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Turbulent drag reduction by polymer additives in a channel is investigated using direct
numerical simulation. The dilute polymer solution is expressed with an Oldroyd-B
model that shows a linear elastic behaviour. Simulations are carried out by changing
the Weissenberg number at the Reynolds numbers of 4000 and 20 000 based on the
bulk velocity and channel height. The onset criterion for drag reduction predicted in
the present study shows a good agreement with previous theoretical and experimental
studies. In addition, the flow statistics such as the r.m.s. velocity fluctuations are also
in good agreement with previous experimental observations. The onset mechanism
of drag reduction is interpreted based on elastic theory, which is one of the most
plausible hypotheses suggested in the past. The transport equations for the kinetic
and elastic energy are derived for the first time. It is observed that the polymer
stores the elastic energy from the flow very near the wall and then releases it there
when the relaxation time is short, showing no drag reduction. However, when the
relaxation time is long enough, the elastic energy stored in the very near-wall region is
transported to and released in the buffer and log layers, showing a significant amount
of drag reduction.

1. Introduction
Since Toms (1949) reported turbulent drag reduction by polymer additives, there

have been many studies on this phenomenon, including theoretical, experimental and
numerical approaches. The two most important findings from experimental studies
by Virk et al. (1967) and Virk (1971) are the onset of drag reduction and the
existence of maximum drag reduction (MDR), suggesting that drag reduction does
not come from a purely viscous effect of the dilute polymer solution (de Gennes 1990).
That is, if the viscosity were a dominant parameter for drag reduction, the drag
would decrease regardless of the amount of polymer concentration. However,
experimental studies have shown the existence of a threshold concentration for drag
reduction.

The first theoretical hypothesis about the onset of drag reduction is the ‘time
criterion’ (Tulin 1966; Hershey & Zakin 1967; Lumley 1969). The time criterion
indicates that drag reduction occurs when the relaxation time is longer than the time
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scale of the near-wall turbulence, i.e.

λ >
ν

u2
τ

, (1.1)

where λ is the relaxation time, ν the kinematic viscosity of the solution, uτ =
√

τw/ρ

the wall shear velocity, τw the wall shear stress, and ρ the density of the solution.
The time criterion (1.1) was verified in the experiment of Berman (1977). Lumley
(1973) explained that drag reduction comes from the elongational viscosity which is
increased greatly by the ‘coil–stretch’ transition under the condition of (1.1). Hinch
(1977) showed theoretically that the ‘coil–stretch’ transition results in a great increase
in the elongational viscosity. However, the scenario of the elongational viscosity was
criticized in that the ‘coil–stretch’ does not occur in turbulent flow with randomly
fluctuating strain rates (de Gennes 1990; Smith & Chu 1998; Sreenivasan & White
2000).

On the other hand, Goldshtik, Zametalin & Shtern (1982) applied a perturbation
method to viscoelastic models (Maxwell and Oldroyd-B models) and showed that
drag reduction occurs when

Weτ =
λu2

τ

ν
> α, (1.2)

where Weτ is the Weissenberg number normalized by uτ and ν, and α depends on
the viscoelastic model. Here, (1.2) is a similar expression to (1.1). However, it should
be noted that (1.2) does not come from the concept of the elongational viscosity but
from the concept of the elasticity. Goldshtik et al. suggested that the time criterion
may come from the elastic effect of dilute polymer solution.

Some experimental studies (for example, Gyr & Tsinober 1997; den Toonder et al.
1997; Warholic, Massah & Hanratty 1999) reported the existence of a ‘stress deficit’
in drag-reducing flow, i.e.

T12 > µ
du

dy
− ρu′v′, (1.3)

where T12 is the total shear stress (= µdu/dy − ρu′v′ + τp), µ the viscosity of the

solution, u the mean streamwise velocity, −ρu′v′ the Reynolds shear stress, and τp

the time-averaged stress deficit. This suggests that the viscoelasticity should be the
most important property of a dilute polymer solution for drag reduction because the
elongational-viscosity hypothesis cannot show the existence of the stress deficit (den
Toonder et al. 1997).

Meanwhile, de Gennes (1990) suggested an elastic theory for drag reduction that
was elaborated by Sreenivasan & White (2000), in which the polymer molecules
absorb the small-scale turbulence energy into the elastic energy and prohibit the
turbulence cascade, resulting in drag reduction. Because the elastic theory was not
concerned with the wall region, de Gennes (1990) suggested that drag reduction might
occur before polymer molecules, injected into the core of the pipe or channel flow,
reached the wall. However, an experiment by Cadot, Bonn & Douady (1998) has
shown that the wall effect is important for polymer drag reduction.

Joseph (1990) also noted that elasticity plays a predominant role in drag reduction.
He suggested that polymers always attenuate turbulence at small scales, and thus there
should exist a natural cut-off scale provided by the shear wave speed uc. Therefore, he
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suggested a criterion for drag reduction such as (see Joseph & Christodoulou 1993)

uτ > uc =

√
ν

λ
. (1.4)

Note that (1.4) is of the same form as (1.1) and (1.2). Because the shear velocity uτ is
associated with the near-wall turbulence, Joseph’s hypothesis on the elasticity can be
linked with the wall turbulence.

Recently, direct numerical simulations (DNS) (Orlandi 1995; den Toonder et al.
1997; Sureshkumar, Beris & Handler 1997; Dimitropoulos, Sureshkumar & Beris
1998) have provided more information about polymer drag reduction. Orlandi
(1995) and den Toonder et al. (1997) adopted elongational-viscosity models and
obtained drag reduction. However, such models are based on inelastic constitutive
equations, and thus cannot predict the onset of drag reduction and the ‘stress deficit’.
More recently, Sureshkumar et al. (1997) and Dimitropoulos et al. (1998) adopted
viscoelastic models (finitely extensible, nonlinear elastic (FENE-P) and Giesekus
models) and used an artificial diffusion scheme (AD) for the spatial discretization
of the convection term in their constitutive equations. However, this scheme smears
out the steep gradients of polymer stresses, resulting in less drag reduction. Therefore
they had to introduce a larger elasticity to obtain an appropriate amount of drag
reduction (see Min, Yoo & Choi 2001). In addition, none of those studies explained
how the elasticity causes drag reduction.

The objective of the present study is to propose a mechanism responsible for
drag reduction by polymer additives using DNS of turbulent flow in a channel. An
Oldroyd-B model (linear Hookean dumbbells) is used to represent the behaviour of
the polymer. The Reynolds numbers used in the previous studies using DNS are too
small compared with those used in the experimental studies (Gyr & Tsinober 1997;
Sreenivasan & White 2000). Therefore, in the present study, simulations are conducted
for Reb = Ubh/ν = 4000 (the same order of magnitude as previous DNS studies)
and Reb = 20 000 (the same order of magnitude as previous experimental studies)
based on the bulk velocity Ub and channel height h. The results are compared with
the previous experimental studies. Moreover, the transport equations for the kinetic
and elastic energy are derived for the first time by using the ‘elastic theory’ of Tabor
& de Gennes (1986). Energy transfer between the flow and the polymer is examined
through the kinetic and elastic energy transport equations, from which the mechanism
for drag reduction is elucidated.

2. Governing equations and numerical method
The non-dimensional governing equations of unsteady incompressible viscoelastic

flow with an Oldroyd-B model are as follows:

∂ui

∂t
+

∂

∂xj

(uiuj ) = − ∂p

∂xi

+
β

Re

∂2ui

∂xj∂xj

+
1 − β

Re

∂τij

∂xj

, (2.1)

∂ui

∂xi

= 0, (2.2)

τij + We

(
∂τij

∂t
+ um

∂τij

∂xm

− ∂ui

∂xm

τmj − ∂uj

∂xm

τmi

)
=

∂ui

∂xj

+
∂uj

∂xi

, (2.3)

where ui is the velocity, p the pressure, τij the polymer stress, Re (= Uδ/ν) the
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Reynolds number, We (= λU/δ) the Weissenberg number, U the centreline velocity of
the fully developed laminar flow (U = 3

2
Ub), δ the channel half-height (δ = 1

2
h), and β

the ratio of solvent viscosity to the total viscosity of solution. In the present study, β is
fixed at 0.9 for the case of a viscoelastic fluid, because the dilute solutions that give rise
to drag reduction are nearly Newtonian in the sense that they have essentially the same
viscosity as the solvent. For Re = 3000 (Reb = Ubh/ν = 4000; Reτ = uτ0

δ/ν � 135),
a calculation domain of 7δ × 2δ × 3.5δ is chosen in the streamwise (x), wall-normal
(y) and spanwise (z) directions, respectively, with a 64 × 97 × 96 grid (�x+ � 15,
�y+

min � 0.3, �z+ � 5). Here uτ0
is the wall shear velocity for Newtonian fluid flow

(β = 1). For Re = 15 000 (Reb = 20 000; Reτ � 530), the minimal channel concept
by Jiménez & Moin (1991) is adopted† and a calculation domain of 2.4δ × 2δ × 0.9δ

is chosen with a 128 × 257 × 96 grid (�x+ � 10, �y+
min � 0.4, �z+ � 5). The grid

resolution used is almost the same as that of Moser, Kim & Mansour (1999). We
impose the periodic boundary condition in the streamwise and spanwise directions,
and the no-slip boundary condition in the wall-normal direction. A fully developed
turbulent flow field of a Newtonian fluid (β = 1) is used as an initial condition for
the simulation of viscoelastic fluid flow. A constant mass flow rate is maintained
in the channel during simulation by adjusting the mean pressure gradient at each
computational time step. In other words, the bulk Reynolds number (Reb) is constant
during a simulation.

The numerical algorithm is based on a semi-implicit, fractional-step method: the
velocity diffusion and polymer stress derivative terms in (2.1) are advanced with the
Crank–Nicolson method, and the velocity convection term in (2.1) and all the terms in
(2.3) are advanced with a third-order Runge–Kutta method. A fourth-order compact
difference scheme (COM4; Lele 1992) is used for the polymer-stress derivative ∂τij /∂xj

in (2.1), and a modified compact upwind difference scheme (MCUD3; Min et al. 2001)
is used for the polymer-stress convection term um∂τij /∂xm in (2.3). All other terms are
discretized using the second-order central difference (CD) scheme. Here, we briefly
introduce COM4 and MCUD3 (for the detailed features of the present numerical
method, see Min et al. 2001).

The spatial derivative of τij in (2.1) is obtained using COM4, e.g.

∂τij

∂x

∣∣∣∣
q+1

+ 4
∂τij

∂x

∣∣∣∣
q

+
∂τij

∂x

∣∣∣∣
q−1

=
3

�

(
τ

q+1
ij − τ

q−1
ij

)
+ O(�4), (2.4)

where q is the index of a grid cell and � is the grid spacing. Equation (2.4) results
in a tridiagonal matrix system, so one can easily obtain fourth-order accuracy for
∂τij /∂x. The spatial derivative of τij in (2.3) is obtained using a third-order compact
upwind difference scheme (CUD3, Tolstykh & Lipavskii 1998), e.g.

(
2 − 3sq+1/2

)∂τij

∂x

∣∣∣∣
q+1

+
(
8 − 3sq+1/2 + 3sq−1/2

)∂τij

∂x

∣∣∣∣
q

+
(
2 + 3sq−1/2

) ∂τij

∂x

∣∣∣∣
q−1

=
6

�

[(
1 − sq+1/2

)
τ

q+1
ij +

(
sq+1/2 + sq−1/2

)
τ

q
ij −

(
1 + sq−1/2

)
τ

q−1
ij

]
+ O(�3), (2.5)

† For larger Weissenberg numbers leading to near maximum drag reduction (MDR), this minimal
channel concept is no longer valid because the turbulence structures become very large at the MDR
state (Min, Choi & Yoo 2002).
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where sq+1/2 is the sign of the x-component velocity (u) between the qth and (q +1)th
cells, that is, sq+1/2 = 1 when uq+1/2 � 0, and sq+1/2 = −1 when uq+1/2 < 0. Here in
CUD3, an upwinding is introduced to COM4 in order to have a dissipative error.
When s = 0, CUD3 is equal to COM4.

It is known that the configuration tensor cij (= We τij + δij ) loses its positive
definiteness due to the accumulation of numerical errors, which results in numerical
breakdown (Joseph 1990; Min et al. 2001). Thus, in MCUD3, we add a second-order
artificial diffusion scheme (AD) to CUD3 at each time step at the locations where
the determinant of the configuration tensor becomes negative, in order to prevent the
numerical instability at an initial stage. The effect of the dissipative error caused by
this AD on the flow field is negligible because the grid locations where AD is added
change in time and the number of corresponding grid points is very small (at most
less than 0.5%) for the present flow. Recently, MCUD3 was successfully utilized in
Dubief & Lele (2001).

One might wonder if the resolution required for the simulation of viscoelastic
fluid flow should be higher than that for the simulation of Newtonian fluid flow. In
our study, we confirmed from simulations that for the present flow the polymeric
stress derivatives in (2.1), ((1 − β)/Re)(∂τij /∂xj ), are the same order of magnitude as
the Newtonian stress derivatives, (β/Re)(∂2ui/∂xj∂xj ). Thus, with the same resolution
used for the Newtonian fluid flow, the use of COM4 for the polymeric stress derivatives
in (2.1) and that of MCUD3 for the polymer-stress convection term in (2.3) should
resolve the spatial distribution of the polymeric stresses. Furthermore, as we will
show in the next section, our simulation results agree very well with the previous
experimental results for the present flow, and the power spectra of the polymeric
stresses do not show any power accumulation at high wavenumbers. Nevertheless, it
should be noted that the present low-order schemes used for the spatial derivatives
may require higher resolution to obtain high-order turbulence statistics (Choi, Moin
& Kim 1992).

We have also separately simulated the same flow with a different viscoelastic model,
FENE-P, to see how the unboundedness of the polymer stretch in the Oldroyd-B
model affects the drag and velocity field. In the Appendix, we clearly show that the
Oldroyd-B model does not produce any unbounded polymer stretch, at least for the
present flow, and the drag and r.m.s. velocity fluctuations are nearly the same as those
obtained from the FENE-P model (see the Appendix for the details).

3. Changes in the flow variables
3.1. Drag variation and onset criterion of drag reduction

Figure 1 shows the time histories of the mean pressure gradient that drives a constant
mass flow rate in a channel at Re = 3000 and 15 000, normalized by that of Newtonian
fluid flow (−dp/dx|0). The percentage drag reduction (DR) is defined as

DR =
(−dp/dx|0) − (−dp/dx)

−dp/dx|0
× 100. (3.1)

Table 1 shows the variation of the drag with the Weissenberg number. It is seen that
drag reduction occurs at We > 1 and We> 0.3, respectively, for Re = 3000 and 15 000,
and the drag decreases more with larger Weissenberg number. The drag neither
decreases nor increases at We =0.1, 0.5 and 1 for Re= 3000 and at We = 0.2 and
0.3 for Re= 15 000, respectively. This indicates that there exists a threshold for the
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Figure 1. Time histories of the mean pressure gradient normalized by that of Newtonian fluid
flow. (a) Re = 3000 (——, Newtonian; ·········, �, We = 0.1; – · – · –, �, We = 0.5; – – –, We = 1;
– · – · –, We = 2; ·········, We = 3; – ·· – ·· –, We = 4). (b) Re = 15 000 (——, Newtonian; ·········,
�, We = 0.2; – – –, We = 0.3; – · – · –, We = 0.5; ·········, We = 1; – ·· – ·· –, We = 2).

Weissenberg number to achieve drag reduction. The onset Weissenberg number Weτ

normalized by uτ0
and ν for drag reduction is about 6 for both Reynolds numbers.

The ‘time criterion’ suggested by Lumley (1969) indicated that the onset Weτ for
drag reduction is 1. Berman (1977) showed that the onset Weτ ranges from 1 to 8
depending on the properties of polymers and solvents. Goldshtik et al. (1982) studied
the polymer drag reduction theoretically and suggested that the onset Weτ is 1 for
the Maxwell model and 5 ∼ 6 for the Oldroyd-B model with β = 0.9.

Orlandi (1995) and den Toonder et al. (1997) could not predict the onset Weτ from
their direct numerical simulations because they used inelastic constitutive models.
Sureshkumar et al. (1997) and Dimitropoulos et al. (1998) showed that drag reduction
occurred at Weτ = 25 but not at Weτ = 12.5. This Weissenberg number is much larger
than the onset Weissenberg number obtained from experimental and theoretical
studies. As mentioned previously, the numerical schemes used in Sureshkumar et al.
(1997) and Dimitropoulos et al. (1998) smear out the steep gradient of polymer
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Re† We‡ Weτ DR (%)

3000 0.1 0.60 0
0.5 3.0 0
1 6.0 0
2 12 12
3 18 20
4 24 27

15 000 0.2 3.7 0
0.3 5.6 0
0.5 9.3 8
1 19 21
2 37 28

† Reb = Ubh/ν = 4
3
Re.

‡ Web = λUb/h = 1
3
We.

Table 1. Variation of the drag with respect to the Weissenberg number
at Re = 3000 and 15 000.

stresses, which may result in less or no drag reduction at a Weissenberg number
larger than the threshold value (see also Min et al. 2001). On the other hand, the
onset Weissenberg number obtained from the present study shows excellent agreement
with previous theoretical and experimental results.

3.2. Mean velocity and turbulence intensities

The mean velocity profiles normalized by the wall-shear velocity uτ are shown in
figure 2, together with the experimental results by Luchik & Tiederman (1988) and
Wei & Willmarth (1992). Here, u+ = u/uτ , y+ = yuτ/ν, and u is the mean streamwise
velocity. It is difficult to compare numerical results with experimental ones, because
the parameters in the constitutive equations are not easy to obtain from the polymer
used in the experiments (Joseph 1990). However, the experimental studies in Luchik
& Tiederman (1988) and Wei & Willmarth (1992) were conducted at the Reynolds
numbers of Reτ � 520 and 570, respectively, which are very similar to that of the
present study (Reτ � 530). Furthermore, the amounts of drag reduction reported in
Luchik & Tiederman (1988) and Wei & Willmarth (1992) are, respectively, 20% and
30%, which are also nearly identical to those obtained in the present study (21% and
28% for We = 1 and 2, respectively). Therefore, the results from two experimental
studies are compared with the present ones in figure 2(b).

It is evident from figure 2 that the mean velocity profiles agree very well with
the experimental results. Also, upward shifts in the log-law are clearly observed for
the drag-reducing flows, which has been observed in other types of drag-reducing
flows such as flow over riblets (Choi, Moin & Kim 1993) and flow with active
blowing and suction (Choi, Moin & Kim 1994). It is also noticeable on figure 2
that the viscous sublayer thickness increases for the drag-reducing flows (we also
confirmed this finding from the plot of u+/y+ vs. y+), which has been previously
observed in the experimental studies (Luchik & Tiederman 1988; Wei & Willmarth
1992). Goldshtik et al. (1982) reported that the viscous sublayer thickness does not
change for the Maxwell model (β = 0) and the Oldroyd-B model with a short retar-
dation time such as β = 0.2, but it increases for the Oldroyd-B model with a long
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Figure 2. Mean streamwise velocities normalized by the wall-shear velocity uτ . (a) Re = 3000
(——, Newtonian; – – –, We = 1; – · – · –, We = 2; ·········, We = 3; – ·· – ·· –, We = 4).
(b) Re = 15 000 (——, Newtonian; – – –, We = 1; ·········, We = 2). Also shown are the
experimental results from Luchik & Tiederman (1988: �, Newtonian; �, polymer) and Wei &
Willmarth (1992: �, Newtonian; �, polymer).

retardation time such as β = 0.9 and 0.95. Therefore, the increase in the viscous
sublayer thickness from the present study also shows good agreement with the theory
of Goldshtik et al. (1982) because β = 0.9 for the present study.

The variation of the root-mean-square (r.m.s.) velocity fluctuations with the
Weissenberg number is shown in figure 3, together with the experimental results
by Luchik & Tiederman (1988) and Wei & Willmarth (1992). As the Weissenberg
number increases, the r.m.s. streamwise velocity fluctuations decrease very near the
wall but increase away from the wall, whereas the r.m.s. wall-normal and spanwise
velocity fluctuations decrease in the whole channel. It is seen that the present results
are also in good agreement with the experimental results of Luchik & Tiederman
(1988) and Wei & Willmarth (1992). The increase in urms in a drag-reducing flow was
also observed in a turbulent channel flow with a streamwise magnetic field (Lee &
Choi 2001), whereas the decrease in urms was observed in flow above riblets (Choi et al.
1993) and flow with active blowing and suction (Choi et al. 1994), indicating that the
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Figure 3. Root-mean-square velocity fluctuations normalized by the wall-shear velocity uτ0
:

(a) Re = 3000; (b) Re = 15 000. Lines and symbols are the same as those in figure 2. Here,
y+

0 = yuτ0
/ν.

variation of urms is not a direct indication of drag reduction. Warholic et al. (1999)
also reported a decrease in urms in the case of large drag reduction for turbulent
polymer flow, while urms increases in the case of small drag reduction. On the
other hand, the r.m.s. cross-velocity fluctuations decreased for all the drag-reducing
flows. The turbulent kinetic energy showed the same trend as the r.m.s. streamwise
velocity fluctuations (not shown here), because urms is much larger than vrms and
wrms.

The variation of the r.m.s. vorticity fluctuations with the Weissenberg number is
shown in figure 4. All three components of the vorticity fluctuations substantially
decrease with increasing Weissenberg number. It is also noticeable that the y-location
of the local maximum of the streamwise vorticity fluctuations moves further away from
the wall with increasing Weissenberg number, which indicates that the streamwise-
vortex centre moves away from the wall in the turbulent flow of polymeric liquids and
the sweep motion induced by those streamwise vortices is less effective in producing
a high skin friction.
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Figure 4. Root-mean-square vorticity fluctuations normalized by the wall-shear velocity uτ0
:

(a) Re = 3000; (b) Re = 15 000. Lines are the same as those in figure 2. Lines with � denote
ωx , unadorned lines ωy and lines with � ωz, respectively.

3.3. Reynolds shear stress and stress deficit

The Reynolds shear stress, −ρu′v′, and total shear stress, T12 = µdu/dy − ρu′v′ + τp ,
normalized by uτ0

are shown in figure 5, together with the Reynolds shear stress from
the experimental studies by Luchik & Tiederman (1988) and Wei & Willmarth (1992).
The total shear stress should be a straight line when the flow reaches a fully developed
state, and the present result shows that this is indeed the case. The slope of the total
shear stress decreases with increasing Weissenberg number, because the mean pressure
gradient required to drive a constant mass flux in a channel decreases (see figure 1).
A significant reduction in the Reynolds shear stress is also observed throughout the
channel with the polymer additives. It is seen that the present results for −u′v′ are in
good agreement with the experimental results of Luchik & Tiederman (1988). Note
that the disagreement with the polymer case of Wei & Willmarth (1992) might come
from a mistake in their data implementation since the slope of their Reynolds shear
stress in the channel centre suggests much larger drag reduction (about 50%) than
what they actually obtained (30%).
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Figure 5. Reynolds shear stresses and total shear stresses normalized by the wall-shear velocity
uτ0

: (a) Re = 3000; (b) Re = 15 000. Lines and symbols for the Reynolds shear stress are the
same as those in figure 2. Lines with � denote the total shear stress.

One of the most interesting features in turbulent drag reduction of a dilute polymer
solution is the ‘stress deficit’, which was already defined in (1.3). For an Oldroyd-B
model, (1.3) can be derived as

T12 = µN

du

dy
− ρu′v′ + τ 12

= µN

du

dy
− ρu′v′ + µE

du

dy
+ τp

= µ
du

dy
− ρu′v′ + τp, (3.2)

where µN is the Newtonian viscosity and µE the elastic viscosity. The Newtonian
viscosity µN is not the solvent viscosity µs but is interpreted as an effective Newtonian
contribution to the solution viscosity µ (see Joseph 1990, Chap. 18). It is not easy
to measure the correct values of µN , whereas µ and µs can be also easily measured
using a viscometer. Since we consider a dilute polymer solution where µ is almost
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Figure 6. Stress deficits normalized by the wall-shear velocity uτ : (a) Re = 3000;
(b) Re = 15 000. Lines are the same as those in figure 2.

the same as µs , (3.2) can be also expressed as (see also Warholic et al. 1999)

T12 = µs

du

dy
− ρu′v′ + τp. (3.3)

The total shear stress normalized by the wall-shear velocity uτ is

T +
12 =

du+

dy+
− u′+v′+ + τ+

p , (3.4)

where τ+
p is the dimensionless stress deficit caused by polymer additives that cannot

be predicted by an inelastic theory although it is observed experimentally (see den
Toonder et al. 1997). Figure 6 shows the stress deficit obtained from the present study.
The stress deficit increases with increasing Weissenberg number, and its maximum
is in the buffer layer, which was also reported in the experimental result by den
Toonder et al. (1997). Note also that τp becomes large with increasing Reynolds
number.



Drag reduction by polymer in turbulent channel flow 225

100 101 102

100

10–2

10–4

10–6

10–8

10–10

kx

(a)

100 101 102

10–2

10–4

10–6

10–8

kz

10–7

10–5

10–3

10–1

100 101 102

100

10–2

10–4

10–6

10–8

10–10

kx

(b)

100 101 102

10–2

10–4

10–6

10–8

kz

10–7

10–5

10–3

10–1

Figure 7. Power spectra of the polymer stresses normalized by u2
τ0

at Re = 3000: (a) y+
0 � 10;

(b) y+
0 � 30. For We = 1 (no drag reduction): ——, ((1 − β)/Re)τ11; – – –, ((1 − β)/Re)τ22;

·········, ((1−β)/Re)τ33; for We = 3 (20% drag reduction): �, ((1−β)/Re)τ11; �, ((1−β)/Re)τ22;
�, ((1 − β)/Re)τ33.

3.4. Power spectra of the polymer stresses τ11, τ22 and τ33

Figure 7 shows the power spectra of the polymer stresses, ((1 − β)/Re)τ11, ((1 −
β)/Re)τ22 and ((1 − β)/Re)τ33, at Re = 3000 for the cases of no drag reduction and
20% drag reduction. Here kx and kz are the streamwise and spanwise wavenumbers,
respectively. The power spectra shown in this figure illustrate that the present grid
resolution is adequate, because the power density at high wavenumbers is a few to
several decades lower than that at low wavenumbers, and there is no evidence of power
accumulation at high wavenumbers. At y+

0 � 30, all the polymer stresses increase with
increasing Weissenberg number irrespective of drag reduction. However, at y+

0 � 10
(near the wall), τ11 and τ33 increase but τ22 decreases when drag reduction occurs.
This phenomenon is in good agreement with the near-wall analysis of Goldshtik et al.
(1982): the stretching stresses acting in the near-wall plane parallel to the wall (τ11
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and τ33) may damp out the near-wall wall-normal motion. These different behaviours
of the polymer stretch at different wall-normal locations are closely associated
with the present drag reduction mechanism, which will be presented in the next
section.

4. Drag-reduction mechanism
The elastic theory was first suggested by Tabor & de Gennes (1986). They assumed

that polymers in solvent behave like an elastic spring. When the spring is a linear
one, the elastic energy per unit volume stored by polymers can be expressed as

k∗
p = 1

2
nG(〈Q2〉 − 〈Q2〉eq), (4.1)

where n is the number of polymer molecules per unit volume, G the elastic modulus,
〈Q2〉 the ensemble average of polymer length squared, and the subscript ‘eq ’ denotes
the equilibrium state. However, when the spring is not a linear one, expression (4.1)
should be modified. For example, Pincus (1976) reported that the elastic energy is
proportional to 〈Q5/4〉 rather than 〈Q2〉 (see also de Gennes 1990 and Sreenivasan
& White 2000). Since the polymer molecule in the Oldroyd-B model is regarded as
a linear dumbbell, the nonlinear elastic effect is neglected in the framework of the
present approach.

From the kinetic theory (Bird et al. 1987, p. 72), 〈Q2〉 and 〈Q2〉eq can be derived as
follows:

〈Q2〉 =
3kBT

G
+

τ ∗
ii

nG
,

〈Q2〉eq =
3kBT

G
,


 (4.2)

where kB is the Boltzmann constant, T is the absolute temperature, and τ ∗
ii is the

trace of the dimensional polymer stress. Then, k∗
p becomes

k∗
p = 1

2
τ ∗
ii , (4.3)

or in a non-dimensional form,

kp =
1

2

1 − β

Re
τii . (4.4)

Using the definition of the elastic energy kp in (4.4), one can obtain the transport
equations for the kinetic and elastic energy from the momentum and constitutive equa-
tions as follows:〈

Dkm

Dt

〉
= −〈Pk〉 − 〈Pe,m〉 + 〈Pw〉 + β

〈
1

Re

d2km

dy2

〉
− β〈εm〉, (4.5)

〈
Dkt

Dt

〉
= 〈Pk〉 − 〈Pe,t〉 + β

〈
1

Re

d2kt

dy2

〉
− β〈εk〉, (4.6)

〈
Dke

Dt

〉
= 〈Pe,m〉 + 〈Pe,t〉 − 1

We
〈ke〉, (4.7)
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where

km = 1
2
u2, kt = 1

2
u′

iu
′
i , ke = kp,

Pk = −u′v′ du

dy
, Pe,m =

1 − β

Re
τ 12

du

dy
,

Pw = −u
dp

dx
, εm =

1

Re

du

dy

du

dy
,

Pe,t =
1 − β

Re

∂u′
i

∂xj

τ ′
ij , εk =

1

Re

∂u′
i

∂xj

∂u′
i

∂xj

.

Here 〈·〉 = (1/V )
∫

· dV and V is the total volume of the computational domain.
Equations (4.5)–(4.7) provide the information about the energy transfer between the
polymer and the flow. The energy transfer between the mean kinetic energy km and
the turbulent kinetic energy kt is executed through Pk . The energy transfer bet-
ween the mean kinetic energy km and the elastic energy ke is through Pe,m, and that
between the turbulent kinetic energy kt and the elastic energy ke is through Pe,t . The
turbulent kinetic energy kt is dissipated by εk and the elastic energy ke dissipates itself.

Figure 8 shows the time histories of the volume-averaged production 〈Pk〉 and
dissipation 〈εk〉 of the turbulent kinetic energy. The mean values of 〈Pk〉 and 〈εk〉
decrease with increasing We when drag reduction occurs, because turbulence inside
the channel becomes weaker. However, it is interesting to note that the fluctuating
amplitudes of 〈Pk〉 and 〈εk〉 become larger as We increases. This phenomenon is
associated with the temporal variation of the elastic energy, which will be discussed
later. The spatial distributions of Pk and εk are shown in figure 9. The production
and dissipation of the turbulent kinetic energy decrease throughout the channel with
the polymer additives.

Figure 10 shows the time histories of the volume-averaged productions, 〈Pe,m〉
and 〈Pe,t〉, and dissipation, −〈ke〉/We, of the elastic energy. In the case of no drag
reduction (We = 1 and 0.3 for Re = 3000 and 15 000, respectively), 〈Pe,m〉, 〈Pe,t〉 and
−〈ke〉/We are nearly constant in time, indicating that the energy transfer from the
flow to the polymer is nearly steady and the amount of energy received from both
the mean and turbulent kinetic energy is dissipated by the elastic energy itself (see
(4.7)). Interestingly, as shown in figure 11, the values of 〈Pe,m〉, 〈Pe,t〉 and −〈ke〉/We
are nearly the same irrespective of We in the case of no drag reduction (i.e. in the case
of We � 1 at Re = 3000). This means that the amount of energy transfer from the
mean and turbulent kinetic energy to the elastic energy is the same irrespective of We
in the case of no drag reduction, which again indicates that, with the polymer, (1 −β)
times the dissipation and diffusion of the Newtonian fluid is replaced by 〈Pe,m〉 and
〈Pe,t〉, resulting in no change in the flow. That is, in the case of no drag reduction,
the following relation should be valid:

〈Pe,m〉 = (1 − β)〈εm〉Newtonian − (1 − β)

〈
1

Re

d2km

dy2

〉
Newtonian

,

〈Pe,t〉 = (1 − β)〈εk〉Newtonian − (1 − β)

〈
1

Re

d2kt

dy2

〉
Newtonian

.




(4.8)

Then, substituting (4.8) into (4.5) and (4.6), one can clearly see that the dynamic
equations for the mean and turbulent kinetic energy become the same as those for
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Figure 8. Time histories of the volume-averaged production 〈Pk〉 and dissipation 〈εk〉 of the
turbulent kinetic energy normalized by u3

τ0
/δ: (a) Re = 3000; (b) Re = 15 000. The lines are

the same as those in figure 1.

the Newtonian fluid flow. In figure 11, solid lines denote the magnitudes of (1 − β)
times the dissipations of the mean and turbulent kinetic energy, and their sum for the
Newtonian fluid flow, which clearly shows the validity of (4.8) in the case of no drag
reduction because the magnitude of the second term on the right-hand side of (4.8)
is much smaller than that of the first term. However, when drag reduction occurs
(for example, at We = 3 and 1 at Re = 3000 and 15 000, respectively), the energy
transfer becomes quite intermittent and more energy is transferred from the flow to
the polymer, as shown in figure 10.

In order to investigate the detailed features of the energy transfer, the spatial
distributions of Pe,m, Pe,t and −ke/We are shown in figure 12. It is seen that the
polymer stores and releases most energy near the wall. Although the amounts of
the production and dissipation of elastic energy increase globally with increasing We
(figure 10), they decrease locally very near the wall (y+ � 10) but increase in the buffer
and log layers. Interestingly, the same feature was observed for urms (figure 3) and the
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turbulent kinetic energy. Thus, we conjecture that, when drag reduction occurs, the
polymer takes less energy from the flow in the very near-wall region and returns more
energy to the flow in the buffer and log layers, and also that the polymer transports
its elastic energy stored in the very near-wall region to the flow in the buffer and log
layers.

This conjecture can be verified from the probability density function (PDF) of the
elastic-energy production. The PDFs of Pe,m and Pe,t are shown in figure 13. Negative
values of Pe,m and Pe,t represent the transport of the elastic energy of the polymer
to the mean and turbulent kinetic energy of the flow, respectively. The probabilities
of having negative Pe,m and Pe,t are shown in table 2. The energy transfer from the
elastic energy to the mean kinetic energy (i.e. Pe,m < 0) at either y+

0 � 5 or 30 is nearly
unchanged for different Weissenberg number. However, a significant change occurs in
the energy transfer from the elastic energy to the turbulent kinetic energy (i.e. Pe,t < 0)
at y+

0 � 30 when drag reduction occurs. That is, this energy transfer significantly
increases at y+

0 � 30 (from 3% at We = 1 to 31% at We = 3), indicating that, in
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the case of drag reduction, the polymer returns much more energy to the flow in the
buffer layer than in the case of no drag reduction.

In order to see that the near-wall elastic energy is transported to the buffer and log
layers, the time sequence of the elastic energy kp in a coordinate system moving with
the structures is shown in figure 14 for the cases with and without drag reduction
at Re = 3000. In the case of no drag reduction (We = 1), high elastic energy exists
only very near the wall. However, when drag reduction occurs (We = 3), high elastic
energy existing very near the wall is transported to the buffer and log layers even
though the cross-plane velocity fluctuations are much weaker than those for We = 1.
A similar behaviour was also observed for Re = 15 000.

The relaxation time of the polymer solution is essentially associated with the
transport of the elastic energy. Fluid particles containing high elastic energy very near
the wall are lifted away from the wall by the near-wall vortical motion (see figure 15).
When the relaxation time is short (i.e. low We), the particles release the elastic
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We = 0.1; – · – · –, We = 0.5; – – –, We = 1. Solid lines in this figure denote the magnitudes of
(1 − β) times the dissipations of the mean and turbulent kinetic energy, and their sum for the
Newtonian fluid flow.

energy very near the wall before they reach the buffer layer. When the relaxation
time is long enough, however, the elastic energy absorbed from the kinetic energy is
delivered to the buffer and log layers and released there, which results in weakening
of near-wall turbulence (see also figure 3). Massah & Hanratty (1997) showed that the
polymer chains are stretched in the very near-wall region (meaning that the polymer
absorbs much elastic energy) and released in the buffer and log layers, supporting the
present drag-reduction mechanism. The dynamic sequence in figure 15 also explains
the intermittent energy transport behaviour shown in figure 10 in the case of drag
reduction.

5. Conclusions and further remarks
In the present study, direct numerical simulation of turbulent viscoelastic flow in a

channel was conducted to investigate the drag-reduction mechanism by polymer addi-
tives. An Oldroyd-B model was used for the constitutive equation for the polymer
stress to represent the viscoelastic nature of the polymer. The simulations were carried
out by changing the Weissenberg number at the bulk Reynolds numbers of 4000 and
20 000.

The onset criterion for drag reduction predicted in the present study was in good
agreement with previous theoretical and experimental studies. The flow statistics such
as the mean velocity, turbulence intensities and Reynolds shear stress were also in
good agreement with those in the previous experimental studies. In addition, the
stress deficit that shows the role of the elasticity in drag reduction was observed.

The transport equations for the mean and turbulent kinetic energy and elastic
energy were derived from the kinetic and elastic theory and were investigated. From
the probability density functions of the production terms in those transport equations
and also from the time sequence of the polymer elastic energy, we deduced the
following mechanism for drag reduction by polymer additives. When drag reduction
occurs, the turbulent kinetic energy near the wall is absorbed by the polymer and
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transformed into elastic energy. Then, this elastic energy near the wall is lifted up by
the near-wall vortical motion and released as turbulent kinetic energy or is dissipated
in the buffer and log layers. Thus, the polymer actively intervenes in the energy
transfer. Therefore, in order to obtain drag reduction, the relaxation time of the
polymer should be long enough to transport the elastic energy from the near-wall
region to the buffer or log layer. Otherwise, the elastic energy obtained near the wall
is released there and an equilibrium state exists in terms of energy exchange, resulting
in no drag change.

The drag-reduction mechanism proposed here in terms of the elastic theory does
not imply that the mechanism based on the extensional viscosity is incorrect, as
Sreenivasan & White (2000) mentioned. This is because any reasonable viscoelastic
model (such as the FENE-P model or the Oldroyd-B model) suggests that an elastic
effect can be formally interpreted in terms of an extensional viscosity effect, despite the
fundamental difference between the two mechanisms. However, when the extensional
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(a) Pe,m; (b) Pe,t .

Pe,m Pe,t

We DR(%) y+
0 � 5 y+

0 � 30 y+
0 � 5 y+

0 � 30

1 0 0 21 49 3
3 20 0 18 57 31

Table 2. Probabilities of negative Pe,m and Pe,t (
∫

PDF(Pe,m < 0) dPe,m and∫
PDF(Pe,t < 0) dPe,t ) in per cent for Re = 3000.

viscosity alone is considered for polymer drag reduction, as done by Orlandi (1995)
and den Toonder et al. (1997), the question of why the onset of drag reduction exists is
very difficult to answer, which is the main reason why the elastic theory is introduced
in the present study. After the onset, on the other hand, it is still premature to
clearly identify which of the two mechanisms is dominant for drag reduction, because
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Figure 14. Time sequence of the instantaneous elastic energy kp normalized by u2
τ0

in a
coordinate system moving with the structures at Re = 3000: (a) We = 1; (b) We = 3. The time
interval between consecutive instants is 0.2.

the behaviour of turbulence in the presence of polymer is still largely unknown. In
particular, the interaction between the polymer and the near-wall streamwise vortices
should be an important future research subject.

Finally, it is certainly important to investigate the flow field with a non-
homogeneous polymer concentration, especially in the wall-normal direction, for
which it is very difficult to obtain physically meaningful results from the present
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approach. However, the present drag-reduction mechanism suggests that the high
concentration of polymer between the viscous sublayer and buffer layer should
decrease drag significantly.

This study was supported by the Creative Research Initiatives and Korea Institute
of Science & Technology Evaluation Planning (No. I-01-03-A-024) of the Korean
Ministry of Science and Technology.

Appendix. Examination of unboundedness of polymer stretch in the Oldroyd-B
model

Theoretically, the polymer stretch in the Oldroyd-B model does not have an upper
bound. However, in a real flow field, this may not be the case because the time
evolution of the polymer stretch is coupled with that of the shear rate. The FENE-P
model becomes the Oldroyd-B model as L2 → ∞ (Bird et al. 1987), where L2 is the
dumbbell extensibility of the FENE-P model. Thus, the Oldroyd-B model is a limiting
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case of the FENE-P model, and the FENE-P model behaves like the Oldroyd-B model
when L2 is sufficiently large.

In order to compare the magnitudes of the polymer stretch from both the FENE-P
and Oldroyd-B models for the present flow, a computer code developed by Min et al.
(2001) is used for the simulation with the FENE-P model. Figure 16 shows the time
histories of the polymer stretch ckk at y+

0 = 0.2 and y+
0 = 10. One can clearly see

that the ckk of the Oldroyd-B model has an upper bound in the present flow, and the
boundedness of the FENE-P model with L2 = 3600 is almost the same as that of the
Oldroyd-B model. This value of L2 corresponds roughly to a polystyrene molecule of
molecular weight 106 (Dubief & Lele 2001). This figure also suggests that the FENE-P
model with L2 = 1000, adopted by Ptasinski et al. (2002), shows a similar behaviour
to that of the Oldroyd-B model. Figures 17(a) and 17(b) show the time histories of the
mean pressure gradient and the r.m.s. velocity fluctuations at Re = 3000 and We = 2,
respectively. One can again see that the results of the Oldroyd-B model are in good
agreement with those of the FENE-P model with L2 = 3600.
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