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Abstract

A modified distributed Lagrange multiplier/fictitious domain method (DLM) that allows particles to

undergo collisions is developed for particulate flows. In the earlier versions of the DLM method for

Newtonian and viscoelastic liquids the particle surfaces were restricted to be more than one velocity element
away from each other. A repulsive body force was applied to the particles when the distance between them

was smaller than this critical value. This was necessary for ensuring that conflicting rigid body motion

constraints from two different particles are not imposed at the same velocity nodes.

In the modified DLM method the particles are allowed to come arbitrarily close to each other and even

slightly overlap each other. When conflicting rigid body motion constraints from two different particles are

applicable on a velocity node, the constraint from the particle that is closer to that node is used and the

other constraint is dropped. An elastic repulsive force is applied when the particles overlap each other. In

our simulations, the particles are allowed to overlap as much as one hundredth of the velocity element size.
The modified DLM method is implemented for both Newtonian and viscoelastic liquids.

Our simulations show that when particles are dropped in a channel, and the viscoelastic Mach number

(M) is less than one and the elasticity number (E) is greater than one, the particles form a chain parallel to

the flow direction. As in experiments, the new method allows particles in the chain to approximately touch

each other. The particles dropped in a Newtonian liquid, on the other hand, undergo characteristic

drafting, kissing and tumbling. During the touching phase, as in experiments, the two particles touch each

other. The modified method thus allows hydrodynamic forces to be fully resolved to within the tolerance of

the mesh and thus the extra artificial force in a security zone outside the particle which are used in all other
methods are not needed.
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1. Introduction

Collisions––or near-collisions––between particles present severe difficulties in direct simulations
of particulate flows. In point of fact, however, smooth particles cannot actually contact each other
in finite time in the continuous system (also see Leal, 1992). In light of this, the term ‘‘collision’’ is
somewhat misleading––at least for smooth particles. However, since the gap width can become
exceedingly small in certain situations, numerical truncation errors may allow actual contact (or
even overlap) to occur in simulations.
Even near-collisions can greatly increase the cost of a simulation, because in order to simulate

the particle–particle interaction mechanism, the flow fields in the narrow gap between the con-
verging particle surfaces must be accurately resolved. The element size required for this decreases
with the gap width, leading to extremely small elements and greatly increased numbers of un-
knowns to be solved for. Actual overlap can lead to overdetermined systems of equations, and
must thus be prevented at all costs.
In numerical simulations to date (Glowinski et al., 1998; Singh et al., 2000; Huang et al., 1998;

Hu, 1996; Huang et al., 1997; Glowinski et al., 1997; Girault et al., 1999), this problem is avoided
by introducing an artificial repulsive force between particles which keeps the particle surfaces
more than one element apart from each other. In the standard distributed Lagrange multiplier/
fictitious domain (DLM) method (Glowinski et al., 1998; Singh et al., 2000; Glowinski et al., 1997;
Girault et al., 1999), this ensures that the differing rigid-body motion constraints of the two
particles are not simultaneously imposed at any one velocity node, which would lead to a nu-
merically overdetermined system of equations. In the arbitrary Lagrangian–Eulerian (ALE)
method (Huang et al., 1998; Hu, 1996; Huang et al., 1997), it ensures that the element size does
not become excessively small. The ALE method requires two layers of elements in the gap between
the converging surfaces.
In this paper, we present a modification of the DLM finite-element scheme described in

(Glowinski et al., 1998; Singh et al., 2000) which allows particles to come arbitrarily close to each
other, and even overlap slightly. The basic idea, which is due to D.D. Joseph, is to simply drop one
of the conflicting rigid-body motion constraint terms in the equation of motion – the one cor-
responding to the particle surface which is farther away from the node in question. This trick
avoids overdetermined systems of equations, but is applicable only as long as the overlap of the
particles does not exceed one element. An elastic repulsive force is introduced to prevent particles
from overlapping more than that.
The modified DLM method is verified by comparing the time dependent trajectories for two

circular particles falling in a channel for two different mesh refinements, and for two different time
steps. It is shown that the results are independent of the mesh resolution and the time step.
It was discussed in (Glowinski et al., 1998; Singh et al., 2000; Fortes et al., 1987; Joseph et al.,

1987) that when two or more particles are dropped in a channel filled with a viscoelastic liquid the
orientation of particles relative to the direction of flow is determined by the viscoelastic Mach

496 P. Singh et al. / International Journal of Multiphase Flow 29 (2003) 495–509



number M ¼
ffiffiffiffiffiffiffiffiffiffiffi
ReDe

p
and the elasticity number E ¼ De=Re. Here De ¼ Ukr=D is the Deborah

number, and Re ¼ qLUD=g is the Reynolds number, where kr is the relaxation time of the fluid, g
is the zero shear viscosity of the fluid, U is the particle velocity, and D is the particle diameter.
Specifically, when M < 1 and E > 1, the particles align themselves parallel to the flow direction.
The distance between the particles of a chain may be very small. In fact, the particles may even
approximately touch each other. On the other hand, when these conditions are not satisfied, or
when the fluid is Newtonian, the particles undergo drafting, kissing and tumbling. Experiments
show that during kissing the particles come very close to each other, and may even approximately
touch each other.
In the next section the strong and weak forms of governing equations as well as the modified

DLM scheme that allows particle–particle near collisions is presented. In the last section, we
present several test cases to validate the scheme.

2. Computational scheme

The computational scheme we propose is a modification of the DLM finite-element scheme
described in Glowinski et al. (1998) and Singh et al. (2000). In this scheme, the fluid flow
equations are solved on the combined fluid–solid domain, and the motion inside the particle
boundaries is forced to be rigid-body motion using a distributed Lagrange multiplier. The fluid
and particle equations of motion are combined into a single combined weak equation of motion,
eliminating the hydrodynamic forces and torques, which helps ensure stability of the time inte-
gration. The time integration is performed using the Marchuk–Yanenko operator splitting
method, which is first-order accurate. See Glowinski et al. (1998) and Singh et al. (2000) for
further details.

2.1. Governing equations

In this paper we will present results for two-dimensional flows. Let us denote the domain
containing the Newtonian or viscoelastic fluid and N particles by X, and the interior of the ith
particle by PiðtÞ. For simplicity we will assume that the domain is rectangular with boundary C.
The four sides of the domain will be denoted by C1, C2, C3, and C4 (see Fig. 1), and C� will be used
to denote the upstream part of C. The viscoelastic fluid is modeled by the Oldroyd-B model. The
governing equations for the fluid-particle system are:

qL
ou

ot

�
þ u � ru

�
¼ qLg�rp þr � c

kr
A

� �
þr � ð2gsDÞ in X n PðtÞ; ð1Þ

r � u ¼ 0 in X n P ðtÞ; ð2Þ

u ¼ uL on C; ð3Þ

u ¼ Ui þ xi 
 ri on oPiðtÞ; i ¼ 1; . . . ;N ; ð4Þ
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with the evolution of the configuration tensor A given by

oA

ot
þ u � rA ¼ A � ruþruT � A� 1

kr
ðA� IÞ;

A ¼ AL on C�:

ð5Þ

Here u is the velocity, p is the pressure, gs is the solvent viscosity, qL is the fluid density, D is the
symmetric part of the velocity gradient tensor, c is a measure of polymer concentration in terms of
the zero shear viscosity, and where kr is the relaxation time. The zero shear viscosity g ¼ gs þ gp,
where gp ¼ cgs is the polymer contribution to viscosity. The fluid retardation time is equal to
kr=ð1þ cÞ. The above equations are solved with the following initial conditions:

ujt¼0 ¼ u0; ð6Þ
Ajt¼0 ¼ A0; ð7Þ

where u0 and A0 are the known initial values of the velocity and the configuration tensor.
The particle velocity Ui and angular velocity xi are governed by

Mi
dUi

dt
¼ Migþ Fi ð8Þ

Ii
dxi

dt
¼ Ti ð9Þ

Uijt¼0 ¼ Ui;0 ð10Þ
xijt¼0 ¼ xi;0 ð11Þ

where Mi and Ii are the mass and moment of inertia of the ith particle, and Fi and Ti are the
hydrodynamic force and torque acting on the ith particle. In this investigation we will assume that
the particles are circular, and therefore we do not need to keep track of the particle orientation.
The particle positions are obtained from

Ω Γ

P

Γ1

Γ4

Γ2 Γ3

−Γ
x

y

Fig. 1. A typical rectangular domain used in our simulations; C� is the upstream portion of C.
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dXi

dt
¼ Ui ð12Þ

Xijt¼0 ¼ Xi;0 ð13Þ

where Xi;0 is the position of the ith particle at time t ¼ 0.

2.2. Weak form of equations and finite-element discretization

The approach used for obtaining the weak form of the governing equations stated in the
previous section was described in Glowinski et al. (1998), Singh et al. (2000) and Glowinski et al.
(1997). In obtaining this weak form, the hydrodynamic forces and torques acting on the particles
can be completely eliminated by combining the fluid and particle equations of motion into a single
weak equation of motion for the combined fluid-particle system. For simplicity, in this section we
will assume that there is only one particle. The extension to the many-particle case is straight-
forward.
The solution and variation are required to satisfy the strong form of the constraint of rigid

body motion throughout P ðtÞ. In the distributed Lagrange multiplier method this constraint is
removed from the velocity space and enforced weakly as a side constraint using a distributed
Lagrange multiplier term. It was shown in Glowinski et al. (1998) and Glowinski et al. (1997) that
the following weak formulation of the problem holds in the extended domain:
For a.e. t > 0, find u 2 W uC, A 2 W A, p 2 L20ðXÞ, k 2 KðtÞ, U 2 R2, and x 2 R, satisfying

Z
X

qL
du

dt

�
� g

�
� vdx�

Z
X
pr � vdxþ

Z
X
2gsD½u� : D½v�dx

�
Z

X
v � r � c

kr
A

� �
dxþ 1

�
� qL

qd

�
M

dU

dt

��
� g

�
� Vþ I

dx
dt

n

�
� F0 � V

¼ hk; v� ðVþ n 
 rÞiP ðtÞ for all v 2 W 0;V 2 R2; and n 2 R; ð14Þ
Z

X
qr:udx ¼ 0 for all q 2 L2ðXÞ; ð15Þ

hl; u� ðUþ x 
 rÞiPðtÞ ¼ 0 for all l 2 KðtÞ; ð16Þ
Z

X

oA

ot

�
þ u � rA� A � ru�ruT � Aþ 1

kr
ðA� IÞ

�
� sdx ¼ 0 for all s 2 W A0; ð17Þ

ujt¼0 ¼ u0 in X; ð18Þ

Ajt¼0 ¼ A0 in X; ð19Þ

as well as the kinematic equations and the initial conditions for the particle linear and angular
velocities. Here F0 is the additional body force applied to the particles to limit the extent of overlap
(see (27) below) and k is the distributed Lagrange multiplier
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W uC ¼ fv 2 H 1ðXÞ2jv ¼ uCðtÞ on Cg;
W 0 ¼ H 1

0 ðXÞ2;
W A ¼ fA 2 H 1ðXÞ3jA ¼ ALðtÞ on C�g;
W A0 ¼ fA 2 H 1ðXÞ3jA ¼ 0 on C�g;

L20ðXÞ ¼ q 2 L2ðXÞj
Z

X
qdx

�
¼ 0

�
;

ð20Þ

and KðtÞ is L2ðP ðtÞÞ2, with h:; :iPðtÞ denoting the L2 inner product over the particle, where C� is the
upstream part of C. In our simulations, since the velocity and l are in L2, we will use the following
inner product

hl; viPðtÞ ¼
Z
P ðtÞ

ðl � vÞdx: ð21Þ

In order to solve the above problem numerically, we will discretize the domain using a regular
finite element triangulation Th for the velocity and configuration tensor, where h is the mesh size,
and a regular triangulation T2h for the pressure. The following finite dimensional spaces are de-
fined for approximating W uC, W 0, W A, W A0, L2ðXÞ and L20ðXÞ:

WuC;h ¼ fvh 2 C0ð�XXÞ2jvhjT 2 P1 
 P1 for all T 2 Th; vh ¼ uC;h on Cg;
W0;h ¼ fvh 2 C0ð�XXÞ2jvhjT 2 P1 
 P1 for all T 2 Th; vh ¼ 0 on Cg;

ð22Þ

L2h ¼ fqh 2 C0ð�XXÞjqhjT 2 P1 for all T 2 T2hg;

L20;h ¼ fqh 2 L2hj
Z

X
qh dx ¼ 0g;

ð23Þ

WAh ¼ fsh 2 C0ð�XXÞ3jshjT 2 P1 
 P1 
 P1 for all T 2 Th; sh ¼ AL;h on C�g;
WA0;h ¼ fsh 2 C0ð�XXÞ3jshjT 2 P1 
 P1 
 P1 for all T 2 Th; sh ¼ 0 on C�g;

ð24Þ

where C� is the upstream part of C. The particle inner product terms in (14) and (16) are dis-
cretized using a triangular mesh similar to the one used in Singh et al. (2000).

2.3. Collisions and near-collisions

When there is more than one particle, the right-hand side of (14) becomes a sum of particle
inner product terms, one for each particle, and there is a separate equation like (16) for each
particle. If two particles overlap, the problem becomes overconstrained in the overlap region. The
two ‘‘copies’’ of (16) represent incompatible side constraints on u. And on the right-hand side of
(14), the terms corresponding to the two overlapping particles represent two supposedly inde-
pendent distributed Lagrange multipliers, associated with the respective rigid-body motion con-
straints. But as just noted, these constraints are incompatible.
In the finite-element discretized equations, the problem becomes overconstrained even before

the particles actually overlap. Specifically, it becomes overconstrained when two particles overlap
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a single velocity element. The velocity field u is a single linear function on this element, but the two
discretized ‘‘copies’’ of (16) are ‘‘trying’’ to force it to match two different rigid motions (in the
portions of the element which overlap the respective particles).
In Glowinski et al. (1998) and Singh et al. (2000), this situation was avoided by imposing a

particle–particle repulsive force strong enough to ensure that the particle–particle gap never be-
comes so small that both particles intersect a single velocity element. In the modified DLM
scheme described in this article we allow the particles to touch or slightly overlap, and eliminate
the inconsistency in the equations by the following strategy: if each particle inner product is
represented by a nonsymmetric matrix, whose rows correspond to the nodes of the particle mesh,
and whose columns correspond to the nodes of the velocity mesh, then for a given particle, we
‘‘zero out’’ any column which corresponds to a velocity node which is closer to (the center of)
another particle. In other words:
(1) If v is a velocity test function corresponding to a given one of the three vertices of a velocity
element overlapped by two particles, we drop, from the right-hand side of (14), the particle in-
ner product term corresponding to the particle whose center is farther from the given vertex.
(2) In the ‘‘copy’’ of (16) corresponding to a given particle, if l is any particle test function for
that particle�s mesh and the velocity field u is expanded with respect to the global velocity basis
functions, then we drop any nonzero terms corresponding to velocity nodes which are closer to
another particle.

A little reflection will convince the reader that the resulting equations are no longer overdeter-
mined––even when two particles overlap––as long as the overlap is not too large.
In our code, we impose a repulsive force when the particles overlap. In simulations, the re-

pulsive force is assumed to be large enough so that the overlap between the particles and the walls
is smaller than one hundredth of the velocity element size. The additional body force––which is
repulsive in nature––is added to (8). The particle–particle repulsive force is given by

FP
ij ¼

0 for di > 2R
kðXi � XjÞð2R� di;jÞ for di < 2R

�
ð25Þ

where di;j is the distance between the centers of the ith and jth particles, R is the particle radius
which is assumed to be the same for all particles, Xi and Xj are the position vectors of the particle
centers, and k is the stiffness parameter. The repulsive force between the particles and the wall is
given by

FW
ij ¼ 0 for di > 2R

kwðXi � XjÞð2R� diÞ for di > 2R

�
ð26Þ

where di is the distance between the centers of the ith particle and the imaginary particle on the
other side of the wall Cj, and kw is the stiffness parameter for particle wall collision (see Fig. 2).
The above particle–particle repulsive forces and the particle–wall repulsive forces are added to (8)
to obtain

Mi
dUi

dt
¼ Migþ Fi þ F0

i
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where

F0
i ¼

XN
j¼1
j6¼i

FPi;j þ
X4
j¼1
FWi;j ð27Þ

is the repulsive force exerted on the ith particle by the other particles and the walls. The repulsive
force acts only when the particles overlap each other.

3. Results

We present the results of several simulations, to demonstrate that the scheme works correctly,
and that it reproduces interesting dynamical behavior. As noted earlier, due to the lubrication
forces two smooth rigid particles cannot collide in the sense that the gap between them will never
become zero, but it can become exceedingly small in certain situations. In numerical simulations,
therefore, truncation errors may allow particles to actually touch, or even overlap.
In this paper we will assume that the acceleration due to gravity g ¼ 981:0 and the fluid density

qL ¼ 1:0. We will also assume that all dimensional quantities are in the CGS units. The stiffness
parameter k and kw in the particle–particle and particle–wall force models are equal to 104. This
value was selected to ensure that the particles do not overlap more than 0.01 times the velocity
element size, and depends on the liquid viscosity, the density difference, the relative velocities of
the particles and the acceleration due to gravity. The coordinate system used is shown in Fig. 1.
The x- and y-components of velocity will be denoted by u and v, respectively.
We next discuss the numerical results obtained using the above algorithm for the particle–

particle interactions between sedimenting particles. The particles are suspended in Newtonian and
Oldroyd-B fluids. The parameter c in the Oldroyd-B model will be assumed to be 7, i.e., gp ¼ 7gs.

3.1. Newtonian fluid

We begin by investigating the case of two circular particles sedimenting in a channel filled with
a Newtonian fluid. One of the objectives of this study is to show that the particle trajectories

Γj

di

Fig. 2. The imaginary particle used for computing the repulsive force acting between a particle and a wall.
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before collision are independent of the mesh resolution and the time step. We have used two
regular triangular meshes to show that the results converge with mesh refinement. In a triangular
element there are six velocity and three pressure nodes, and thus the size of the velocity elements is
one half of that of the pressure elements. The particle domain is also discretized using a triangular
mesh similar to the one used in Singh et al. (2000). The size of velocity elements for the first mesh
is 1/96, and for the second mesh is 1/144. The size of particle elements for the first mesh is 1/70,
and for the second mesh is 1/125. The number of velocity nodes and elements in the first mesh are
111,361 and 55,296, respectively. In the second mesh, there are 249,985 velocity nodes and 124,416
elements. The time step for these simulations is 0.001 or 0.0004.
For these calculations g ¼ 0:08, and the particle diameter and density are 0.2 and 1.1, re-

spectively. The initial velocity distribution in the fluid, and the particle velocities are:

u0 ¼ 0;
U10 ¼ U20 ¼ 0;
x10 ¼ x10 ¼ 0:

The channel width is 2 and height is 6. The simulations are started at t ¼ 0 by dropping two
particles at the center of the channel at y ¼ 5:0 and 5.3.
It is well known that when two particles are dropped close to each other in a Newtonian fluid

they interact by undergoing repeated drafting, kissing and tumbling (Fortes et al., 1987; Joseph
et al., 1987). From Figs. 3 and 4 we note that initially both particles accelerate downwards until
they reach the terminal velocity at t � 0:4. From these figures we also note that the particle in the
wake falls more rapidly than the particle in front, as the drag acting on it is smaller. Thus, the gap
between them decreases with time and they touch or kiss each other at t � 0:4. After touching
each other, the particles fall together with an approximately constant velocity of 4.0. The Rey-
nolds number based on this velocity is approximately 10. The maximum overlap between the
particle is less than 0.00007, which is approximately one hundredth of the velocity element size.
Also notice that when the two particles touch the y-components of their velocities become ap-
proximately equal until they tumble and subsequently separate from each other. The tumbling of
particles takes place because the configuration where they are aligned parallel to the flow direction
is unstable (see Fig. 5a–c).
These results are similar to those reported in Glowinski et al. (1998) and Singh et al. (2000)

except that in both of these papers the particle surfaces were restricted to be 1.5 times the velocity
element size away from each other. It is also worth noting that since the magnitude of repulsive
lubrication force increases with decreasing gap between the particles, for the modified DLM
method the magnitude of these force can become much larger than for the original DLM method,
as the gap size is not constrained to be larger 1.5 times the velocity element size. Consequently,
during the kissing phase due to the lubrication forces the relative velocity of the two particles for
the modified DLM method is much smaller than for the original DLM method shown in Fig. 7 of
Glowinski et al. (1998). Another consequence of this that in Fig. 4 the velocity component v for
the two particles is approximately equal for a longer time duration than in Fig. 7 of Glowinski
et al. (1998).
The velocity distribution around sedimenting particles is shown in Fig. 5a–c. In Fig. 5 a the two

particles are aligned approximately parallel to the sedimentation direction. The particles are
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touching each other. Fig. 5b shows the velocity distribution at t ¼ 0:625 when the particles are
beginning to tumble. The last figure in the sequence shows the velocity distribution when the
particles have separated from each other. These figures show that the velocity at the nodes that are
closer to the upper particle is constrained by the upper particle, and that for the nodes closer to
the lower particle is constrained by the lower particle. The method therefore allows the particles to
touch as well as slightly overlap each other.
In Figs. 3 and 4 we have shown the x and y-components of positions and velocities as a function

of time for the two meshes described above using the time steps of 0.001 and 0.0004. From Fig. 3
we note that when the number of nodes used is approximately doubled the x- and y-components
of velocities and positions for both particles (marked 1 and 2) before collision, i.e., for t < 0:4,
remain approximately the same. The results obtained for the finer mesh are denoted by 10 and 20.
Similarly, a comparison of the curves marked (1 and 10) and (2 and 20) in Fig. 4 shows that when
the time step is reduced by a factor of 2.5 the temporal evolutions of the particle velocities and
trajectories do not change significantly which shows that the results for t < 0:4 are also inde-
pendent of the time step. We may therefore conclude that for t < 0:4––the time duration for which
the particle–particle interactions do not significantly influence the motion of the particles––the
results are independent of the mesh resolution. The trajectories of the particles for t > 0:4 are
highly sensitive to small errors in the trajectories before the ‘‘collision,’’ and therefore change
significantly when the mesh or time step is altered. This is a form of chaos, and therefore it is
impractical to refine the time step and mesh sufficiently to accurately capture the post ‘‘collision’’

0.0
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2.0

0.0

(a)

0.2 0.4 0.6 0.8 1.0
t

x

x1, dt=0.001
x2, dt=0.001
x1', dt=0.0004
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-1.0

0.0

1.0
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Fig. 3. The velocity components u and v and the positions x and y of the sedimenting circles are shown as a function of
time. The size of the velocity elements is 1/96, and the size of the particle elements is 1/70. The time step for the curves

marked 1 and 2 is 0.001 and for the curves marked 10 and 20 is 0.0004.
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trajectories. However, the overall qualitative behavior of the particles in the simulations is
completely realistic as long as the pre-collision trajectories are accurately resolved.

3.2. Oldroyd-B fluid

For all results reported in this subsection the velocity element size is 1/96, and the size of the
particle elements is 1/70. The particle density is 1.07 and diameter is 0.2. The fluid viscosity is 0.24
and relaxation time is 0.3. The time step used for all results reported this subsection is 0.0001.
When two particles sediment in a channel filled with a viscoelastic liquid the stable configu-

ration is the one where the particles are aligned parallel to the flow direction. For these simula-
tions the channel width is 2 and height is 6. In Fig. 6a and b, the positions of the two particles and
trA distributions for t ¼ 1:0 and 3.0 are shown, where trA ¼ A11 þ A22 is the trace of the tensor A.
trA is a measure of the extent of polymer stretch; in the relaxed state its value is 2 and for the
stretched state it is greater than 2. The particles were dropped at a distance of 0:15D from each
other at t ¼ 0. The Reynolds number Re ¼ 0:48 and De ¼ 1:725. Also note that since the velocity
of the particle on the top is larger, the distance between them decreases with time. The distance
decreases to approximately 0:0001D at t ¼ 1:0. These results are similar to those reported in Fig. 9
a–c of Singh et al. (2000), except that the modified DLM method used here allows the particles to
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Fig. 4. The velocity components u and v and positions x and y of the sedimenting circles are shown as a function of
time. For curves marked 1 and 2 the size of the velocity elements is 1/96 and the size of the particle elements is 1/70 and

for the curves marked 10 and 20 the size of the velocity elements is 1/144, and the size of the particle elements is 1/125.

The time step is 0.0004.
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come closer to each other. Also notice that the distance between particles in Fig. 6 is comparable
to that for experiments. From Fig. 6a and b, where we have shown the isovalues of trA, we note
that trA in front of the leading particle and around the particles is relatively large. This figure also
shows that it takes some time for the fluid to relax back to the state of equilibrium. This gives rise
to the characteristic streak lines that are indicative of the hyperbolic nature of the constitutive
equation for the stress. For this case since the viscoelastic Mach number is 0.9 and the elasticity
number is 3.59, there is a strong tendency for the particles to align parallel to the falling direction.
The velocity distribution around particles is shown in Fig. 6c.
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Fig. 5. A magnified view of the velocity field near the particles is shown. For (a), (b) and (c), t ¼ 0:5, 0.625 and 0.878,
respectively. The size of the velocity elements is 1/96, and the size of the particle elements is 1/70. The time step is 0.0004.
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When more than two particles sediment in a viscoelastic liquid the stable configuration is the
one where they are aligned parallel to the sedimentation direction. To simulate this, we consider
sedimentation of 10 particles in a channel of width 2 and height 8. The simulations are started at
t ¼ 0 by placing the particles in a vertical arrangement along the channel center. The distance
between the particles is 1:5D and the center of the first particle is at 5.0. The particles are dropped
with zero linear and angular velocities, and the fluid is in the quiescent relaxed state. The average
Deborah number is 1.73, the average Reynolds number is 0.5, the viscoelastic Mach number is
0.93 and the elasticity number is 3.46. The distribution of trA and the particle positions at
t ¼ 0:88 is shown in Fig. 7. We note that the particles are aligned approximately parallel to the
sedimentation direction and the distance between the particles of the chain is very small. Again
these results are similar to those reported in Singh et al. (2000), except that the particles of the
chain are packed much more tightly than in Singh et al. (2000). In fact, some of the particles are
slightly overlapping each other. The repulsive body force is needed to ensure that the overlap is
sufficiently small.

4. Conclusions

The modified DLM method developed in this paper allows particles to come arbitrarily close to
each other, including slightly overlap each other. When conflicting rigid body motion constraints

Fig. 6. The size of the velocity elements is 1/96, and the size of the particle elements is 1/70. The time step is 0.0004. The

two particles are dropped at t ¼ 0 at y ¼ 5:0 and y ¼ 5:3 along the channel center. (a) Isovalues of trA at t ¼ 1:0, (b)
Isovalues of trA at t ¼ 3:0, (c) The velocity field at t ¼ 1:0.
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from two different particles are applicable on a velocity node, the constraint from the particle that
is closer to the node is used and the other constraint is dropped. A repulsive force is applied when
the particles overlap each other to limit the overlap. In our simulations, the particles are allowed
to overlap as much as 1/100 of the velocity element size. The modified method allows hydro-
dynamic forces to be fully resolved to within the tolerance of the mesh. The extra artificial force
in a security zone outside the particle which are used in all other methods are thus not needed.
The modified distributed Lagrange multiplier/fictitious domain method could be used to study the
particle–particle interactions as well as the interactions between particles suspended in the
Newtonian and Oldroyd-B fluids.
In order to validate our code we have simulated the time dependent interactions between two

particles sedimenting in Newtonian and Oldroyd-B fluids. We have verified that the results are
independent of the mesh resolution as well as the size of time step. Our simulations show that
when particles are dropped in a channel, and the viscoelastic Mach number (M) is less than one
and the elasticity number (E) is greater than one, the particles form a chain parallel to the flow
direction and the particles in the chain touch each other. The particles dropped in a Newtonian
liquid undergo characteristic drafting, kissing and tumbling. The particles approximately touch
each other during the kissing phase.

Fig. 7. Isovalues of trA at t ¼ 1:1 for 10 particles sedimenting in a channel filled with Oldroyd-B fluid is shown. The
parameters are the same as in Fig. 6.
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