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Potential flow of a second-order fluid over
a sphere or an ellipse
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(Received 9 May 2003 and in revised form 10 March 2004)

We study the potential flow of a second-order fluid over a sphere or an ellipse. The
normal stress at the surface of the body is calculated and has contributions from the
inertia, viscous and viscoelastic effects. We investigate the effects of Reynolds number
and body size on the normal stress; for the ellipse, various angles of attack and
aspect ratios are also studied. The effect of the viscoelastic terms is opposite to that
of inertia; the normal stress at a point of stagnation can change from compression to
tension. This causes long bodies to turn into the stream and causes spherical bodies
to chain. For a rising gas bubble, the effect of the viscoelastic and viscous terms in
the normal stress is to extend the rear end so that it tends to the cusped trailing edge
observed in experiments.

1. Introduction
Potential flows are solutions of the equations of motion for fluids which admit

solutions with zero vorticity. For incompressible fluids with stresses given by

T = −p1 + τ [u], (1.1)

this condition can be written as

curl(∇ · T) = curl(∇ · τ [∇φ]) = 0, (1.2)

the divergence of the stress τ [∇φ] evaluated on irrotational flow is irrotational.
Though this condition is not satisfied for u = ∇φ by most constitutive equations
(Joseph & Liao 1994a, b), it is satisfied for inviscid fluid, for viscous fluid with
constant properties, for linear viscoelastic and second-order fluids which will be
discussed below.

The stress T in an incompressible fluid of second grade is given by

T = −p1 + µA + α1B + α2A
2, (1.3)

where A = L + LT is the symmetric part of the velocity gradient L = ∇u,

B = ∂A/∂t + (u · ∇) A + AL + LT A, (1.4)

µ is the zero shear viscosity, α1 = −n1/2 and α2 = n1 + n2 where [n1, n2]=
[N1(γ̇ ), N2(γ̇ )]/ γ̇ 2 as γ̇ → 0 are the constants obtained from the first and second
normal stress differences.

The equations of motion are div u = 0 and

ρ [∂u/∂t + (u · ∇)u] = −∇p + µ∇2u + div[α1B + α2A
2]. (1.5)
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When u = ∇φ (see Joseph 1992a),

div(u · ∇A) = gradχ, div(AL) = gradχ, divA2 = 2gradχ

⇒ div[α1B + α2A
2] = grad(3α1 + 2α2)χ, (1.6)

where

χ =
∂2φ

∂xi∂xj

∂2φ

∂xj∂xi

= 1
4
trA2, Aij = 2

∂2φ

∂xi∂xj

.

Combining (1.5) and (1.6) we find a Bernoulli equation

ρ
∂φ

∂t
+ 1

2
ρ |∇φ|2 + p − β̂χ = C(t), (1.7)

where β̂ = 3α1 + 2α2 � 0 is the climbing constant. Returning now to the stress (1.3)
with the pressure (1.7), we obtain

T = −
[
C + β̂χ − ρ

∂φ

∂t
− 1

2
ρ |∇φ|2

]
1 +

[
µ + α1

(
∂

∂t
+ u · ∇

)]
A + (α1 + α2)A

2. (1.8)

The second-order fluid arises from an expansion of the general stress functional for
slow and slowly varying motions, sometimes called retarded (Rivlin & Ericksen 1955;
Bird, Armstrong & Hassager 1987; Joseph 1990). It has been used in many studies
of viscoelastic behaviour with varying degrees of success; the predictions of fluid
mechanic response to rapidly varying motions in which fluid memory is important
have not been satisfactory, but the predictions for slow steady motions are excellent.
We regard the results of analysis using the second-order fluid model as tentative and
subject to ultimate validation by experiment and by comparison with direct numerical
simulation using other constitutive equations.

Here, we consider the behaviour of a second-order fluid in irrotational steady
flows which are otherwise unrestricted; the stresses in such flows do not vanish.
In the case of irrotational flow of a viscous and viscoelastic fluid, the stresses can
depend significantly on the viscosity and viscoelastic parameters. We are interested
in the stresses on a body in a uniform stream. The continuity of the shear stress
and tangential velocity on the boundary cannot be enforced in general in irrotational
motions, though there are cases, like the flow near stagnation points where shears are
not important (Joseph & Wang 2004). In looking to potential flow of a second-order
fluid we are motivated by the fact that the irrotational normal stresses can produce
viscous and viscoelastic torques on solid bodies and deformations of gas bubbles,
which agrees with observations. It is, of course, not yet known to us exactly how
these torques act in real flows, but it is worth considering that the normal stresses
are imposed on the boundary through a boundary layer (Joseph 2003). The analysis
here, in any event, can be justified as a way to address the defects of the conventional
theory of irrotational flow of an inviscid fluid which also neglects shear, but disallows
all the possible effects of viscosity and viscoelasticity on the normal stress.

2. Potential flow over a sphere
The potential of a uniform flow of a second-order fluid past a sphere is given by

φ = −Ur cos θ

(
1 +

a3

2r3

)
, (2.1)
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where U is the velocity of the uniform stream and a is the radius of the sphere. This
is a steady flow and the stress (1.8) can be evaluated on (2.1). This has not been done
before. The velocities are

ur = −U

(
1 − a3

r3

)
cos θ, uθ = U

(
1 +

a3

2r3

)
sin θ. (2.2)

The tensors L and A can be evaluated

L =
3a3U

2r4


−2 cos θ − sin θ 0

− sin θ cos θ 0
0 0 cos θ


, A = 2L. (2.3)

Then the Bernoulli equation (1.7) is used to obtain the pressure at the surface of the
sphere

p = p∞ +
(

27
2
α1 + 9α2

)U 2

a2
(1 + 2 cos2 θ) + 1

2
ρU 2

(
1 − 9

4
sin2 θ

)
(2.4)

where p∞ is the pressure at infinity. The normal stress Trr at the surface of the sphere
is calculated from (1.8) and expressed in a dimensionless form

T∗
rr =

Trr + p∞

ρU 2/2
=

(
9
4
sin2 θ − 1

)
− 12

Re

cos θ +
α1

ρa2
(36 sin2 θ −9)+18

α2

ρa2
cos2 θ, (2.5)

where Re = ρUa/µ is the Reynolds number. The viscous normal stress should be
zero at a solid boundary in a Newtonian fluid or an Oldroyd-B fluid; the viscous
effect on the normal stress is hidden in the pressure. The viscous contribution to the
pressure at the surface of a sphere in a Stokes flow of Newtonian fluid is (Panton
1984, p. 646)

p − p∞

ρU 2/2
=

3

Re

cos θ.

In (2.5), we have a viscous contribution to the normal stress (12/Re) cos θ which is
four times the Stokes value (3/Re) cos θ .

We compute the normal stress (2.5) for the liquid M1 with a density ρ =
0.895 g cm−3, α1 = −3 and α2 = 5.34 g cm−1 (Hu et al. 1990) as an example. We plot
the dimensionless normal stress T∗

rr as a function of the angle θ in figure 1.
At the stagnation points of a sphere [r = a, θ = 0 or π], the normal stresses are,

respectively

Trr + p∞

ρU 2/2
=

[
−1 +

9(2α2 − α1)

ρa2

]
∓ 12

Re

. (2.6)

The viscous contribution gives rise to compression −12/Re at the front stagnation
point and to tension 12/Re at the rear. The stress due to inertia and viscoelasticity
is the same at θ =0 and θ = π and is a tension when 9(2α2 − α1) >ρa2. The quantity
2α2 − α1 is strongly positive; for example, 2α2 − α1 = 13.68 (g cm−1) for the liquid M1.
Hence, if a2 is not too large, the stress at the stagnation points is a tension, reversing
the compression due to inertia.

Figure 1 shows that when viscous effects are dominant (Re =0.05, a = 1 cm), the
stress is compression at the leading edge and tension at the trailing edge. When the
viscoelastic effects are important (Re =1, a = 1 cm and Re = 1, a = 0.5 cm), the stress is
tension at both stagnation points. The normal stress on the sphere with a = 0.5 cm is
much stronger than that on the sphere with a = 1 cm, because the viscoelastic effects
are proportional to 1/a2. The distribution of normal stresses, especially the tension at
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Figure 1. The dimensionless normal stress T∗
rr as a function of the angle θ . Parameters of

the liquid M1 are used in the calculation: ρ = 0.895 g cm−3, α1 = −3 and α2 = 5.34 g cm−1. The
three curves in the figure correspond to �, Re = 1, a = 1 cm; �, Re = 0.05, a = 1 cm; and —,
Re = 1, a =0.5 cm, respectively.

the trailing edge, shown in figure 1 is compatible with the cusp shape of gas bubbles
rising in viscoelastic fluids (see § 6).

A point of stagnation on a stationary body in potential flow is a unique point at
the end of a dividing streamline at which the velocity vanishes. In a viscous fluid all
the points on the boundary of a stationary body have a zero velocity but the dividing
streamline can be found and it marks the place of zero shear stress near which the
velocity is small. The stagnation pressure makes sense even in a viscous fluid where
the high pressure of the potential flow outside the boundary layer is transmitted right
through the boundary layer to the body. It is a good idea to look for the dividing
streamlines where the shear stress vanishes in any analysis of the flow pattern around
the body.

3. Potential flow over an ellipse
Potential flow over an ellipse is a classical problem in airfoil theory. The solutions

are most easily expressed in terms of complex functions of a complex variable (Lamb
1932; Milne-Thomson 1968). Hence, we shall use this potential flow solution and
obtain the pressure and the normal stress for a second-order fluid as a composition
of the derivatives of that solution. Two-dimensional potential flows around bodies
admit the addition of circulation which we have here put to zero.

The complex potential for the flow over an ellipse given by

x2

a2
+

y2

b2
= 1 (3.1)

is (Milne-Thomson 1968, § 6.31)

ω = − 1
2
U (a + b)

[
e−iα(z +

√
z2 − c2)

a + b
+

eiα(z −
√

z2 − c2)

a − b

]
, (3.2)
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Figure 2. The streamlines of the flow over an ellipse. (a) The angle of attack
α = 0◦; (b) α =60◦.

where z is the complex variable, α is the angle of attack, a and b are the semi-axes
of the ellipse and c2 = a2 − b2. We plot the streamlines of the flow with the angle of
attack α = 0◦ and 60◦ in figure 2.

The velocities are

u =
1

2

(
dω

dz
+

dω̄

dz̄

)
, v =

i

2

(
dω

dz
− dω̄

dz̄

)
. (3.3)

L = ∇u =

[
∂u/∂x ∂v/∂x

∂u/∂y ∂v/∂y

]
, A = L + LT =

[
n s

s −n

]
, (3.4)

where n= d2ω/dz2 + d2ω̄/dz̄2 and s = i((d2ω/dz2) − (d2ω̄/dz̄2)). It follows that

A2 = (n2 + s2)1, trA2 = 2(n2 + s2). (3.5)

Letting U and p∞ be the velocity and pressure at infinity, respectively, we find the
pressure by (1.7)

p = p∞ + 1
2
ρU 2 − 1

2
ρ

dω

dz

dω̄

dz̄
+ (3α1 + 2α2)(n

2 + s2)/2. (3.6)

The stress can then be calculated using (1.8); after some arrangement, we find

T =

[
−p∞ − 1

2
ρU 2 + 1

2
ρ

dω

dz

dω̄

dz̄
− 1

2
α1(n

2 + s2)

]
1

+ µ

[
n s

s −n

]
+ α1u

[
k q

q −k

]
+ α1v

[
q −k

−k −q

]
, (3.7)

where k = d3ω/dz3 + d3ω̄/dz̄3 and q = i((d3ω/dz3) − (d3ω̄/dz̄3)). Equation (3.7) applies
to any two-dimensional flow that can be represented by a complex potential ω. Note
that α2 does not appear in the expression for the stress in two-dimensional cases,
which has been reported in Joseph 1992b.

We are interested in the normal stress on the surface of the ellipse. The unit normal
vector on the surface is

n =
(x/a2)ex + (y/b2)ey

(x2/a4 + y2/b4)1/2
. (3.8)

The normal stress is calculated from Tnn = n · T · n.
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4. Normal stress at the surface of the ellipse
We present the results for the normal stress on the ellipse in this section. Besides

the angle of attack, there are six relevant parameters: ρ, U , µ, a, b and α1 in this
problem. Three dimensionless parameters can be constructed:

Re =
ρUa

µ
,

−α1

ρa2
,

a

b
. (4.1)

Note that the Deborah number can be defined as De = (−α1/µ)(U/a) and −α1/ρa2 =
De/Re. We shall see later that the parameter −α1/(ρa2) appears in the expressions
for the normal stresses at the stagnation points. Therefore, we use the parameter
−α1/(ρa2) rather than the Deborah number. The dimensionless normal stress is

T∗
nn =

Tnn + p∞
1
2
ρU 2

. (4.2)

The effects of the three dimensionless parameters on the normal stress at the surface
of the ellipse are studied in flows of a zero attack angle. We can obtain explicit
expressions for the normal stresses at the stagnation points, from which the effects of
the three parameters can be understood readily. Such expressions are not obtained
for an arbitrary point on the ellipse surface, instead, we calculate the numerical values
of stress and present the plots for the distribution of the normal stress.

At the front stagnation point where z = a, we have

u = v = 0, n = −2U (a + b)/b2, s = 0. (4.3)

Inserting (4.3) into (3.7) and noting that Tnn = Txx , we obtain the dimensionless normal
stress at the front stagnation point

T∗
nn(θ = 0) = −1 +

−α1

ρa2
4

(
1 +

b

a

)2
a4

b4
− 4

Re

(
1 +

b

a

)
a2

b2
. (4.4)

Similarly, we can find the dimensionless normal stress at the rear stagnation point

T∗
nn(θ = π) = −1 +

−α1

ρa2
4

(
1 +

b

a

)2
a4

b4
+

4

Re

(
1 +

b

a

)
a2

b2
. (4.5)

The difference between the two stresses is

T∗
nn(θ = π) − T∗

nn(θ = 0) =
8

Re

(
1 +

b

a

)
a2

b2
. (4.6)

The normal stresses (4.4) and (4.5) are analogous to the normal stress (2.6) at the
stagnation points in the sphere case, in the sense that they are all composed of the
inertia, viscous and viscoelastic terms. Here, the viscoelastic term (−α1/ρa2)4(1 + b/

a)2a4/b4 gives rise to extension at both of the stagnation points; the viscous term
(4/Re)(1 + b/a)a2/b2 leads to compression at the front stagnation point and tension
at the rear stagnation point.

4.1. The effects of the Reynolds number

We calculate the normal stress at the surface of the ellipse in flows where –α1/(ρa2) and
a/b are fixed at 3 and 1.67, respectively, and the Reynolds number changes from 0.01
to 100. In figure 3, we plot T∗

nn at the front and rear stagnation points as functions
of the Reynolds number. The stress at the front stagnation point changes from
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Figure 3. The dimensionless normal stresses T∗
nn at the – · –, front and —, rear stagnation

points as functions of the Reynolds number. The other two parameters are fixed: −α1/(ρa2) = 3
and a/b = 1.67.

compression to extension as the Reynolds number increases. The critical Reynolds
number, at which T∗

nn = 0 at the front stagnation point, is 0.075, as shown in figure 3.
Equation (4.6) indicates that the difference between the two normal stresses vanishes
as the Reynolds number tends to infinity; the asymptotic value of the two stresses is

T∗
nn

(
Re → ∞,

−α1

ρa2
= 3,

a

b
= 1.67

)
= 236.07.

The distribution of the normal stress at the surface is plotted in figure 4 for flows
with Reynolds numbers 0.05 and 1. We notice that the stress is compression at the
front stagnation point and extension at the rear stagnation point when Re = 0.05;
however, the stress is tension at both of the stagnation points when Re = 1.

4.2. The effects of −α1/(ρa2)

The two normal stresses at stagnation points are plotted against the parameter
−α1/(ρa2) in figure 5; the other two parameters are fixed: Re = 0.1 and a/b = 1.67.
The difference between the two stresses is independent of the parameter −α1/(ρa2),
as can be seen from (4.6). This difference is 355.6 when Re =0.1 and a/b =1.67. The
critical value of −α1/(ρa2), at which T∗

nn =0 at the front stagnation point, is 2.26.

4.3. The effects of the aspect ratio

We change the aspect ratio from 1.1 to 10 and compute the normal stress on the
surface of the ellipse; the other two parameters are fixed: Re =0.1 and −α1/(ρa2) = 3.
The two stresses at the stagnation points are plotted against the aspect ratio in
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Figure 4. The distribution of the dimensionless normal stress T∗
nn at the surface of the ellipse

in flows with −α1/(ρa2) = 3 and a/b = 1.67. The Reynolds number is 1.0 in (a) and (b), and is
0.05 in (c) and (d). The normal stress is represented by vectors at the surface of the ellipse in
(a) and (c), and is plotted against the polar angle θ in (b) and (d).
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Figure 5. The dimensionless normal stresses T∗
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and a/b =1.67.



Potential flow of a second-order fluid over a sphere or an ellipse 209

0 2 4 6 8 10
101

102

103

104

105

106

a/b

T *
nn

Figure 6. The dimensionless normal stresses T∗
nn at the – · –, front and —, rear stagnation

points as functions of the aspect ratio a/b. The other two parameters are fixed: Re= 0.1 and
−α1/(ρa2) = 3.

figure 6; The values of the stresses change dramatically with the aspect ratio because
of the a4/b4 term in (4.4) and (4.5). The stress at the front stagnation point changes
from compression to extension as a/b increases; when a/b = 1.40, T∗

nn = 0 at the
front stagnation point. (The negative values are not shown on the semi-log plot in
figure 6).

The normal stress distribution at the surface is plotted in figure 7 for flows with
a/b = 5.0 and 1.1. It can be seen that in the flow with the higher aspect ratio, the
ellipse is under very high extensional stresses at both of the stagnation points. The
stress at the front stagnation point is compression when a/b = 1.1, which implies that
the front nose of a gas bubble will be flattened.

5. The moment on the ellipse
Long bodies falling in a viscoelastic fluid often turn into the streamwise direction

(Liu & Joseph 1993). We calculate the dimensionless moment by the normal stress
on the ellipse

M∗ =
M

1
2
ρU 2a2

=

∮
x ∧ (Tnnn) dl

1
2
ρU 2a2

. (5.1)

In a Newtonian fluid, the moment can be calculated using the theorem of Blasius
and the dimensionless moment is

M∗ = −2π(1 − a2/b2) sinα cosα, (5.2)

which does not depend on the Reynolds number. Our calculation shows that the
conclusion is also true in a second-order fluid: the dimensionless moment does not
depend on the Reynolds number; the parameter –α1/(ρa2) and the aspect ratio a/b

are relevant parameters when the moment is concerned.
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Figure 7. The distribution of the dimensionless normal stress T∗
nn at the surface of the ellipse

in flows with Re = 0.1 and −α1/(ρa2) = 3. The aspect ratio is 5.0 in (a) and (b), and is 1.1 in
(c) and (d). The normal stress is represented by vectors at the surface of the ellipse in (a) and
(c), and is plotted against the polar angle θ in (b) and (d).

We plot the dimensionless moment on the ellipse by the normal stress as a function
of the attack angle α in the range [0, π/ 2] in figure 8. Six values of the parameter
–α1/(ρa2), from 0 to 5, are investigated. The curve corresponding to –α1/(ρa2) = 0
in figure 8 is in agreement with (5.2), which is the moment in a Newtonian fluid.
The moment on the ellipse is negative in a Newtonian fluid and turns the ellipse
broadside-on to the stream (see figure 9a). When the parameter –α1/(ρa2) is larger,
the moment on the ellipse becomes positive and tends to align the broad side of
the ellipse with the streamwise direction (see figure 9b). Figure 8 shows that the
magnitude of the moment reaches its largest value when α = π/4, which also occurs
in a Newtonian fluid.

We show the effects of the aspect ratio on the moment in figure 10. The five
curves correspond to five values of the aspect ratio a/b: 1.1, 4, 6, 8 and 10; the
parameter –α1/(ρa2) is fixed at 3. It can be seen that as the aspect ratio increases,
the magnitude of the moment increases to huge values. Hence, long slim bodies turn
into the streamwise direction quickly in viscoelastic fluids.

6. The reversal of the sign of the normal stress at stagnation points
In § § 2 and 4, we have shown that the normal stresses at the stagnation points on

a sphere or an ellipse in a second-order fluid can be tension, opposite to the high
compressive pressures at the stagnation points in Newtonian fluid. This reversal of
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Figure 8. The moment on the ellipse by the normal stress as a function of the attack angle
α in the range [0, π/2]. The six curves correspond to six values of the parameter −α1/(ρa2) :
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Figure 9. The moment on the ellipse in potential flow. (a) In an inviscid fluid, the high
pressures at the stagnation points turn the ellipse broadside-on (across the stream); (b) In
a second-order fluid, the normal stresses at the two edges where the streamlines are most
crowded are compressive and tend to turn the ellipse into the stream. At the two stagnation
points, the stresses may change from compression to tension. Here, we illustrate the situation
in which the stress is extensional at both of the stagnation points; this pair of stresses gives
rise to the moment which tends to turn the ellipse into the stream. Our calculation shows that
the resultant moment of the normal stress tends to turn the broad side of the ellipse into the
stream when inertia is not dominant.
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the sign of the normal stress has significant effects on the behaviour of particles and
bubbles in Newtonian and viscoelastic fluids.

In Newtonian fluids, long bodies in a uniform flow are turned to the orientation in
which their long or broad sides are perpendicular to the stream by the high pressures
at stagnation points (see figure 9a). This mechanism also determines the stable
configurations of suspensions of spherical bodies in Newtonian liquids. Spherical
bodies interact and form long bodies momentarily which are unstable to the same
turning moment that turns long bodies broadside-on. This implies that globally, the
only stable configuration is the one in which the most probable orientation between
any pair of neighbouring spheres is across the stream. The consequence of this micro-
structural property is a flow-induced anisotropy, which leads ubiquitously to lines of
spheres across the stream; these are always in evidence in two-dimensional fluidized
beds of finite size spheres (Joseph 1996, 2000, chap. 7). Though they are less stable,
planes of spheres in three-dimensional beds can also be found.

In viscoelastic fluids, long bodies in a uniform flow often turn into the streamwise
direction as we discussed in § 5 (see also Liu & Joseph 1993; Joseph & Feng 1996;
Huang, Hu & Joseph 1997). The extensional normal stresses at the stagnation points
in viscoelastic fluids contribute to the moment which turns the long bodies into
the stream (see figure 9b). Long chains of spherical bodies parallel with the stream
are in evidence in sedimentation and fluidization flows of viscoelastic fluids; such
configurations are opposite to those observed in Newtonian fluids. Another unusual
phenomenon in viscoelastic fluids is the two-dimensional cusp at the trailing edge of
a rising air bubble (Liu, Liao & Joseph 1995). Below a critical capillary number, an
air bubble rising in a viscoelastic fluid adopts the shape with a cusp point in one view
and a spade edge in the orthogonal view. Figures 1, 4(c) and 7(c) show situations in
which the normal stress is compression at the leading edge and tension at the trailing
edge; the leading edge is flattened and the trailing edge is extended, tending to the
cusped trailing edge observed in experiments. Our calculation on a smooth sphere
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or an ellipse cannot lead to the exact cusp shape. However, the calculation shows
that the normal stress computed on viscoelastic potential agrees with the experiment
qualitatively, much better than the pressure which is the only normal force that can
act on the body in inviscid potential flow.

7. Flow past a flat plate
The flow past an ellipse degenerates to the flow past a flat plate when b = 0. The

complex potential is

ω =




−U (z cos α − i
√

z2 − a2 sinα) upstream to the plate

−U (z cos α + i
√

z2 − a2 sinα) downstream to the plate.
(7.1)

The velocities at the upper and lower surfaces of the plate are, respectively

u =




−U

(
cos α − x sinα√

a2 − x2

)
, v = 0, upper surface; (7.2)

−U

(
cos α +

x sinα√
a2 − x2

)
, v = 0, lower surface. (7.3)

The stagnation points at the upper and lower surfaces are x = a cosα and x = −a cosα,
respectively. The dimensionless normal stresses at the two stagnation points are

Tnn + p∞
1
2
ρU 2

(x = a cos α) = −1 +
−α1

ρa2

4

sin4 α
− 4

Re sin2 α
, (7.4)

Tnn + p∞
1
2
ρU 2

(x = −a cosα) = −1 +
−α1

ρa2

4

sin4 α
+

4

Re sin2 α
. (7.5)

These stresses are degenerate cases of (4.4) and (4.5), which are the stresses at
stagnation points in the flow past an ellipse. In (7.4) and (7.5), the viscoelastic term
(−α1/ρa2)(4/sin4 α) gives rise to extension at both of the stagnation points; the
viscous term (4/Re)(1/sin2 α) leads to compression at the front stagnation point and
extension at the rear stagnation point.

8. Flow past a circular cylinder with circulation
The complex potential for the flow past a circular cylinder with circulation is

(Milne-Thomson 1968, § 7.12)

ω = −U (z + a2/z) − iκ log(z/a), (8.1)

where κ is the strength of the circulation. A dimensionless parameter κ/aU can be
introduced.

We calculate the stress using the potential (8.1) in a second-order fluid. The stresses
at the surface of the cylinder, where z = aeiθ , are of interest. We find

u = − sin θ(2U sin θ + κ/a), v = cos θ(2U sin θ + κ/a), (8.2)

n = −4U cos 3θ/a + 2κ sin 2θ/a2, s = −(4U sin 3θ/a + 2κ cos 2θ/a2), (8.3)

k = 12U cos 4θ/a2 − 4κ sin 3θ/a3, q = 12U sin 4θ/a2 + 4κ cos 3θ/a3, (8.4)
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at z = aeiθ and the stress tensor is obtained by inserting (8.2)–(8.4) into (3.7). The
dimensionless normal stress is given by

Tnn + p∞
1
2
ρU 2

=

[
−1 + 4 sin2 θ +

( κ

aU

)2

+
κ

aU
4 sin θ

]
− 8

Re

cos θ

+
4α1

ρa2

[
−4 + 12 sin2 θ +

( κ

aU

)2

+
κ

aU
6 sin θ

]
, (8.5)

where the first term on the right-hand side is the inertia term, which is the same as
the inviscid pressure; the second term is the viscous term and the third term is the
viscoelastic term.

The force and moment on the cylinder can be obtained by direct integration of the
normal stress over the surface of the cylinder:

Fx =

∫ 2π

0

Tnn cos θa dθ = −4πµU, (8.6)

Fy =

∫ 2π

0

Tnn sin θa dθ = 2πκU (ρ + 6α1/a
2). (8.7)

The moment is obviously zero. Equation (8.6) shows that the cylinder experiences a
drag due to the viscosity; the drag would be zero if the shear stress were included
in the integration. Equation (8.7) shows that the lift has a contribution from the
viscoelastic effect in addition to the inviscid lift 2πκρU. Since α1 is negative, the
viscoelastic lift is opposite to the inviscid lift. When −α1/(ρa2) = 1/6, the total lift
force is zero.

9. Conclusions
We use viscoelastic potential flow to study a uniform flow of a second-order fluid

past a sphere. The normal stress at the surface of the body is evaluated on the
potential and has contributions from inertia, viscous and viscoelastic effects. The
viscous term is proportional to 1/Re and the viscoelastic term is proportional to 1/a2.

Viscoelastic potential flow of a second-order fluid over an ellipse is also studied. We
present explicit expressions for the normal stresses at the two stagnation points on
the ellipse. In both the sphere and the ellipse cases, the viscoelastic term in the normal
stress gives rise to extension at both of the stagnation points; the viscous term leads
to compression at the front stagnation point and extension at the rear stagnation
point. The normal stresses at the stagnation points can be tension, opposite to the
high compressive pressures at the stagnation points in Newtonian fluid. This reversal
of the sign of the normal stress causes long bodies to turn into the stream and causes
spherical bodies to chain; it could also offer a qualitative explanation of the cusped
trailing edge of an air bubble rising in viscoelastic fluids observed in experiments.

We calculate the normal stress distribution on the surface of the ellipse; the effects
of the Reynolds number, the viscoelastic parameter –α1/(ρa2) and the aspect ratio
a/b are investigated. The resultant moment of the normal stress on the ellipse is
calculated; the moment when viscoelastic effect is important is opposite to that in
Newtonian fluids. This moment is very large when the aspect ratio is large, indicating
the long slim bodies will turn into the stream very quickly.

The flow past a flat plate is discussed as a degenerate case of the ellipse. Circulation
is considered for the flow past a circular cylinder. The force and moment on the
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cylinder can be obtained by direct integration of the normal stress over the surface
of the cylinder. The moment is zero and the viscoelastic lift is opposite to the lift
calculated from the inviscid potential flow.

This work was supported in part by the NSF under grants from Chemical Transport
Systems and the DOE (engineering research program of the Department of Basic
Engineering Sciences).
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