelastic correction of viscoelastic — P + 1+ o mor =Y <8z2 + Rz) ’
potential flow, VCVPF), and apply this additional pressure
correction to capillary instability of viscoelastic liquid fila- Wwhere n is the varicose displacement. The governing
ments of Jeffreys type. The results are in remarkably good Eds. (1) and (6) and boundary conditiong8) and (7)
agreement with those obtained from the unapproximated nor-are the same as those for a Newtonian fluid except that
mal mode analysis for viscoelastic fluids. (1 + 220)1/(L+ A10) replacesu.

The linear stability analysis given here and elsewhere indi- ~ Following scales are used to construct dimensionless gov-
cates that the liquid jets are less stable with increasing elas-erning equations: the cylinder diameterfor length, U =
ticity, which contradicts the observation in experiments. A ~/¥/(pD) for velocity, T = D/ U for time andpo = pU? for
possible explanation of this contradiction is related to the pressure. The dimensionless momentum equation is (we use
linear stability analysis of a stressed filament at rest (Entov the same symbols for dimensionless variables)
[11]). One difficulty is that a stressed filament at restis nota ;,

®)

1+A10M aiz or

(8)

: I o2
— =-V —V-u, 9
permanent solution. o p+ Vi 9)
where
2. Linear stability equations and the exact solution IS
(Tomotika [3]) = 1t heo (10)
m= 1+ 5\10’
In an undisturbed rest state, the long cylinder of a vis- with
coelastic liquid is surrounded by a gas of negligible density
: ) N : - U y - U y
and viscosity. We use cylindrical coordinate®( z) and con- M=M— =y /—= and ix=2dr— =2 /73,
sider small axisymmetric disturbances. The linearized gov- D pD D pD
erning equations of the interior liquid are (1))
V.-u=0, (1) and
ou pyD
p—=-Vp+V.1 (2) J=— (12)

ot %
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is the Reynolds number ant'/? is the Ohnesorge num-
ber. The dimensionless boundary conditions at the cylinder
surfaceR = 0.5 are

poou  #n n
Cpyo MmN 13
P JITor 3z + R? (13)
o (ou ow
KLY g 14
Na (az 3r> (14)

A solution of(9) which satisfies both the boundary conditions
(13) and (14Yakes the following form:

W = [Arrli(kr) + Aorli(kyr)] €Xplot + ikz), u = }88—1#
r oz
s (15)
r or
n = H exppt + ikz), (16)

wherek is the wave number anf denotes the first kind
modified Bessel function of the first order. Substitution of
(15) and (16)nto (13) and (14)eads to the solvability con-

dition, which is given as the dispersion relatiornoof
2k211(kR) (k? + k2)I1(ky R
1(kR) ( +U)1(v)=0 17)
F1 >
where
k2 (dll(kR)>
F1=o0lo(kR) + 2—
1 o(kR) 77 \diR)
1
- <R2 - k2> ~I1(kR), (18)
pkky, (dl1(kyR) 1 2\ k
Fo=2 ———— | — | = — k) —hL(kR), (19
2= 200 (G ) = (e = #2) Sntm). @9
with k, = 1/k2 + (+/J/)o. This solution satisfies the gov-

erning equations and all the boundary conditions and is an
exact solutiort:

3. Viscoelastic potential flow (VPF)

It is easy to show that the momentum K@) admits po-
tential flow solutions. Take curl of E¢9) and usex = V¢,
we obtain

Ve

VA7=VA(—Vp)+L

N

Both sides of20) are zero, therefore potential flow solutions

V A V2V, (20)
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wherep, denotes the pressure from the potential flow solu-
tion and it is equal to the pressure from the inviscid potential
flow.

The potential flow solution is given by
_

u= s

or

%
ot

¢

VV2h = p, = ——
¢= Py or

: (21)

(22
Z

¢ = Ailg(kr) explt + ikz), %

n = Hexppt + ikz). (23)

Substitution of the potential flow solution into the normal
stress balancgl3) leads to the dispersion relation

o
11(kR) }

|
—k (R12 - k2> (1+i10) =0, (24)

which is a cubic equation ef and has explicit solutions.
WhenJ — oo, Eq.(24) reduces to

IokR) > _ (1 —k )
nkRr)” ’

which is the dispersion relation for inviscid potential flow
(IPF) solution. The IPF solution does not allow viscous or
viscoelastic effects.

2k2

Ng

Io(kR) Io(kR) 1

I1(kR) kR

(1+ 5»10) + (1+ 5»20) o

(25)

4. Dissipation and the formulation for the additional
pressure contribution

Joseph and Wan@] derived a viscous pressure contribu-
tion in addition to the irrotational pressure for the potential
flow solutions of Newtonian fluids by considering the dissi-
pation of energy. Here we extend the analysis to a viscoelastic
fluid of Jeffereys type in flows governed by linearized equa-
tions. We start from the momentum equation

by T M
_ = . u- - o—
pdt 'Odt

whereT is the total stress. It follows that
d /1
ol (zu . )
=V-(T-u)—Vu:T
(T-u)—(D+ ) : (—pl+24uD)
(T-u) =D : (—pl+2auD)
(T -u)—2auD :D.

—(V-T)u, (26)

=V
=V

are compatible in this problem. The pressure integral can alsojt follows that

be easily obtained fron®),

1 In our former papef10], the exact solution of the linearized equations
was called the fully viscous flow (FVF) solution.

d
dr

Bu-u
2

L

:/n-(T-u)dQ—Zﬁu/D:DdV,
Q v

)av

(27)
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whereV is the volume occupied by the viscoelastic fludal, whereC; are constants. With the additional pressure contri-
is the boundary o¥/, andn is the outward normal oV on bution, the normal stress balance becomes

£2. We have shown that the potential flow is a solution of the )
1 0u 0% n

momentum equation in this problem. Thus we can insertthe _ , _ 21

Pe+ 201 = —+ -, (33)
velocity and stress tensor evaluated on the potential flowinto JJor 82 R?
(27)to obtain which gives rise to
d / o "2
— —u-u)dv 2k I1(kR)

Aclo(kR) + Crlp(kR ——A | Io(kR) —
3/, (5us) {aotor) + curoery+ 27 | oter) - 22
= /Q[(—pp + T )u + T w]d$2 — 20 /V D:DdV. x explt + ikz) + Z C;Io(jR) explt + i jz)
' J#k
(28)
k 1 2 .

At the free surface, the potential flow leads to a non-zero  — Ag’l("R) (RZ —k ) expt + ikz). (34)

irrotational shear stress and does not satisfy the zero-shear- ) . . o
stress condition. We introduce a pressure contribugiom By orthogonality of Fourier serie€;; = 0 if j # k. The co-
addition to the irrotational pressuge,; p. cancels out the efficientCy can be determined usirfg0). The left hand side

power due to the unphysical irrotational shear stress in the Of (30)is

energy equation an@7) becomes
/ T,w" dR2

d Q
& / (gu . u) dv "

tJv - %4ﬂlRAA*k3Io(kR)Il(kR) expe + o), (35)

= [ [(=pp—pc+7 )u]dQ—ZﬁM/ D:DdV.
/9 P o 1% where! is the length of one wave period and’“denotes
(29) conjugate variables. On the other hand,
Comparing(28) and (29)we obtain / (—pe)u* ds2
Q

/ rowds2 = / (= po)u A2, (30) — 2nlRCy A*kIo(kR) [1(kR) eXpl + ™). (36)

Q 2

. _ o It follows thatCy = 2(ji/~/J)Ak? and
which is the same as the formulation for the additional pres-
sure contribution as in the potential flow of a viscous Newto- 22 .
nian fluid (Joseph and Waifi@]). However, the calculation of pe =14k ﬁIO(kr) explr + ikz). (37)
7, in viscoelastic fluids is different than in Newtonian fluids. ) . i
The additional pressure contributipp depends strongly on ~ INSertingCy into (34), we obtain
viscoelastic parameters and is determined solely by the irro- 25 k2 ~12
: ik 20k I1(kR)

tati | flow. Io(kR ——Ip(kR —— | Io(kR) —

ational flow. olo( )Jr\/7 o )+ﬁ {0( ) TR

= kI (kR) ! k

5. The additional pressure contribution for capillary ot R2 ’
instability

which can be written as

Now we consider the additional pressure contribution for Io(kR) . . 2k2
the potential flow analysis of capillary instability. Joseph and 7, = ” (1+410) + (1+ 420) 0—= T kR
y=>1s e - I1(kR) VJ | i(kR) kR
Wang[9] showed that in linearized problems, the governing
equation for the additional pressure contribution is —k <R12 _ k2) (1 4 ilo) -0 (38)

21p(kR) 1 ]

V2pe =0 (31) . S . . _
Eq. (38) is the dispersion relation from the viscoelastic cor-
It is easy to show that31) holds for the viscoelastic fluid ~ rection of VPF (VCVPF).

under consideration here. Solvi(@l), we obtain If the pressure correctio(87) is inserted back into the
governing Eq(9), we obtain

oo
— pe = Y _ Cjilo(jr) expet +ijz), @)  me_ g g2, (39)
j=0 ot N
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whereu, is the velocity correction induced by the pressure
correctionp.. We can find a potential flow solutiom. =
V., such thav2u, = VV2¢. = 0 and

ad
V&d’c = —Vpc. (40)
It can be readily shown that
i 20 .
e = — A2 == Io(k kz). 41
¢ =~ ﬁo( r) explt + ikz) (41)

Thus the pressure correctign. which is proportional to
J~Y2 induces a velocity correction proportional o %/2.

This velocity correction gives rise to uncompensated shear
stress proportional td—1 which may induce a new pres-
sure correction now proportional to2. In this way we may
generate, successively, irrotational solutions proportional to
increasing powers of ~1/2. We believe that only the first
pressure correction proportional 161/2 is of physical sig-
nificance; the higher order corrections are not considered in
the normal stress balan¢&3).

6. Comparison of the growth rate

We compare the dispersion relati¢d8) from VCVPF
with (24) from VPF, (25) from IPF and(17) from the exact
solution. Eqs(17), (24), (25) and (38re solved by numer-
ical methods for the growth rate and the values of are
compared.

First we examine two practical cases: 2% PAA in air and
2% PEOQO in air (following Funada and JosdB. We choose
the diameter of the fluid cylinder to be 1 cm. Theersusk
plots for 2% PAA and 2% PEO are shownhigs. 2 and 3
respectively. These figures show that the results from VCVPF
are almost indistinguishable from the exact solution, whereas
IPF and VPF overestimatessignificantly.

0.08
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o 0.04

0.03 +
Exact

0.02 VCVPF
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Fig. 3. The growthrate vs.kfrominviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact
solution. The results of the exact solution and VCVPF are almost the same.
The fluid is 2% PEO,» = 0.99gcnt?!, = 350P,y = 630dyncnt?,

A1 =021s4, =0s,J =5091x 1074, i; = 1.676.

Capillary instability is controlled by three dimensionless
numbersJ, A1, andi,. We vary these parameters and present
the computed growth rate i¥igs. 4—7 The Reynolds number
Jranges from 10%to 10%, A1 ranges from 0.1 to 1000, aig
ranges from 0 to 100. In all the cases, the growth rates from
VCVPF are in excellent agreement with the exact solution,
indicating that our additional pressure contribution is valid
for a wide range of controlling parameters.

Figs. 4 and Show that the growth rates increase with
whenJ and., are fixed. Comparingigs. 5 and 6it can be
seen that the effect ab is opposite to that of1; the growth
rates decreases withp. Whenij = X, the fluid becomes
Newtonian. When the Reynolds number is as high & 10
(Fig. 7), IPF and VPF slightly over-estimate the maximum
growth rate whereas the VCVPF results are almost the same
as the exact solution.

0.01

0.008 +

0.006 +

]

0.004 . |
Exact

T vever
0.002 |

Fig. 2. The growth rate vs.k frominviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact

0

0.001

0.01

0.1
k

10

solution. The growth rates for the exact solution and VCVPF are almost the Fig. 4. The growth rate vs.k frominviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) the exact
solution.J = 1074, 11 = 0.1, 1, = 0.

same. The fluidis 2% PA& = 0.99gcnt !, u = 96 Py = 45.0dyncnt?,
A1 =0.039s,1, = 0s,J = 4.834x 1073, X1 = 0.263.
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Fig.5. The growthrate vs.kfrominviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact

solution.J = 1074, A1 = 1000,%2 = 0.
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Fig. 6. The growthrate vs.kfrominviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact

solution.J = 1074, A, = 1000,%, = 100.

In Table 1we present the maximum growth ratg and
the associated wave numligrcomputed from VPF, VCVPF
and the exact solution. The value @f, given by VPF is
several times larger than the exact result whida small.
VCVPF gives excellent approximation to the valuesopf

andkm in all the cases.

Table 1

1 T

0.8F 1
0.98F
0.6l 096F ]
6 0941
04k 092t 4
09—
1
0.2¢ g
0

0.001 0.01 0.1 1 10

Fig. 7. The growthrate vs.kfrominviscid potential flow (IPF), viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact
solution.J = 10%, i1 = 0.1, k2 = 0. When the Reynolds numheéis large,
viscoelastic effects are relatively small, and the four curves are close; but
differences among them can be seen near the peak growth rate. The inset is
the amplified plot for the region near the peak growth rate. VCVPF is the
best approximation to the exact solution.

7. Comparison of the stream function

Next we compare the stream functions from VPF, VCVPF
and the exact solution at the same wave number. The wave
number chosen for the comparisorkjs at which the maxi-
mum growth rate, occurs in the exact solution. The relation
between the constants andA» in the exact stream function
(15) andA in the potential flow solutiorf22) must be estab-
lished before one can compare the stream functions. Here
this relation is obtained by assuming that the magnitude of
the disturbancél is the same in the exact solution and in the
potential flow solution.

We use a superscript ‘E’ for quantities appearing in the
exact solution anl5) and (16)re rewritten as

VE = [ASr I (kr) + ASrI(kor)] exptr + ikz), (42)

nF = HE expE®r + ikz). (43)

Maximum growth ratery, and the associated wave numbgrfor viscoelastic potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact

solution inFigs. 2-7

Figure VPF VCVPF Exact solution
km Om km Om km Om

2 3.439e-01 6.557e-02 2.052e-01 2.274e-02 2.135e-01 2.278e-02
3 2.025e-01 2.283e-02 1.183e-01 7.554e-03 1.229e-01 7.559e-03
4 1.331e-01 9.899e-03 7.831e-02 3.322e-03 8.154e-02 3.323e-03
5 1.309e+00 8.665e01 1.144e+00 6.703e01 1.170e+00 6.850e01
6 3.848e-01 8.200e-02 2.101e-01 2.384e-02 2.186e-01 2.390e-02
7 1.386e+00 9.618e01 1.374e+00 9.447e01 1.375e+00 9.45801

For inviscid potential flow (IPF) solutiorty, = 1.394 andoy,, = 0.9711 in all the six cases.
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Table 2
The growth rater computed from viscoelastic potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact solution at the same wave number
km

J i 7 km o VPF o VCVPF oE
4.834x10°3 0.263 0 0.2135 0.06345 0.02274 0.02278
5.091x104 1.676 0 0.1229 0.02252 0.007554 0.007559
104 0.1 0 0.08154 0.009843 0.003322 0.003323
104 1000 0 1.170 0.8495 0.6696 0.6850
104 1000 100 0.2186 0.07718 0.02384 0.02390
10t 0.1 0 1.375 0.9617 0.9447 0.9458

In the exact solutionky, is the wave number for the maximum growth rate.

The relation betweerdt and AS is determined by the zero-  to the comparison of the growth rate. Table 2 we list the

shear-stress condition at R: values of the growth rate computed from VPF, VCVPF and
k2L (kR the exact solution. In all the cases, the growth rate from VPF
E= 2_2# AL (44) is larger than the exact result, whereas the growth rate from
(k* + k) 1 (ky R) VCVPF is very close to the exact result. The rest part of the
Therefore, we can write the stream function as stream function depends erand we define
2k211(kR) oVPF ( 2k2 )
E _ AE =7 SF¢) = 1- I1(kr) forVPF; 52
o= {Il(k'") @ + 1)k, B) 1) 0= @z ) e 2
x expett + ikz). (45) o, VCVPF o2
The amplitude of the disturbané#® is related toA§ through SFO)=—¢ <1 iz k5> riy(kr) forVCVPF,
the kinematic condition:
) ) (53)
L 2k E
2
Now we consider the potential flow solution which is in- SF¢) = r | In(kr) — Mh(k r)
: int ‘P’ i (k2 + k2) Iy (k,R) "
dicated by a superscript ‘P’. The stream function and the v 11Ky
disturbance are given by for the exact solution (54)
y" = APriy(kr) exp®t + ikz), (47) Three examples for the comparison of the function-$&(e

P P P, | shown inFigs. 8—10The curves for Sk are very close to

= H expl't + ikz), 48 . ) oL . .
7 Pl"t +ikz) (48) straight lines, indicating power functions. This can also be
respectively. The amplitude of the disturbarig is related

to AP through the kinematic condition:

ik
H” = 5 APL(KR). (49) 0.001

o
We assume that the amplitude of the disturbance is the same //
in the exact solution and the potential flow solution. Thus ‘ //
HE = HP and it follows that 0.0001 ¢ Ve e

p 2k2 Iz //lix;lcl
o “ VCVPE
AP=AF— (1- 50— ). 50
1oE< k2+k5> (50) //
. ) . le-005 | Ve
Then the stream function of the potential flow can be written /,/
as e
p EO'P 2k? p. . /"/
Y= Alﬁ (1 — k2+k2> rli(kr)expe’t + ikz). (51) le-006 = S iTos
v

Now we can comparé5) and (51) The stream function is

decomposed into two parts, the exponential function depend- _ . _ ! . .

. d d th t td di Si (54) for viscoelastic potential flow (VPF), viscoelastic correction of VPF
Ing ontz f'in zan eres par_ €pending arbince we are (VCVPF) and the exact solution respectively. The fluid is 2% PAA:
comparing the stream functions at the same wave numbers ga4 x 10-3, 3; = 0.263, i, = 0. The wave number for the maximum
km, the comparison of the exponential function is equivalent growth rateky, = 0.2135 is chosen for the comparison.

Fig. 8. The part of the stream function dependingrotefined in(52)—
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0.001 ¢

0.0001

.2 0.3 0405

0.1 (

Fig. 9. The part of the stream function dependingrotlefined in(52)—
(54) for viscoelastic potential flow (VPF), viscoelastic correction of VPF
(VCVPF) and the exact solution respectively. In this calse; 1074, &, =
1000,i> = 0. The wave number for the maximum growth rate= 1.170

is chosen for the comparison.

seen from(52)—(54) The expansion of the modified Bessel
function gives

k k3 3 k5 5
hikn) = — + 55 L 50 4 o).

2 16 384 (°5)

Higher order terms of may be neglected because<Q- <
0.5 inside the cylinder. If we only keep the first term in the
expansion, the stream functio(s2) and (53)become, re-
spectively

UVPF kr2
SFE) = ¢ (1

2% 4 :

(56)
0.001 |
e
e
P
f'/
0.0001 F VPF e
/’/
~" Exact
L, -
“ " VCVPE
,/
.’/
le-005 F /’/
e
Ve
e
/'/
//
1e-006 . . -
0.1 02 03 0405

r

Fig. 10. The part of the stream function dependingratefined in(52)—
(54) for viscoelastic potential flow (VPF), viscoelastic correction of VPF
(VCVPF) and the exact solution respectively. In this case; 1074, &1 =
1000, i, = 100. The wave number for the maximum growth rage=
0.2186 is chosen for the comparison.
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O.VCVPF 2k2 er
SF() = 1- — +0¢*
@) oF ( k2+k5> 5 T ")
for VCVPF. (57)

For (54), we also expandi(kR) andI1(k,R) and keep only
the leading term, which gives rise to

kr? 2k2(kR/2)  kyr?
SFE) = — _ &R/2) kur

2 (k+k)(kyR/2) 2

_ (1 kr?

+ 0@

2k? 4
—k2+k5)2+0<’>

for the exact solution (58)

Egs. (56)—(58) show that the functions SH(are approxi-
mately quadratic functions for smalland this is confirmed

in Figs. 8—10The comparison of the leading terms of §F(
depends directly on the growth rai&d"F, oVCVPF andoF.
SincesVPF > oF, the curves for SF) of VPF are higher than
those for the exact solution. On the other hantf;VPFis very
close tooF and the curves for VCVPF and the exact solution
almost overlap. Combining the comparison of the growth rate
in Table 2and the comparison of the function $fin Figs.
8-1Q we show that the stream function given by VCVPF is
in remarkably good agreement with the exact solution. This
result indicates that the vorticity plays a small role in the ex-
act solution and our VCVPF solution, which is based solely
on potential flow, can give an excellent approximation to the
flow.

8. Discussion

Chang et al[12] did a long wave study of the stretching
dynamics of bead-string filaments for FENE and Oldroyd-
B fluids. They also did a long wave study of linear stability
and their results can be compared to ours. To this end, we first
convert the parameters used by Chang et al. to the parameters
used by us. In the notation of Chang et@.is the capillary
number,We is the Weissenberg number afds the retar-
dation number. We linearize the stress equation of Chang et
al. and reduce it to a form comparable to our Jeffreys model
(3), then the relation betwedie andS used by Chang et al.
andi; andi, used by us is revealed. After taking the differ-
ent length and time scales into account, we can express the
parameters in Chang et al. in terms of our parameters

2 g

Ca==, W , =. 59
a =7 i (59)

J 9
Then the dispersion relation given by the linear stability anal-
ysis of Chang et al. (their E§16)) can be written as

. Ao 32 ki
Mot + (143252 ) 6%+ | o= — —=(4—K?
10 +< + ﬁ>o +[«/7 2 ( )| o

k24 k%) =0 60
_Z( — k%) =0. (60)
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Now we consider the dispersion relatig88) from the 1 . - . —
VCVPF method. The dimensionless radRis= 1/2 and the sl Changeral. 20 o
Bessel functions can be expanded for sriall osl VEVPE
Io(kR) 4 k k3 5 07}
=4 - — —— 1 O®).

LUR) k8 7687 «) 06}
20kR) 1 6 k k3 © 05F

T Ip st = aax T O(ks) (61) 04k

LkR) kR k4 384

03+
Inserting(61) into (38), we can obtain 2

k2 k A k2 i
<1+ )kla +[1+—|—3k2 2 <1+ )] 2 ol

32 32 Nz 24 o . . ‘
) 5 0 0.5 ’-I( 1.5 2
3k K2\ k%,
(142 4—k
* [ﬁ( * 24) 2 ¢ )]

Fig. 11. The growth rate as a function o computed using60) given

k2 by Chang et al.(38) given by our VCVPF method, and 7) given by the
——(@4-K)+0oK*H =o. (62) exact solution. The fluid is water wigh= 1000 kg/n¥, 1 = 0.001kg/(ms),

4 y = 0.0728 N/m. The diameter of the liquid cylinder is assumed to be 0.01 m

The expansion of the Bessel functions can also be applied to?"® e Reynolds numbers=7.28 x 10°.

the exact solution and the result will be compare(bt®) and ) ) ) )
(62). After some arrangement, the dispersion relaiof) of <1+ k ) o2 4 3k< (1+ k ) > k7(4_ K2) + O(k%)

the exact solution can be written as 32 Naj 24
«/7 Il(kvR) kyR \/7 k2 3k2 k
Io(kR) S ) (1 + > + 0 — 7(4 k%) + O(k*) =
X — —k 32 VT
Il(kR) kR .
for the exact solution (67)
77 1(kR) ~ The first order differences among the dispersion relations

(65)—(67)are Ok?). The difference betwee®5) and (67)s
ak?/32 term in the coefficient af?; the difference between
(66) and (67)s ak?/24 term in the coefficient of.

In Figs. 1115, we plot the growth rate as a function ok

(63)

After expanding the Bessel functions as power seriéswé

obtain , computed using60) given by Chang et al(38) given by our
k k 2 A2\ o
Al (1+32) <1+32+3k ﬁ>0 T
A2 k% ) k? 5 4
+L/7 4- k)]a —(@4—-k9)+0(k") =0
A% Exact
(64) 0.0l “\\\ Chang et al.
The dispersion relatiof64) given by the exact solution is o VC\,,,I_.\\\
different from both(60) given by Chang et al. an®2) given AN
by our VCVPF method:; the first order differences aré<)( 0.005 \
in both cases. The differences betwéé#) and (60)are two
k?/32 terms in the coefficients of® ando?; the differences
betweer(64) and (62)re twok?/24 terms in the coefficients A
of o2 ando. 05 o : — |
The limit of a Newtonian fluid can be obtained by letting ) X ) )

A1 = A2 = 0. Then the dispersion relatiorf§0), (62) and
(64) reduce to, respectively Fig. 12. The growth rate as a function ok computed using60) given

by Chang et al.(38) given by our VCVPF method, anl7) given by

12 2 the exact solution. The fluid is a Newtonian fluid SO10000 oil with
o’ 4+ =0 — —(4 - k2) =0 forChangetal,; (65)  p=969kg/n?, u = 10kg/(ms),y = 0.021 N/m. The Reynolds number is
VI 4 J=204x102
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0.025 . . . 0.025 ; :
0021 T 1 .02} AN |
\"‘\__ Exact \‘\\ Exacl
0.015 \.\ Chang et al. 7 0.015 | 3\ Chang et al. .
o) \\\ b ‘\\\
VOVPE ™ VCVPF
0.01 N . 0.01 -
) RN \\
N N
0.005 RN 0.005 R\ ]
0 L L L 0 1 L L
0 0.5 1 1.5 2 0 0.5 1 L5 2
k k
Fig. 13. The growth rate as a function ok computed using60) given by Fig. 15. The growth rate as a function ok computed using60) given
Chang et al.(38) given by our VCVPF method, ar(d7) given by the exact by Chang et al.(38) given by our VCVPF method, and7) given by the
solution. The fluid is 2% PAA withl = 4.834x 1073, %, = 0.263,1, = 0. exact solution. The fluid is a viscoelastic fluid with= 10~4, 1; = 1000,
%2 = 100.

VCVPF method, and17) given by the exact solution. Both

Newtonian fluids and viscoelastic fluids are compared. The rameters and cancels outthe power due to the uncompensated
limit of Newtonian fluids is achieved by setting andi; to irrotational shear stress in the energy equation. We include
be zero in(60), (38) and (17)There is almost no difference  the additional pressure contribution, the irrotational pressure
between the three curves wheis close to zero, and small  and the extra stress evaluated using the irrotational flow in
differences can be seen wheis close to 2. The dispersion the normal stress balance at the surface, then a dispersion
relation of Chang et al. is in better agreement with the exact relation is obtained. We call this approach as the viscoelastic

solution when the Reynolds numbkgis small Figs. 12—13, correction of the viscoelastic potential flow (VCVPF). The
whereas our VCVPF is in better agreement with the exact comparison of the growth rate and the stream function show
solution when/ is large Fig. 11). that the VCVPF solution is an excellent approximation to the

In this work, linear stability analysis of the capillary insta- exact solution. The dispersion relation given by VCVPF is
bility of a viscoelastic thread is carried out under the assump- also compared to that obtained by Chang efld] using a
tion that the flow is irrotational. The non-zero irrotational long wave approximation. The differences between the two
shear stress at the surface of the liquid thread does not agreélispersion relations are negligible when the wave nurkber
with the zero-shear-stress condition. We derive a pressureis small and both dispersion relations are in remarkably good
contribution in addition to the irrotational pressure. This ad- agreement with the exact solution.
ditional pressure contribution depends on the viscoelastic pa-
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