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Abstract

We give a simple mathematical argument that as the weight of a floating disk is gradually increased, the maximum contact angle at its
sharp rim which is attained before the disk sinks is greater thanad@l present numerical results which support this conclusion.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction mum value ofxg is strictly greater than 90 a result which
is somewhat contrary to intuitive expectation.
We consider the equilibrium of a circular disk of radius In the relatedwo-dimensional problem of a floating rec-
heighth, and uniform densitys, held by surface tension at  tangle of half-widtha and height:, the equations can be
the surface of a quiescent liquid of densjty(seeFig. 1). integrated analytically. The cage= 2q is discussed by Prin-

We shall assume thak > p. In order to make the problem cen[1, pp. 34—36]although his objective—to determine the
axisymmetric, we shall further assume that (at equilibrium) maximum value of: for a given value ofos—is in a sense
the disk axis is vertical, and that either the liquid extends the opposite of ours. His results are therefore not directly
to infinity in all horizontal directions or that it is bounded comparable to ours, although it is interesting to note that his
by a cylindrical wall, coaxial with the disk, of finite radius  Fig. 24, which is to some extent analogous to &ig. 7,
A > a. Under these assumptions, we may assume that theshows that the maximum value @f exceeds 90in two di-
entire liquid surface is axisymmetric about the disk axis. mensions, also. He does not, however, make any mention of
The contact line between the liquid and solid surfaces this fact in his discussion.
will tend to remain attached to the sharp upper rim of the
disk, and the contact angle will adjust itself until the total
upward force on the disk equals its weight= 7 a?hpsg. 2. Qualitative discussion
According to Princerjl, p. 34]this will happen as long as
ap remains less than the advancing contact angle. In the re- The key to understanding the aforementioned “break-
mainder of the discussion we will assume this to be the case.away” scenario is theertical force balance is balanced
If ps (and thusW) is gradually increased, the disk will by the sum of the total pressure forgres on the disk and
sink lower and lower until at some point the surface can no the surface tension fordgy,f on its rim. Symbolically,
longer support it; it then breaks free and sinks to the bottom.
We are interested in the value af at the moment when W = Fpres+ Fsurt. (1)
ps reaches this maximum value. We will see that this maxi- (The net horizontal force is automatically O by axisymmetry;
we therefore need only consider vertical forces.)
msponding author. Fax: +1-612-626-1558. The equilibrium pressure in tiie liquid is given by the
E-mail addresseshesla@aem.umn.edd.|. Hesla), law of hydrostatics. For convenience we assume that the
joseph@aem.umn.edDd.D. Joseph). pressure in the air above the liquid is everywhere 0, and we
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Fig. 1. Disk suspended by surface tension (side view).

choose the origin of the axis to be the level wherg also
equals 0. (This isot the level of the upper surface of the
disk. In fact, ifA = oo, it is the level of the liquid surface in-
finitely far from the disk, as suggested big. 1) If g is the

187

is determined by the law of Laplace—the jump in pressure
across the surface equalgimes twice the mean curvature.
Since the pressure above the surface is here assumed to be 0
and that below is given by2), the law of Laplace can be
written

101
Y\ %t %o ) =r8H,

7R (5)

whereR; and R, are the principal radii of curvature of the
surface (taken as positive if the corresponding centers of cur-
vature lie above the surface) aftis thez-coordinate of the
surface.

Since the problem is axisymmetric, the shape of the sur-
face is completely determined by the curygs), H(s))
along which the surface intersects a vertical plane through
the disk axis, where is the radial coordinate ands the arc

acceleration of gravity, the law of hydrostatics then takes the |ength along the curve, measured from the upper rim of the

form

p=—pgz. ()

Since the total pressure force on the upper surface of thecosx(s) = r'(s),
disk is obviously 0 and the lateral surface of the disk is ex-

actly vertical, we obtain

Fpres= ﬂang(_HO +h), )

whereHj is thez-coordinate of the upper surface of the disk.
On the other hand, if is the surface tension (assumed con-
stant), then

Fsurf = 27'[61]/ S|nC(0

(4)

As W is gradually increased and the disk sinks low (
decreases), we expect that will gradually increase. Since
Fsyri is proportional to simp, it also will increase—until
ap reaches 90 Onceng exceeds 99 however, simp—and
thereforeFs,+—begins to decrease d@gaSince presumably
Hp continues to decrease (and thfggesto increase), the ob-
vious question is whether the sum Bfyrs and Fpres Will be
increasing or decreasing.

The answer becomes clear @hwe compare the instan-
taneous rates of change Byt and Fpres Note that at the
moment whenxg = 90°, sinap—and thusFs,+—has rate of
change 0. However, sincHp presumably continues to de-
crease (and thuspres to increase) at a rate of order 1, the
sum of Fpresand Fsyrt Will continue to increaséor a while
afterag exceeds 90 It follows that the maximum value of
W which can be supported occurs wheg is somewhat
greater than 90(assuming that this angle is less than the

disk (se€Fig. 1). If a(s) is the local inclination of this curve,
defined as the unique angle satisfying

sina(s) = H'(s), (6)
then(5) can be written
o' (s) + 2 _ P8 Hs). (7
rés) vy

A second differential equation relatimgs) and H (s) is the
condition

r($)?+ H'(s)*=1 (8)

thats be arc length along the curve.
3.1. Boundary conditions

If we add appropriate boundary conditions at the initial
(inner) and terminal (outer) points of the curve, E§9.and
(8) (in conjunction with(6)) become a (nonlinear) two-point
boundary-value problem fot(s) and H (s). Since(7) is es-
sentially a second-order differential equation, it requires a
boundary condition at each end. Howe\8,is only of first
order and thus requires a condition at only one end; for con-
venience we will use a condition at the inner end.

To facilitate numerical solution of the problem, we as-
sume that the liquid is contained infiaite cylindrical tank
(coaxial with the disk) of radiug\ > a; we shall comment
briefly below about the infinite case. At the inner end of the

advancing contact angle). This conclusion is borne out by curve we have = 0. We do not, however, know the value

the numerical results reported in Sect®n

3. Exact analysis

An exact analysis must take account of the coupling be-

tweenW, Hy, ag, and the shape of the surface. The latter

of s at the outer end of the curve since the total length

of the curve is not known a priori. An additional equation
must therefore be added to determihend close the sys-
tem. This equation will appear as an additional boundary
condition at the outer end of the curve, bringing the total
number of boundary conditions to four—two at the inner end
and two at the outer.
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3.1.1. Outer boundary conditions

At the tank wall the contact angle is fixed by the Young—
Dupré law; this amounts to a specification Bf (L). To
simulate the infinite problem, we shall take>>> a« and re-
quire that

H'(L)=0 9)

(that is, that the contact angle be°0For the additional

boundary condition mentioned above we shall use
r(L) = A. (10)

If the liquid extends to infinity in all directions, we as-
sume that

lim H'(s)=0.

§—> 00

Alternatively, we could require that

lim r(s)H'(s) =0.

§—> 00

Note that in this case the parameter intenjal,co), is

known consequently no additional boundary condition is re-
quired to close the system.

3.1.2. Inner boundary conditions
At the inner end of curve, we have

r(0)=a. (11)
A second condition is provided by the vertical force bal-

ance(l). Inserting(3) and(4) and dividing byr a, this equa-
tion can be written

2y H'(0) =a,0g<H(0)+h<%S . 1)) (12)

3.2. Dimensionless form

Egs.(7) and (8)(in conjunction with(6)), together with
boundary condition)—(12) comprise a formally complete
system of equations for the two unknown functieins) and
H (s) and the scalar unknowh.

For the numerical solution we shall use the dimensionless

form of these equations. Usingas the characteristic length
and denoting the dimensionless formssof, andH by the
same symbols, the equations become

H'(s)

o' (s) + =BH(s), (13)
r(s)

()2 + H'(s)* =1, (14)
r(0) =1, (15)
2H'(0)=B(HO)+ W), (16)
r(£)=A, and a7)
H'(L) =0, (18)
where

5 pga®
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is the Bond number,

=)
a\p

is the dimensionless buoyant weight (equal to the buoyant
weight divided byra®pg), and

L A
L=—, A=-—.

a a

(Eq.(6) is already dimensionless, so it does not change.)
The system of Eqs(13)—(18)is a nonlinear two-point
boundary-value problem. In the associated initial-value

problem we would specify botl (0) = Hp anda(0) = «g,

and imposeo condition ats = £. Since solutions of initial-
value problems are unique, iblfows that each solution of
(13)—(18)is a is uniquely associated with the correspond-
ing values ofwg and Hp. The set of all solutions, therefore,
is in one-to-one correspondence with a certain curve in
the (ao, Ho) plane, which we shall refer to as tlselution
curve(not to be confused with the curve(s), H(s)) in the

(r, z) plane). Some numerically generated solution curves
are shown irFigs. 2—6 In looking at these figures, it should
be kept in mind that it is only the lowermost branch of each,
for ap between 0 and 180, which is of physical interest.
Note that there are multiple solutions for some valuesf
(or Hp).

4. Numerical scheme

In light of the discussion in Sectiorisand 2we expect
that the systenfl3)—(18)has a solutioronly if ¥V does not
exceed a certain maximum value. Our objective is to deter-
mine this maximum value, and the associated valuegof
Since the system does not have an explicit solution, it must
be solved numerically.

A finite-difference scheme can be constructed as follows.
Let N be a fixed positive integer, and choose a partition

O=sog<s1<---<sy=L

of the parameter intervqD, £] into N subintervals. Corre-
sponding to each partition poist, we introduce discrete
approximations; and H; of r(s;) andH (s;), respectively.

The most natural procedure is to use equal subintervals,
each of length equal to the unknown quantity = £/N.
There are then a total of\2+ 3 unknowns to determine:

ro,r1,....ry, Ho, Hp,...,Hy, and As.

In constructing finite-difference discretizations (G3) and
(14), only the curvature term’(s) requires much thought.
To discretize this, write

N SinAa
As

The sine of the turning angl&a; between consecutive seg-
ments(r; — ri—1, H; — Hi—1) and(ri+1 — ri, Hiy+1 — H;) of




T.I. Hesla, D.D. Joseph / Journal of Colloid

the curve is given by the determinant of the corresponding
unit vectors:

— (ri—ri—l)(Hi+1—Hi)—(ri+1—ri)(Hi—Hi—l).

SinAc; e

(19)

This leads to the following second-order discretization of
(23):

(ri —ri—))(Hiy1— H;i) — (rig1 —ri)(H; — H;_1)
As3

Hiy1—Hi-1
2Asr;
The remaining equations are discretized as follows:

=BH;, i=1.. N-1 (20)

(ris1—ri)? + (Hip1 — H)? = As?,

i=0,...,N—1, (21)
ro= 1, (22)
Hi— H,
21 0 B(Ho+ W), (23)
As
rv=A, and (24)
Hy =Hy_1. (25)

Egs. (20)—(25)comprise a nonlinear system ofV24+ 3
equations in & + 3 unknowns. Although this is a two-point
boundary-value problem, it cannot be solved by the shoot-
ing method because the associated initial-value-problem is
extremelysensitive to the initial conditions. We must there-
fore solve the nonlinear system directly.

A natural choice is Newton's method. Using a direct
solver for the block tridiagonal system which arises at each
iteration, we obtain a scheme which works very efficiently
for values ofB andW for which the solution is unique; when
there are multiple solutions, however, this scheme tends to
be slightly unstable if the initial guess is not good enough, in
part because the subinterval lengthsglobally constrained
to all be equal. We can stabilize it somewhat by replacing
this global constraint by th& — 1 local constraints

Asi—1i=Asiiy1, i=1...,N-1

where theN subinterval lengths

Aso1, As1.2,..., ASN—1 N,

are nowindependenunknowns, which can adjust them-
selvesseparatelyas the Newton iterations proceed toward
convergence. The modified scheme is

(ri —ri—1)(Hiy1 — Hj) — (riza —ri)(H; — H; 1)

2
Asi1iAs;i11(Asi—1; + Asjiv1)

2 2
Asi g ;(Hip1— Hj) + As7; o (Hi — Hi—1) _BH.

Asi—1iAs;iv1(Asi—1; + As;itD)ri

i=1...,N—1, (26)
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(riv1 — ri)? + (Hiv1 — H)? = As? g,
i=0,...,N—1, (27)
Asiiv1=Asi—1i, i=1...,N—-1, (28)
ro=1, (29)
H1— H
2170 B(Hy+ W), (30)
Aso1
rv=A, and (31)
Hy = Hy_1. (32)

4.1. Discussion

The above scheme works extremely well when the ini-
tial guess is sufficiently good. For small values®fwe can
simply user; = s;, H; = 0 as the initial guess. For larger val-
ues of W, however, this is not good enough for convergence.
A crude but effective “marching” procedure is to solve the
problem (for a given value df) for a sequence of values of
W beginning with 0, and use the each converged solution as
the initial guess for the next computation.

Since our principal objective is to determine maximum
disk weight that can be supported (and the associated value
of wp), there is another consideration. Since we expect that
there will be no solution iV is too large, the scheme should
begin to fail wheny gets too close to its maximum value.
To determine this maximum, therefore, we must replace the
vertical force balance equati¢B80) by another condition at
s =0, and computeV as an output variable. The most nat-
ural candidates are the Dirichlet condition

Hop = given (33)

and the Neumann condition
ap = given.
The latter can be expressed in terms ofitfseandH; s as

r1 — ro = (COSg) Aso,1,

Hi — Hop = (Sinag) Aso 1. (34)

Since this is two equations rather than one, we compensate
by dropping Eq(27)for i = 0 (which is an immediate con-
sequence of34) anyway).

With either(33) or (34)the solution is nonunique for cer-
tain values of the free parametdid or «g, respectively).
The decision as to which to use therefore depends on how
close we are to a turning point on the solution curve; near
such a point, two solutions are very close together, and the
scheme will be unstable unless the chosen boundary condi-
tion ats = 0 ((33) or (34) is associated with the parameter
(Ho or ap) which bestdistinguisheghe two solutions. By
switching back and forth be®en the Dirichlet and Neu-
mann conditions, we can trace out the entire solution curve
by using the marching procedure alluded to above.
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Fig. 2. Solution curve ford =10 andB = 4.4.
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Fig. 3. Solution curve ford = 10 andB = 14.4.
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Fig. 4. Solution curve ford = 10 andB = 24.4.
5. Results

The solution curves fadd = 10 andB = 4.4, 144, 244,

34.4, and 444 are shown irFigs. 2—6 Only the lowermost

branch of each curve, faip between ©and 180, is of phys-
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Fig. 5. Solution curve ford = 10 andB = 34.4.
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Fig. 6. Solution curve ford = 10 andB = 44.4.

ary condition as necessary, in the manner described above.
The “upper” half of each curve was obtained by reflection.
All calculations were performed using = 131 072. (When
ag = 180C° and Hp = 0, the solution of the initial-value prob-
lemis(r(s), H(s)) = (1—1+s,0),0<s < 1. Sincer(s) never
reachesA, there is no corresponding solution of either the
Dirichlet or the Neumann boundary-value problems. Techni-
cally, therefore, the solution curve dasstinclude the point
ag = 180°, Hp = 0.) From these curves it is clear that the
Neumann problem has multiple solutionsyj is in a cer-
tain interval symmetric about 180(The Dirichlet problem
alwayshas multiple solutions.)

Fig. 7shows howV varies withag along the lowermost
branches of the computed stitn curves. For each value of
B, W reaches a maximum and deeses thereafter, in ac-
cord with the qualitative argument of Secti@nRecall that
in that argument we assumed that whahis maximum,
Ho is decreasing at a rate of order 1. The numerically com-
puted solution curves show that this is indeed the case. The

ical interest. (Indeed, the remainder of the curve includes maximum values o#V and the associated valuesaf are
pairs(ao, Hp) for which the corresponding surface shape has reported inTable 1

unphysical self-intersections.)
Each curve is symmetric about the poiny = 180,

Ho = 0. The “lower” half of each was obtained by calculat-

ing the solution for a sequence of paitg), Hyp)—593, 761,

To check for convergence with respect to mesh refine-
ment, we performed a parallel series of calculations using
N = 65536; the maximum values o were the same as

those reported ifable 1to the accuracy reported. And to

758, 832, and 879 pairs, respectively—and switching back check thatd = 10 is large enough to qualify asd,” we per-
and forth between the Neumann and Dirichlet inner bound- formed another parallel series of calculations usihg: 20
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ap (degrees)

Fig. 7. W versuseg along lowermost branches of the calculated solution
curves (4 =10, N =131072).

Table 1
The maximum values ofV and the associated valuesqf for the calcu-
lated solution curves4 = 10, N = 131072)

B g w

4.4 118 1.0857
14.4 13# 0.54015
24.4 142 0.40618
34.4 146 0.33923
44.4 150 0.29736

(andN = 131 072); the maximum values ¥ differed from
those reported iflable 1by only 2 in the fifth decimal place.

In actual experiments fd8 = 34.4 conducted in the labo-
ratory of the second author, the contact angjeloes not go
much beyond about 8efore the disk breaks free and falls
to the bottom of the container. The reason for this is not clear.
Perhaps the contact angtg locally exceeds the advancing
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contact angle because of small fluctuations in eittigthe
downward force applied to the disk to simulate increasing
buoyant weight, o€2) the orientation of the disk. This would
lead to wetting of the upper surface of the disk, allowing it
to sink. Another possibility is that the surface shape itself
is somewhat unstable whes > 90°. It is also conceivable
that a more refined experimental technique might allow these
large contact angles to be achieved.

6. Summary

A simple mathematical argument shows that as the
weight of a floating disk is gradually increased, the maxi-
mum contact angle at its sharp rim which is attained before
the disk sinks is greater than Q0This conclusion is sup-
ported by numerical results.
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