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Ellipsoidal model of the rise of a Taylor bubble in a round tube
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Abstract

The rise velocity of long gas bubbles (Taylor bubbles) in round tubes is modeled by an ovary ellipsoidal
cap bubble rising in an irrotational flow of a viscous liquid. The analysis leads to an expression for the rise
velocity which depends on the aspect ratio of the model ellipsoid and the Reynolds and Eötvös numbers.
The aspect ratio of the best ellipsoid is selected to give the same rise velocity as the Taylor bubble at given
values of the Eötvös and Reynolds numbers. The analysis leads to a prediction of the shape of the ovary
ellipsoid which rises with same velocity as the Taylor bubble.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The correlations given by Viana et al. (2003) convert all the published data on the normalized
rise velocity Fr = U/(gD)1/2 into analytic expressions for the Froude velocity versus buoyancy
Reynolds number, RG = (D3g(qL � qG)qL)

1/2/l for fixed ranges of the Eötvös number,
Eo = gqLD

2/r where D is the pipe diameter, qL, qG and r are densities and surface tension. Their
plots give rise to power laws in Eo; the composition of these separate power laws emerge as
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bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large RG

(>200) they find that
Fr ¼ 0:34=ð1þ 3805=E3:06
o Þ0:58: ð1:1Þ
For small RG (<10) they find
Fr ¼ 9:494� 10�3

ð1þ 6197=E2:561
o Þ0:5793

R1:026
G : ð1:2Þ
The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Rey-
nolds number is separated by a transition region (10 < RG < 200) which they describe by fitting
the data to a logistic dose curve. Repeated application of logistic dose curves lead to a composi-
tion of rational fractions of power laws. This leads to the following universal correlation:
Fr ¼ 0:34=ð1þ 3805=E3:06
o Þ0:58

1þ RG

31:08
1þ 778:76

E1:96
o

� ��0:49
� ��1:45 1þ7:22�1013

E9:93o

� �0:0940
B@

1
CA

0:71 1þ7:22�1013

E9:93o

� ��0:094 : ð1:3Þ
The performance of the universal correlation (1.3) is evaluated in Fig. 1 where the values predicted
by (1.3) are compared to the experiments. Almost all of the values fall within the 20% error line
and most of the data is within 10% of predicted values.

The formula (1.3) solves the problem of the rise velocity of Taylor bubbles in round pipes. This
formula arises from processing data and not from flow fundamentals; one might say that the
problem of the rise velocity has been solved without understanding.
Fig. 1. Fr predicted from (1.3) vs. experimental data (Eo > 6).
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1.1. Unexplained and paradoxical features

The teaching of fluid mechanics would lead one to believe that a bubble rising steadily in a li-
quid is in a balance of buoyant weight and drag. It is natural to think that the buoyant weight is
proportional to the volume of gas, but the accurate formula (1.3) does not depend on the length of
the bubble; this requires explanation.

Even the theoretical results are mysterious. The rise velocity U of the spherical cap bubble at
high Reynolds number is accurately determined from a potential flow analysis of motion in an
inviscid fluid by Davies and Taylor (1950) and in a viscous fluid by Joseph (2003). Analysis of
the rise velocity of Taylor bubbles in inviscid fluids based on shape of the bubble nose was given
first by Dumitrescue (1943) and then by Davies and Taylor (1950).

Joseph (2003) found a formula for the rise velocity of a spherical cap bubble from analysis of
interfacial balances at the nose of a bubble rising in irrotational flows of a viscous fluid. He found
that
Uffiffiffiffiffiffi
gD

p ¼ � 8

3

mð1þ 8sÞffiffiffiffiffiffiffiffi
gD3

p þ
ffiffiffi
2

p

3
1� 2s� 16sr

qgD2
þ 32m2

gD3
ð1þ 8sÞ2

� �1=2
ð1:4Þ
where R = D/2 is the radius of the cap, q and m are the density and kinematic viscosity of the li-
quid, r is surface tension, r(h) = R(1 + sh2) and s = r00(0)/D is the deviation of the free surface
from perfect sphericity r(h) = R near the stagnation point h = 0. The bubble nose is more pointed
when s < 0 and blunted when s > 0. A more pointed bubble increases the rise velocity; the blunter
bubble rises slower.

The dependence of (1.4) on terms proportional to s is incomplete because the potential solution
for a sphere and the curvature for a sphere were not perturbed. A complete formula (2.39) replac-
ing (1.4) is derived in Section 2.

The Davies and Taylor (1950) result arises when all other effects vanish; if s alone is zero,
Uffiffiffiffiffiffi
gD

p ¼ � 8

3

mffiffiffiffiffiffiffiffi
gD3

p þ
ffiffiffi
2

p

3
1þ 32m2

gD3

� �1=2
ð1:5Þ
showing that viscosity slows the rise velocity. Eq. (1.5) gives rise to a hyperbolic drag law
CD ¼ 6þ 32=R ð1:6Þ

which agrees with data on the rise of spherical cap bubbles given by Bhaga and Weber (1981).

It is unusual that the drag on the cap bubble plays no role in the analysis leading to (1.4). Batch-
elor (1967) notes that
. . .the remarkable feature of [equations like (1.4)] and its various extensions is that the speed
of movement of the bubble is derived in terms of the bubble shape, without any need for con-
sideration of the mechanism of the retarding force which balances the effect of the buoyancy
force on a bubble in steady motion. That retarding force is evidently independent of Rey-
nolds number, and the rate of dissipation of mechanical energy is independent of viscosity,
implying that stresses due to turbulent transfer of momentum are controlling the flow pat-
tern in the wake of the bubble.
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This citation raises another anomalous feature about the rise of cap bubbles and Taylor bub-
bles relating to the wake. An examination of rise velocity from Bhaga and Weber (1981) and the
study of Taylor bubbles in Viana et al. (2003) do not support the idea of turbulent transfer. The
wake may be very turbulent as is true in water or apparently smooth and laminar as is true for
bubbles rising in viscous oils but this feature does not enter into any of the formulas for the rise
velocity, empirical as in (1.3) or theoretical as in (1.4).

A related paradoxical property is that the Taylor bubble rise velocity does not depend on how
the gas is introduced into the pipe. In the Davies–Taylor experiments the bubble column is open
to the gas. In other experiments the gas is injected into a column whose bottom is closed.

It can be said, despite successes, a good understanding of the fluid mechanics of the rise of cap
bubbles and Taylor bubbles is not yet available.

1.2. Drainage

Many of the paradoxical features of the rise of Taylor bubbles can be explained by drainage in
Fig. 2. The liquid at the wall drains under gravity with no pressure gradient. If the liquid is put
into motion by a pressure gradient the gas bubble will deform and the film flow will not be gov-
erned by (1.7); the drain equation is
Fig. 2
statio
l
r
d

dr
r
du
dr

� �
¼ qLg ð1:7Þ
subject to no slip at the wall and no shear at the bubble surface.
It can be argued that the cylindrical part of the long bubble is effectively not displacing liquid

since the pressure does not vary along the cylinder. In this case buoyant volume entering into the
equation buoyancy = drag would be the vaguely defined hemisphere poking into the liquid at top.
The source of drag is unclear; since shear stresses do not enter the drag ought to be determined by
the vertical projections of normal stresses all around the bubble. This kind of analysis has not ap-
peared in the literature. A different kind of analysis, depending on the shape of the bubble and
sidewall drainage has been applied. This kind of analysis leads ultimately to a formula for the rise
velocity of the bubble nose. Apparently the shape of the bubble nose is an index of the underlying
drag balance.
. Drainage at the wall of a rising Taylor bubble. If U is added to this system the wall moves and the bubble is
nary.
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1.3. Brown’s 1965 analysis of drainage

Brown (1965) put forward a model of the rise velocity of large gas bubbles in tubes. A similar
model was given by Batchelor (1967). There are two elements for this model.

(1) The rise velocity is assumed to be given by C
ffiffiffiffiffiffiffiffi
gRd

p
where C ( = 0.494) is an empirical con-

stant and Rd = R�d is the bubble radius, R is the tube radius and d is the unknown film
thickness.

(2) It is assumed that the fluid drains in a falling film of constant thickness d. The film thickness
is determined by conserving mass: the liquid displaced by the rising bubble must balance the
liquid draining at the wall.

After equating two different expressions for the rise velocity arising from (1) and (2), Brown
finds that
U ¼ 0:35V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p
� 1Þ

w

s
; ð1:8Þ
where
w ¼ ð14:5R2Þ1=3; R ¼ VD=m; V ¼
ffiffiffiffiffiffi
gD

p
: ð1:9Þ
The expression for the rise velocity (1.8) does not account for effects of surface tension which are
negligible when the bubble radius is large. The expression is in moderately good agreement with
data, but not nearly as good as the correlation formula (1.3).

The rise velocity
ffiffiffiffiffiffiffiffi
gRd

p
is still determined by the bubble shape, but that shape is altered by

drainage.
1.4. Viscous Potential flow

We have already mentioned that the correlation formula (1.3) accurately predicts the rise veloc-
ity and further improvement cannot be expected from modeling. Our understanding of the fluid
mechanics under way is however far from complete. When surface tension is neglected the for-
mula (1.5) extends the results of Dumitrescue (1943) and Davies and Taylor (1950) from inviscid
fluids to viscous fluids by assuming that the cap of the bubble remains spherical, even at finite
Reynolds number. The same extension to include the effects of viscosity in the formula for the rise
velocity based on potential flow at the nose should be possible for Taylor bubbles if the nose re-
mains spherical in viscous fluids. Brown says that Fig. 3 (note that he used Rc for R � d, which is
Rd in our nomenclature).
‘‘. . . indicates that although the cavity shapes are different in the transition region, they are
remarkably similar in the nose region. The second interesting fact. . . is that the frontal radius
of the cavity in normalized coordinates (Rc = R � d) which is the same for all liquids, is 0.75,
the same value as was obtained in the analysis of bubbles in inviscid liquids.
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Fig. 3. (After Brown, 1965). The profile of the cap of Taylor bubbles. The nose region is spherical with a radius r0. For
all the fluids, r0/Rc = 0.75. The viscosities of water, varsol, marcol, and primol apparently are 0.977, 0.942, 19.42 and
142.3 mPa s respectively.
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The scatter in the data plotted in Fig. 3 and the data in the transition can be fit even better by
the cap of an ovary ellipsoid which is nearly spherical (Fig. 10) arising from the analysis given in
Section 2.

The effect of surface tension is to retard the rise velocity of Taylor bubbles in round tubes. The
universal correlation (1.3) shows that the rise velocity decreases as the Eötvös number
Eo = gqLD

2/r decreases, for ever smaller values of D2/r. In fact these kinds of bubbles, with large
tensions in small tubes, do not rise; they stick in the pipe preventing draining. If the radius of a
stagnant bubble R = 2r/Dp with the same pressure difference Dp as in the Taylor bubble, is larger
than the tube radius, it will plug the pipe. White and Beardmore (1962) said that the bubble will
not rise when Eo < 4. This can be compared with the values 3.36 given by Hattori (1935), 3.37
given by Bretherton (1961), 5.8 given by Barr (1926), and 4 given by Gibson (1913).

A very convincing set of experiments showing the effect of drainage is reported for ‘‘Taylor
bubbles in miniaturized circular and noncircular channels’’ by Bi and Zhao (2001). They showed
that for triangular and rectangular channels, elongated bubbles always rose upward even though
the hydraulic diameter of the tube was as small as 0.866 mm, whereas in circular tubes the bubble
motion stopped when d 6 2.9 mm. They did not offer an explanation but the reason is that surface
tension cannot close the sharp corners where drainage can occur.
2. Ellipsoidal bubbles

Grace and Harrison (1967) studied rise of ellipsoidal bubble in an inviscid liquid. They sought
to explain the influence of bubble shape on the rise velocity and concluded that elliptical cap and
ovary ellipsoidal bubbles rise faster than the corresponding circular-cap and spherical-cap bub-
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bles. They cited experimental data which they claim support their results. They say that ‘‘. . . bub-
bles take up elliptical shapes if they enclose a surface (e.g. a rod).’’ This statement is not correct
because bubbles rising in the presence of a central rod are usually not axisymmetric as can be seen
in Fig. 4.

In this paper we shall obtain expressions for the rise velocity of ovary and planetary ellipsoids.
The ovary ellipsoid looks more like a long bubble than a planetary ellipsoid (Fig. 5). There is no
way that the planetary ellipsoid can be fit to the data given by Viana et al. (2003), but the ovary
ellipsoid can be made to fit Viana�s data with one shape parameter for all cases. This is very sur-
prising, since the Taylor bubble is not thought to be ellipsoidal and the dynamics of these bubbles
is controlled by sidewall drainage which is entirely neglected in the following potential flow anal-
ysis of the rise of ellipsoidal bubbles in a viscous liquid.

Ovary and planetary ellipsoidal bubbles are shown in Fig. 5. We will be led by the analysis to
cases in which the ovary ellipsoids are nearly spherical with D = 2a.

For axisymmetric flows of incompressible fluid around the ellipsoid of revolution, we can have
the stream function and the velocity potential, then we have the solution which satisfies the kine-
matic condition at the surface of the bubble and the normal stress balance there which contains
the viscous normal stress based on viscous potential flow.

2.1. Ovary ellipsoid

In an ellipsoidal frame (n,g,u) on the ovary ellipsoid bubble moving with a uniform velocity U
in a liquid, we have the stream function w and the velocity potential / for axisymmetric flow.
Fig. 4
space
(1 mP
970 kg
way a
w ¼ 1

2
Uc2sin2g sinh2n� b2

a2K
cosh nþ sinh2n ln tanh

n
2
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; ð2:1Þ
. Photographs (unpublished, courtesy of F. Viana and R. Pardo) of Taylor bubbles rising in concentric annular
of 76.2 mm inside diameter pipe and different rod diameter (ID) filled with different viscous liquids: (a) water
a s, 997 kg/m3), ID = 12.7 mm; (b) water, ID = 25.4 mm; (c) water, ID = 38.1 mm; (d) silicone oil (1300 mPa s,
/m3), ID = 12.7 mm; (e) silicone oil (1300 mPa s, 970 kg/m3), ID = 25.4 mm. The gas bubbles do not wrap all the
round the inner cylinder; a channel is opened for liquid drainage.



Fig. 5. An ellipsoid bubble moving with a uniform velocity U in the z-direction of Cartesian coordinates (x,y,z). An
ovary ellipsoid is depicted in the left-hand side and a planetary ellipsoid is in the right-hand side, which are of the major
semiaxis a, the minor semiaxis b, the aspect ratio e = c/a, c2 = a2 � b2, and in a liquid (water) of density q, viscosity l,
with the surface tension r at the surface given by n = n0 and under the acceleration due to gravity g.
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/ ¼ Uc cos g cosh n� b2

a2K
1þ cosh n ln tanh

n
2
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; ð2:2Þ
with c2 = a2 � b2, e = c/a and K:
K ¼ e2
a
c
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c2
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aþ b� c
aþ bþ c
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¼ 1
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þ tanh2n0 ln tanh n0=2 ¼ eþ ð1� e2Þtanh�1ðeÞ: ð2:3Þ
(In this case, we take z = ccoshncosg, -= c sinhn sing, x = -cosu and y = - sinu; a = ccoshn0
and b = c sinhn0.) The stream function (2.1) has been derived based on the article in Section 16.57
of Milne-Thomson�s book (Milne-Thomson, 1996). The velocity u = (un,ug) is expressed as
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J 2 ¼ c2sinh2nþ c2sin2g; J 0 ¼ ðJÞn0 ;

f1ðn0Þ ¼ cosh n0 � b2

a2K ð1þ cosh n0 ln tanh n0=2Þ ¼ e2

eþð1�e2Þtanh�1ðeÞ ¼ f1ðeÞ;

f2ðn0Þ ¼ cosh n0 � b2

a2K 1� 1
sinh2n0

þ cosh n0 ln tanh n0=2
� �

¼ f2ðeÞ ¼ 2f 1ðeÞ:

9>>>>>=
>>>>>;

ð2:8Þ
Following Joseph (2003), Bernoulli function is given by his (1.2) and (1.3):
qjuj2
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Put qGjuj2 = 0 in the gas. Then CG = CG is constant. Boundary conditions at the surface of the
ellipsoid (where n = n0) are the kinematic condition and the normal stress balance
un ¼ 0; �½½C�� � ½½q��ghþ ½½2ln �D½u��� � n ¼ �rr � n; ð2:10Þ
where C = p + qgh as in Joseph (2003), the normal viscous stress 2ln Æ D[u] Æ n and the normal vec-
tor n satisfy the following relations:
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The normal stress balance is then expressed as
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where the distance from the top of the ellipsoid bubble is
h ¼ að1� cos gÞ ¼ c cosh n0ð1� cos gÞ: ð2:15Þ
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For small g, we have
J 0 ¼ c sinh n0 1þ g2
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Substitution of (2.16) into the normal stress balance (2.14) leads to a formula for the ovary
bubble:
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Thus, we have CG in O(1)
CG ¼ q
2
U 2 þ 2lUf 2ðn0Þ

csinh2n0
þ r

2 cosh n0
csinh2n0

; ð2:18Þ
and the following relation in O(g2)
� q
2

U 2f 2
1 ðn0Þ

sinh2n0
þ qgc

2
cosh n0 �

2lU

csinh2n0
f2ðn0Þ

1

2
þ 1

sinh2n0

� �
þ f1ðn0Þ
sinh2n0

� �
¼ r

2 cosh n0
csinh4n0

:

ð2:19Þ
2.2. Planetary ellipsoid

In an ellipsoidal frame (n,g,u) on the planetary ellipsoid bubble moving with a uniform veloc-
ity U in a liquid, we have the stream function w and the velocity potential / for axisymmetric
flows
w ¼ 1
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where c2 = a2 � b2 and e = c/a. (In this case, we take z ¼ c sinh n cos g, - ¼ c cosh n sin g,
x ¼ - cosu and y ¼ - sinu; a = ccoshn0 and b = c sinhn0.) The velocity u = (un,ug) is given by
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Boundary conditions at the surface of the ellipsoid (where n = n0) are the kinematic condition and
the normal stress balance
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where the distance from the top of the ellipsoid bubble and $ Æ n are given, respectively, by
h ¼ bð1� cos gÞ ¼ c sinh n0ð1� cos gÞ; r � n ¼ tanh n0
J 3

ðJ 2
0 þ c2cosh2n0Þ: ð2:28Þ
0
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For small g, we have
J 0 ¼ c cosh n0 1� g2

2cosh2n0
þ Oðg4Þ

� �
;

h ¼ c sinh n0 1
2
g2 þ Oðg4Þ

� 	
;

ðugÞn0 ¼
Uf 1ðn0Þ
cosh n0

½gþ Oðg3Þ�;

1
J
oun
on

� �
n0
¼ � Uf 2ðn0Þ

ccosh2n0
1� 1

2
� 1

cosh2n0

� �
g2 þ Oðg4Þ

h i
;

r � n ¼ 2 sinh n0
ccosh2n0

1þ g2

cosh2n0
þ Oðg4Þ

� �
:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð2:29Þ
Substitution of these into the normal stress balance leads to a formula for the planetary bubble:
�CG þ q
2
U 2 � q

2
ðugÞ2n0 þ qgh� 2l

1

J
oun
on

� ug
c2

J 3
cos g sin g

� �
n0

¼ �r
2 sinh n0
ccosh2n0

1þ g2

cosh2n0

� �
: ð2:30Þ
Thus we have CG in O(1)
CG ¼ q
2
U 2 þ 2lUf 2ðn0Þ

ccosh2n0
þ r

2 sinh n0
ccosh2n0

; ð2:31Þ
and the following relation in O(g2)
� q
2

U 2f 2
1 ðn0Þ

cosh2n0
þ qgc

2
sinh n0 �

2lU

ccosh2n0
f2ðn0Þ

1

2
� 1

cosh2n0

� �
� f1ðn0Þ
cosh2n0

� �
¼ �r

2 sinh n0
ccosh4n0

:

ð2:32Þ
2.3. Dimensionless rise velocity

By taking the major axis D = 2a as a representative length scale,
ffiffiffiffiffiffi
gD

p
as a velocity scale,

D=
ffiffiffiffiffiffi
gD

p
as a time scale, the parameters involved in the expanded solution of dimensionless form

are

Froude number: Fr ¼ Uffiffiffiffi
gD

p , Gravity Reynolds number: RG ¼
ffiffiffiffiffiffi
gD3

p
m ,

Eötvös number: Eo ¼ qgD2

r , aspect ratio: e ¼ c
a ¼ 1

cosh n0
.

In terms of these, the formula for the rise velocity of the ovary ellipsoid (which is now denoted
by Fr) is given by (2.33) and that of the planetary ellipsoid is given by (2.34):
�Fr2e2f 2
1 ðeÞ þ

1

2
ð1� e2Þ � 8Fr

RG

e f2ðeÞ
1

2
þ e2

1� e2

� �
þ e2f1ðeÞ

1� e2

� �
¼ 8

Eo

e2

1� e2
; ð2:33Þ



T. Funada et al. / International Journal of Multiphase Flow 31 (2005) 473–491 485
�Fr2e2f 2
1 ðeÞ þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 8Fr

RG

e f2ðeÞ
1

2
� e2

� �
� e2f1ðeÞ

� �
¼ � 8

Eo
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
: ð2:34Þ
In these equations, the first term in the left hand side denotes the kinetic energy due to the inertia
(the pressure), the second is the gravity potential, the third is the normal viscous stress and the
right hand side denotes the surface tension. The quadratic equations in Fr, (2.33) and (2.34), lead
to the formula of the spherical bubble in the limit of e ! 0 (n0 !1 with a fixed).

The aspect ratio (or shape parameter) e is to be selected for a best fit to the experiment of Viana
et al. There is no way that the formula (2.34) for the planetary ellipsoid can be made to fit the
data; for example, the dependence on an increase of Eo is such as to reduce the rise velocity
whereas an increase, compatible with (2.33), is observed. We shall now confine our attention to
the formula (2.33).

The formula (2.33) goes to the following equation in the limit RG !1:
Fr1 ¼ 1

ef 1ðeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1� e2Þ � 8

Eo

e2

1� e2

s
: ð2:35Þ
For small RG, the formula (2.33) may be approximated by a linear equation in Fr/RG to give the
solution:
Fr ¼ ð1� e2Þ2 � 16e2=Eo

f2ðeÞð1þ e2Þ þ 2e2f1ðeÞ
RG

8e
; ð2:36Þ
whence Fr! 0 as RG ! 0.
When Fr = 0, (2.33) is reduced to the equation:
Eo ¼ 16
e2

ð1� e2Þ2
: ð2:37Þ
If we put Eo = 4 as noted in Section 1.4, we have e = 0.41, thus 0.41 6 e < 1 for 4 6 Eo, which
means that the bubble may be an ovary ellipsoid. It is noted here that (2.37) gives Fr1 = 0 in
(2.35) and Fr = 0 in (2.36), which leads to the condition that Eo P 16e2/(1 � e2)2 for a positive
or zero solution Fr to the quadratic equation (2.33).

In the limit e ! 0 Eq. (2.33) describes the rise velocity of a perturbed spherical cap bubble. To
obtain this perturbation formula we note that
c
a ¼ 1

cosh n0
¼ e; b

c ¼ sinh n0 ¼
ffiffiffiffiffiffiffi
1�e2

p

e

ef 1ðeÞ ¼ 1
2
ef 2ðeÞ � 3

2
1� 1

5
e2 � 8

175
e4 þ � � �


 �
:

)
ð2:38Þ
After inserting these expressions into (2.33) retaining terms proportional to e2, we find that
9

4
Fr2 þ 12Fr

RG

� 1

2
¼ e2

8

Eo
þ 1

2
� 9

10
Fr2 þ 168

5

Fr
RG

� 
: ð2:39Þ
The leading order terms on the left were obtained by Joseph but the perturbation terms on the
right are different. The curvature s in Eq. (1.4) is related to the aspect ratio by
s ¼ �e2=2ð1� e2Þ; ð2:40Þ

whence, to leading order, we find that e2 = � 2s.
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3. Comparison of theory and experiment

Viana et al. (2003) made experiments of Taylor bubbles as shown in Fig. 6. Their data maybe
expressed as a functional relationship between three parameters Fr, Eo and RG as in Eqs. (1.1)–
(1.3). We may plot this data for a fixed value of Eo, giving Fr versus RG as is shown in a log�log
scaling in Fig. 7.

In Fig. 8, we have plotted data Fr versus RG for 12 values of Eo. It is important to note what
was done with this data by Viana et al. (2003) and what we do with it here. Viana et al. (2003)
identified a slope region for small RG < 10, a flat region for RG > 200 and a transition between.
The flat region and the slope region give rise to power laws which were merged into the transition
region using a logistic dose curve. This type of fitting was discussed briefly in the introduction to
the paper and extensively by Viana et al. (2003).

Here, in Fig. 8, we plot Fr versus RG data for 12 values of Eo but we fit this data with the ana-
lytic expression (2.33) for an ovary ellipsoid rather than to power laws. The aspect ratio e(Eo) is a
fitting parameter and is listed in Table 1, in which eo = e(Eo) is the value of e in (2.33) selected as
the value which most closely fit the data of Viana et al. (2003) for the 12 cases in Fig. 8. This soft-
ware also gives the value Fr1 in (2.35) and it leads to the correlation
Fig. 6
liquid
eo ¼ E0:0866
o =0:357 ð3:1Þ
where the deviation in given by de = e � eo. The success of this procedure is impressive.
. Photographs of Taylor bubbles rising through 76.2 mm inside diameter pipe filled with different viscosity
s. This figure is quoted from Viana et al. (2003).



Fig. 7. logFr versus logRG, which is quoted from Viana et al. (2003). The data used here are all sources with Eo P 6.
For the data with Eo < 6 refer their Fig. 9(f).
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The processing of data for Table 1 is represented graphically in Fig. 9.
Table 1 shows that eo is a very weak function of Eo P 15 with data tending to a value eo = 0.6

corresponding to an ellipsoid with
b ffi 0:8a ð3:2Þ
which like the true Taylor bubble has an almost spherical cap (see Fig. 10).
4. Comparison of theory and correlations

The processing of data on the rise velocity of Taylor bubbles in tubes of stagnant liquids by
Viana et al. (2003) leads to the correlation formula (1.3) with small errors described by Fig. 1.
We may then propose that the rise velocity is accurately described by (1.3); however the shape
of the bubble nose is not predicted.

The theory of the rise of ovary ellipsoidal gas bubbles in viscous liquids leads to a rigorous pre-
diction of the aspect ratio of the ovary ellipsoid which rises with exactly the same velocity Fr at
given values of Eo and RG as the Taylor bubble. The value of e is determined by simultaneous for
e of (2.33) and (1.3) for given values of Fr, RG and Eo (Fig. 11).

A slightly simpler solution can be written out for RG > 200 in which case (1.3) is replaced with
the simpler formula:
Fr ¼ 0:34=ð1þ 3805=E3:06
o Þ0:58; ð4:1Þ
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Fig. 8. logFr versus logRG for 12 values of values of Eo. The lines (- - -), (– – –), (—) are plots of (2.33) with e(Eo)
selected for best fit as described in Table 1.

Table 1
Selection of e(Eo) for 12 cases of Eo

Eo e de Fr1 logFr1 Fig. 8

6 0.471243 �0.042313 0.06391207 �1.194417 (a)
10 0.536543 �0.000228 0.128435 �0.891313 (b)
11 0.538667 �0.002551 0.170713 �0.767732 (c)
13 0.547626 �0.001474 0.209595 �0.678617 (d)
15 0.555870 �0.000073 0.233737 �0.631272 (a)
17 0.563567 0.001559 0.250282 �0.601570 (b)
17.5 0.567265 0.003855 0.250587 �0.601040 (c)
19 0.568630 0.003855 0.265555 �0.575845 (d)
22 0.571912 �0.002768 0.286857 �0.542334 (a)
25 0.580741 �0.000333 0.295449 �0.529518 (b)
27 0.583492 �0.001466 0.302880 �0.518728 (c)
35 0.593930 �0.004315 0.322398 �0.491607 (d)

The deviation is given by de = e � eo with (3.1) and Fr1 is computed by (2.35).
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which is to be solved simultaneously with (2.33) in the limit RG !1:
�Fr2e6

½eþ ð1� e2Þtanh�1ðeÞ�2
þ 1

2
ð1� e2Þ ¼ 8

Eo

e2

1� e2
; ð4:2Þ
for e(Eo,RG) for given values of Eo (Fig. 11).
5. Conclusion

A formula is derived giving the rise velocity of an ellipsoidal gas bubble in a viscous liquid
assuming that the motion of the liquid is irrotational. The rise velocity is expressed by a Froude
number and it is determined by a Reynolds number, an Eötvös number and the aspect ratio of the
ellipsoid. The formula for the ovary ellipsoid was fit to the data of Viana et al. (2003) who cor-
related all the published data on the rise velocity of long gas bubbles in round tubes filled with
viscous liquids. This data is accurately represented by our formula when the aspect ratio takes
on certain values. The fitting generates a family of aspect ratios which depends strongly on the
Eötvös number and less strongly on the Reynolds number; this shows that the change in the shape
of the nose of the rising bubble is strongly influenced by surface tension. Our analysis completely
neglects sidewall drainage induced by the rising bubble and cannot be a precise description of the
dynamics. We have generated what might be called the ovary ellipsoid model of a Taylor bubble.
This model is very simple and astonishingly accurate.
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Viana, F., Pardo, R., Yánez, R., Trallero, J., Joseph, D.D., 2003. Universal correlation for the rise velocity of long gas

bubbles in round pipes. J. Fluid Mech. 494, 379–398.
White, E.T., Beardmore, R.H., 1962. The velocity of rise of single cylindrical air bubbles through liquids contained in

vertical tubes. Chem. Engng. Sci. 17, 351–361.


	Ellipsoidal model of the rise of a Taylor bubble in a round tube
	Introduction
	Unexplained and paradoxical features
	Drainage
	Brown’s 1965 analysis of drainage
	Viscous Potential flow

	Ellipsoidal bubbles
	Ovary ellipsoid
	Planetary ellipsoid
	Dimensionless rise velocity

	Comparison of theory and experiment
	Comparison of theory and correlations
	Conclusion
	Acknowledgement
	References


