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Viscous potential flow

By D. D. JOSEPH
Department of Aerospace Engineering and Mechanics, University of Minnesota, MN 55455, USA

joseph@aem.umn.edu

(Received 6 September 2002 and in revised form 10 December 2002)

Potential flows u = ∇φ are solutions of the Navier–Stokes equations for viscous
incompressible fluids for which the vorticity is identically zero. The viscous term
µ∇2u = µ∇∇2φ vanishes, but the viscous contribution to the stress in an incompress-
ible fluid (Stokes 1850) does not vanish in general. Here, we show how the viscosity
of a viscous fluid in potential flow away from the boundary layers enters Prandtl’s
boundary layer equations. Potential flow equations for viscous compressible fluids are
derived for sound waves which perturb the Navier–Stokes equations linearized on
a state of rest. These linearized equations support a potential flow with the novel
features that the Bernoulli equation and the potential as well as the stress depend on
the viscosity. The effect of viscosity is to produce decay in time of spatially periodic
waves or decay and growth in space of time-periodic waves.

In all cases in which potential flows satisfy the Navier–Stokes equations, which
includes all potential flows of incompressible fluids as well as potential flows in the
acoustic approximation derived here, it is neither necessary nor useful to put the
viscosity to zero.

1. Introduction
Potential flows of incompressible fluids admit a pressure (Bernoulli) equation when

the divergence of the stress is a gradient as in inviscid fluids, viscous fluids, linear
viscoelastic fluids and second-order fluids (for which a term proportional to the square
of the velocity gradient called a viscoelastic pressure appears). All of the classical
results for inviscid potential flows hold for viscous potential flows with the caveat
that the viscous stresses are not generally zero (Stokes 1850). The differences between
inviscid and viscous and viscoelastic potential flow together with a review of the
literature prior to 1994 are discussed by Joseph & Liao (1994a, b).

Potential flows will not generally satisfy boundary conditions which require that the
tangential component of velocity and the shear stress should be continuous across
the interface separating the fluid from a solid or another fluid. The velocity and
pressure are the same in inviscid and viscous potential flows when fluid–fluid interfaces
or free surfaces are not present. The viscosity enters interface problems explicitly
through the viscous term in the normal stress balance across the interface (see
Funada & Joseph 2002 and the references therein). The Navier–Stokes equations for
compressible fluids linearized on a state of rest, treated here, are yet another case in
which the viscosity enters the solution for the potential explicitly.

2. Boundary layer theory
At speeds large enough so that the vorticity in the outer flow is zero, we should

like to see how the viscosity in the viscous potential flow enters the boundary layer
equation.
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To make things simple, consider flow in two dimensions over a body obeying the
equations

∂u

∂x
+

∂v

∂y
= 0, (2.1)
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[
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]
+ µ

∂2v

∂x2
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In Prandtl’s theory it is argued (Batchelor 1967) that “. . .the pressure is approx-
imately uniform across the boundary layer; and if it happens that the variation of p

with x just outside the boundary layer is known . . . perhaps from consideration of
the inviscid flow equations in the regions outside the boundary layer . . . the pressure
term [in our (2.2)] can be regarded as given.”

Now consider that the region outside the boundary layer is a potential flow, as is
usual, and instead of putting the viscosity to zero let it be whatever it is. Then we
have potential flow of a viscous fluid with curl U = 0 (where U, P are in the free
stream) as in the inviscid case and the same potential Φ with ∇2Φ = 0.

Equation (2.3) is written in such a way as to show that the y derivative of

p − µ
∂v

∂y
(2.4)

is O(δ) across the boundary layer of thickness δ; hence it can be taken as

P − µ
∂V

∂y
= P − µ

∂2Φ

∂y2
, (2.5)

which is the value of (2.4) at the edge of that layer. Using now the Bernoulli equation
for steady flow, which holds even when the viscosity is not zero, we have as usual

P = −ρU 2

2
+ const (2.6)

and combining (2.5) and (2.6)

−ρ
U 2

2
+ const − µ
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∂y
(2.7)

with a small error, and at the wall where ∂v/∂y = 0

∂p
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= −ρU
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− µ
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(2.8)

drives the flow in (2.2). Using (2.1) we can write

∂V

∂y
= −∂U

∂x
, (U, V ) =

(
∂Φ

∂x
,
∂Φ

∂y

)
.

Hence

∂p

∂x
= −ρU

∂U

∂x
+ µ

∂2U

∂x2
, U =

∂Φ

∂x
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Noting next that ∂2u/∂x2 = 0 but ∂2U/∂x2 �= 0 at the wall, using also the usual
boundary layer assumptions we have a modified Prandtl equation

ρ

[
u

∂u

∂x
+ v

∂u

∂y

]
= ρU

∂U

∂x
− µ

∂2U

∂x2
+ µ

∂2u

∂y2
. (2.10)

When the outer fluid is inviscid, the viscous term µ∂2U/∂x2 vanishes; for high
Re = U0L/ν this term is small.

The generally understood principle that the effects of viscosity in the outer flow
vanish at surpassingly high Reynolds numbers remains true even when the outer
potential flow is viscous. In this limit, our derivation shows that the conventional
boundary layer equations are not changed. The imprint of viscosity on the outer
flow may possibly be studied at lower, but not low, Reynolds numbers by modified
boundary layer equations like (2.10). There are many cases of irrotational flow in
which viscous effects are important; for example, in cases of interfacial instability.
The generalization of the classical analysis of interfacial instability (Joseph, Belanger
& Beavers 1999), Kelvin–Helmholtz instability (Funada & Joseph 2001) and capillary
instability (Funada & Joseph 2002) from inviscid to viscous potential flow allows one
to compare exact solutions with inviscid and viscous potential flow. All three theories
collapse at high Reynolds numbers, as expected, but at lower – but not very low –
Reynolds numbers the effects of viscosity are sensible and can be very large even
when the differences between viscous potential flow and the exact results are very
small.

3. Potential flow solutions of the Navier–Stokes equations for viscous
compressible fluids

Potential flows are not in general solutions of the Navier–Stokes equations for
viscous compressible fluids. To have such solutions it is necessary to show that curl
u = 0 is a solution of the vorticity equation. The gradients of density and viscosity
which are spoilers for the general vorticity equation do not enter the equations which
perturb the state of rest with uniform pressure p0 and density ρ0.

The stress for a compressible viscous fluid is given by

Tij = −
(
p + 2

3
µ div u

)
δij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.1)

Here, the second coefficient of viscosity is selected so that Tii = −3p. (The results
to follow will apply also to the case when other choices are made for the second
coefficient of viscosity.)

The equations of motion are given by

ρ

(
∂u
∂t

+ u · ∇u
)

= div T (3.2)

together with

∂ρ

∂t
+ u · ∇ρ + ρ div u = 0. (3.3)

To study acoustic propagation, these equations are linearized; putting

[u, p, ρ] = [u′, p0 + p′, ρ0 + ρ ′], (3.4)
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where u′, p′ and ρ ′ are small quantities, we obtain

Tij = −
(
p0 + p′ + 2

3
µ0 div u′) δij + µ0

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
, (3.5)

ρ0

∂u′

∂t
= −∇p′ + µ0

(
∇2u′ + 1

3
∇ div u′) , (3.6)

∂ρ ′

∂t
+ ρ0 div u′ = 0, (3.7)

where p0, ρ0 and µ0 are constants. For acoustic problems, we assume that a small
change in ρ induces small changes in p by fast adiabatic processes; hence

p′ = C2
0ρ

′, (3.8)

where C0 is the speed of sound.
Forming now the curl of (3.6), we find that

ρ0

∂ζ

∂t
= µ0∇2ζ, ζ = curl u′. (3.9)

Hence ζ = 0, is a solution of the vorticity equation and we may introduce a potential

u′ = ∇φ. (3.10)

Next, combining (3.10) and (3.6), we obtain

∇
[
ρ0

∂φ

∂t
+ p′ − 4

3
µ0∇2φ

]
= 0. (3.11)

The quantity in the brackets is equal to an arbitrary function of the time, which may
be absorbed in φ.

A viscosity-dependent Bernoulli equation

ρ0

∂φ

∂t
+ p′ − 4

3
µ0∇2φ = 0, (3.12)

is implied by (3.11). The stress (3.5) is given in terms of the potential φ by

Tij = −
(

p0 − ρ0

∂φ

∂t
+ 2µ0∇2φ

)
δij + 2µ0

∂2φ

∂xi∂xj

. (3.13)

To obtain the equation satisfied by the potential φ, we eliminate ρ ′ in (3.7) with p′

using (3.8), then eliminate u′ = ∇φ and p′ in terms of φ using (3.12) to find

∂2φ

∂t2
=

(
C2

0 + 4
3
ν0

∂

∂t

)
∇2φ, (3.14)

where the potential φ depends on the speed of sound and the kinematic viscosity
ν0 = µ0/ρ0.

The damped wave equation (3.14) may be derived directly without introducing a
potential from the Navier–Stokes equation for compressible fluids in the acoustic
approximation; obviously, the viscosity-dependent Bernoulli equation (3.12) requires
one to introduce a potential. Lamb (1932) derived (3.14) for the velocity in one space
dimension directly from the linearized Navier–Stokes equation (3.6) for plane waves
in a laterally unbounded compressible fluid (his equation (4), p. 647). Lighthill (1978)
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derived the same one-dimensional damped wave equation for the density rather than
the velocity without introducing a velocity potential. In Lighthill’s equation (205),
4
3
ν0 is replaced by δ, a relaxation time for a relaxing gas given by his equation (200),

which may be written as

p′ = C2
0ρ

′ + δ
∂ρ ′

∂t
. (3.15)

Inserting (3.15) into (3.12) we obtain

ρ0

∂φ

∂t
+ C2

0ρ
′ + δ

∂ρ ′

∂t
− 4

3
µ0∇2φ = 0. (3.16)

Combining now (3.16) with

∂ρ ′

∂t
+ ρ0∇2φ = 0,

we find a generalized damped wave equation

∂2φ

∂t2
=

(
C2

0 +
[
δ + 4

3
ν0

] ∂

∂t

)
∇2φ. (3.17)

A dimensionless form for the potential equation (3.17)

∂2φ

∂T 2
=

(
1 +

∂

∂T

)
∇2φ, ∇2φ =

∂2φ

∂X2
+

∂2φ

∂Y 2
+

∂2φ
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, (3.18)

arises from a change of variables

t =

[
δ + 4

3
ν0

]
C2

0

T , x =

[
δ + 4

3
ν0

]
C0

X . (3.19)

The classical theory of sound (see Landau & Lifshitz 1987, chap. VIII) is governed
by a wave equation, which may be written in dimensionless form as

∂2φ

∂T 2
= ∇2φ. (3.20)

The time derivative on the right of (3.18) leads to a decay of the waves not present
in the classical theory.

The decay of the amplitude of separable solutions of (3.18) is governed by a
telegraph equation. To see this consider the propagation of plane monochromatic
travelling waves (see Landau & Lifshitz 1987, p. 253). We can solve the one-
dimensional version of (3.18),

∂2φ

∂T 2
=

(
1 +

∂

∂T

)
∂2φ

∂X2
, (3.21)

by separation of variables, φ = F (T )G(X), where

F ′′

F + F ′ =
G′′

G
= −k2. (3.22)

The function F (T ) satisfies a telegraph equation. If k2 > 4, the solution is

φ =
(
Ae−ω1T + Be−ω2T

)
cos(−kX + α) (3.23)



196 D. D. Joseph

where A, B and α are undetermined constants and[
ω1

ω2

]
=

k2

2

[
1

1

]
+

1

2

[ √
k4 − 4k2

−
√

k4 − 4k2

]
. (3.24)

The solution is a standing periodic wave with a decaying amplitude.
If k2 < 4, the solution is

φ = exp
(
− 1

2
k2T

) [
A cos

(
−kX − 1

2
(4k2 − k4)1/2T + α

)
+ B cos

(
−kX + 1

2
(4k2 − k4)1/2T + α

)]
, (3.25)

which represents decaying waves propagating to the left and right.
Travelling plane wave solutions which are periodic in T and grow or decay in X

are also easily derived by separating variables. The travelling wave

φ = Ae−k1X cos(k2X − ωT + α) + Bek1X cos(−k2X − ωT + α) (3.26)

is such a solution provided that

k1 =
1√
2

ω2[
p + (p2 + ω2p2)1/2

]1/2
, k2 =

1√
2

[
p + (p2 + ω2p2)1/2

]1/2

p
ω,

where p = 1 + ω2.
The separation of variables for plane waves may be greatly generalized by

considering solutions of (3.18) of the form φ = F (T )G(X, Y, Z) leading to a separation
of variables like (3.22) in the form

F ′′

F + F ′ =
∇2G

G
= −k2, (3.27)

where F (T ) satisfies the same telegraph equation as for plane waves.

4. Concluding remarks
It is not necessary, nor useful, to put the viscosity to zero when studying potential

flows. In all cases, the viscous stresses do not vanish even when the vorticity is zero.
In some cases, like interface problems in which the viscous normal stress enters, and
in the acoustic approximation for compressible fluids, the viscosity enters the solution
for the potential explicitly. The derivation of the boundary layer equations based on
potential flow of a viscous fluid in the outer flow leads to a modified boundary layer
in which the viscous stress in the outer flow is felt as a pressure contribution on the
solid boundary. This extra contribution vanishes at very high Reynolds numbers but
may play a role at lower Reynolds numbers.

All of the potential flow solutions which perturb the state of rest of an inviscid
compressible fluid can be considered for the effects of viscosity using the potential
flow equations for flows of viscous compressible fluids derived here. Under ordinary
circumstances viscous and relaxation effects will be negligible. In problems of high-
frequency ultrasound in liquids however, the effects of viscosity can be important, even
dominant. The viscous effects which would enter the study of stress-induced cavitation
(Joseph 1998) due to high frequency are two-fold: dissipative effects which are more
or less described by a telegraph equation, and ‘anistropic’ pressures associated with
the viscous part of the stress tensor (3.13).
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