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Abstract

In a previous communication, hereafter called Part I, we presented a model of the flow of foamy oil in
porous media in situations in which the bubbles do not coalesce to produce the percolation of free gas so

that the gas moves with the oil as it evolves. A central role in that theory is an equation of state, called the

solubility isotherm, which describes an equilibrium between the fraction of dispersed gas � and the pressure
below the bubble point pressure. A rate equation governing the return to equilibrium was postulated and it

requires a value for the relaxation constant multiplying �. The theory developed in Part I was applied to
experimental data and good agreements were achieved except for sharp transients at early times such as

those that occur for sudden drops of pressure at the open end of the closed sand pack. In the present theory

we introduce two rates and two relaxation times to describe the dynamics of relaxation of the system to an
equilibrium state; one rate for � and the other for the pressure p as was suggested already in Part I.
However, we found that constant relaxation times could not be found to fit all the available data. We

interpret this in terms of bubbles nucleating more slowly at initial drawdowns, and more rapidly as gas and

vapor is released when the pressure is held below the bubble point. This feature has been more or less

successfully addressed by the introduction of two relaxation functions of the gas fraction � which allows us
to describe the low rates of evolution of � when � is zero or close to it. The relaxation functions were fit to
one rate of depletion in a depletion experiment in which oil is pulled out of a closed sand pack at a constant

rate. With this selection of the relaxation function established, the set of governing PDEs is fixed and may
be used to predict the results of other experiments. The prediction of the pressure profiles for other greatly

different rates of depletion is satisfactory. Moreover, the experimental results processed in Part I, are im-

proved by the new theory with the same fitting.
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1. Introduction

The theory presented here can be advertised as a continuum theory for the nucleation and
motion of dispersed gas in a porous media under the assumption that the bubbles move with the
oil. The main novel features of theory are an equilibrium equation of state relating the gas fraction
to the pressure, which was derived in Joseph et al. (2002), hereafter called Part I, and the nonlinear
relaxation function that describes bubble nucleation and growth.
The motivation for this work arises from the anomalous high recovery factor and rates of

production from reservoirs of heavy foamy oil under solution gas drive. All of the background
motivation, the arguments justifying the model and detailed derivations were presented in Part I
and will not be repeated here. This paper can be viewed as the next chapter in the derivation of a
continuum theory of flow of foamy oil in porous media and we did not prepare it to standalone.
2. Governing equations

First we shall lay down the governing equations used in this work and tell readers how they
reduce to equations used in Part I, calling attention to some important features. The equations to
be solved are as follows:
u ¼ �krp ð2:1Þ
D�

Dt
� ð1� �Þdiv u ¼ 0 ð2:2Þ
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Dð�Þ
Dt

¼def a oð�Þ
ot

þ u � rð�Þ ð2:4Þ
is a material derivative following the motion with mixture velocity u in a porous media of porosity
a. The gas fraction is �, 06 �6 1 and 1� � is the liquid fraction. The pressure p6 ~pp, where ~pp is the
bubble point pressure; � ¼ 0 when p ¼ ~pp. s1ð�Þ and s2ð�Þ are relaxation functions chosen to fit
data. b is a solubility parameter that represents the solubility of reservoir gases (mainly methane)
in the heavy oil (see Table 1).
Eq. (2.1) is Darcy�s law and
k ¼ k
gð�Þ ð2:5Þ



Table 1

Solubility coefficients for some heavy oils

Oil b T (K)

Lloydminster 3.40 293

Lindbergh 3.17 293

Cerro Negro 3.53 327
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is the mobility, k is the permeability and gð�Þ is the mixture viscosity. In Part I, we presented
arguments for a viscosity function of the form
gð�Þ ¼ gð0Þ
ð1� �Þm ð2:6Þ
The expression (2.6) is supposed to describe the viscosity of the dispersion, even when the bubbles
pack and the gas dispersion is a foam, with � near to one giving the exceedingly high viscosity of a
dry foam. gð0Þ is the viscosity of the dry oil at the bubble point and m is a fitting parameter. Note
that (2.6) includes the viscosity increase at increasing � both due to the generation of a dispersion
and due to composition change (outgassing) of the continuous phase.
Eq. (2.2) is the continuity equation for a mixture of incompressible fluids in which the density

of the mixture is
qð�Þ ¼ qLð1� �Þ þ qG� 	 qLð1� �Þ ð2:7Þ

because qG 
 qL with qG the gas density and qL the liquid density. It is assumed that the live oil is
incompressible, though in fact oils of interest are slightly compressible. The theory does recognize
the dissolved gas fraction in the oil (see Part I).
Eq. (2.3) is a constitutive equation governing the relaxation to equilibrium. The equilibrium is

given by the solubility isotherm (derived in Part I)
~pp � p
p

¼ b�
1� �

ð2:8Þ

b ¼ Tref
T

ĉc
pref

ð2:9Þ
where T is the absolute temperature and the reference is at a low p is in which nearly all the gas has
been released and ĉc is a constant which characterizes the change of pressure required to release gas
of a certain volume in a PVT cell. (The implicit assumption here is that experiments in a PVT cell
can be used to model bubble evolution in a porous medium occurring under thermodynamic
equilibrium.) b is a solubility coefficient, computed for some heavy oils in Part I and given in
Table 2.1 of Part I and reproduced in Table 1.
3. Dimensionless equations and parameters

Without losing generality, we may scale our equations in the one-dimensional case used to
process sand pack experiments. After introducing dimensionless length L and time T ,
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X ¼ x=L; T ¼ t=h ð3:1Þ

and new dimensionless variables
W ¼ �

ð1� �Þ

P ¼ ð~pp � pÞ
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k0~pp

Kð�Þ ¼ kð�Þ
k0

¼ 1

1þ W

� �m

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð3:2Þ
we get
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where
h ¼ aL2

k0~pp
ð3:6Þ
is a characteristic time and
J1 ¼
s1~ppk0
L2

; J2 ¼
s2~ppk0
L2

ð3:7Þ
are dimensionless relaxation times.
Eqs. (3.3)–(3.5) are closed with selection of m, J1 and J2; b is known from Table 1.
In Part I we considered the simpler fitting problem in which J2 ¼ 0. The best values
J1 ¼ 5; m ¼ 11; b ¼ 3:4 ð3:8Þ

were determined by fitting Maini and Sarma�s (1994) experiment for steady flow through an open
sand pack. The predictions of transients in a drawdown experiment using (3.8) were not good.
4. Boundary conditions

We consider three different types of experiments: depletion, drawdown, and blowdown.
Kumar et al. (2000) carried out depletion experiments in which live oil is pulled at a constant

rate out of a sand pack closed at one end. At the closed end



Fig. 1
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U ¼ 0 ð4:1Þ
At the open end,
U ¼ c ð4:2Þ
is prescribed. It is easy to eliminate U from (3.4) and (3.5) using (3.3). This leads to a coupled pair
of nonlinear PDEs for P and W. To solve these equations it is sufficient to prescribe a pressure
boundary condition at the open and closed end. This corresponds to the physics of nucleation in
which the evolution of W (or �) is controlled by the pressure.
In Fig. 1 we have reproduced a graph of the average pressure vs. time for different constant

rates of depletion. The volumetric average pressure is calculated using the pressure obtained at
seven points along the length of the sand pack.
Before depletion the sand pack was pressurized at a value of 620 psi; this is over-pressurization

of 45 psi above the bubble point pressure. Over-pressurization drives more gas into solution, and
gas pockets more deeply into crevices, which are nucleation sites on the solid surfaces of the
porous media. The over-pressurization probably has the effect of delaying the outgassing of
dissolved gas as the pressure is dropped below the bubble point. The decline of the pressure with
volume when the pressure is higher than the bubble point pressure is due to the compressibility of
live oil which is ignored in our theory. The main striking feature of the experiments is the un-
dershoot whose magnitude increases strongly with the rate of depletion; deep undershoots follow
from rapid depletion. The undershoots are due to the fact that the drawdown is too fast to be
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. Comparison of the experimental data by Kumar et al. (2000) and the numerical result with nonlinear relaxation

ious depletion rate Q ¼ 0:08, 0.37 and 3.0 cc/h (J1 ¼ 200 expð�500�Þ þ 5, J2 ¼ �1:99 expð�200�Þ � 0:01Þ.
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followed by nucleation and transfer of dissolved gas to free gas, which takes its own (relaxation)
time. Once the nucleation starts, the pressure rises again.
In a drawdown experiment, which was carried out by Maini and Sarma (1994), the pressure at

the open end is dropped in a prescribed manner; (4.3) holds and
2 T

T. Ko
P ¼ c3ðsÞ ðprescribed at open endÞ ð4:3Þ
In a blowdown experiment the pressure is dropped suddenly to a constant value c3 < ~PP .
5. Selection of model parameters

Our goal was to predict the undershoot and at the same time not deteriorate the agreements
already achieved in Part I with the experiments of Maini and Sarma (1994). We first tried to
achieve this goal with the selection of two constant times of relaxation. 2 The best parameters are
close to the values
J1 ¼ 200; J2 ¼ �18; m ¼ 9; b ¼ 3:4 ð5:1Þ
These choices led to modest improvements over the agreement already obtained in Part I, but the
undershoot in the depletion and the transients in the blowdown experiments were not obtained.
Having convinced ourselves that the transients would never be modeled by a relaxation theory

with constant relaxation we implemented the idea that the lag in the time of nucleation could be
modeled by a nonlinear relaxation function of � which was very large when � is near to zero and
then drops to modest values as � rises away from zero. A large coefficient of D�=Dt tends to
suppress D�=Dt in the evolution of � so that D�=Dt would be small when � was. With such a
nonlinear relaxation for �, a similar, less muted, evolution of P would be expected. The following
expressions were processed against depletion data of Kumar et al. (2000) for 0.37 cc/h and selected
experimental data of Maini and Sarma (1994):
J1 ¼ a1 expð�b1�Þ þ c1; J2 ¼ a2 expð�b2�Þ þ c2 ð5:2Þ
We found that values
a1 ¼ 200
b1 ¼ 500
c1 ¼ 5

8<
:

9=
;;

a2 ¼ �1:99
b2 ¼ 200
c2 ¼ �0:01

8<
:

9=
;;

m ¼ 9
b ¼ 3:4

� �
ð5:3Þ
gave rise to the comparisons examined in Section 6.
It is almost certain that somewhat better values than those given by (5.3) could be obtained but

delicate processing for this set of experiments is not compatible with our perception that the
present theory gives the trends, and even the values, ‘‘more or less.’’
We call to the reader�s attention now and again later, that one set of coefficients (5.3) describe

all the experiments, even of different authors, reviewed below.
he numerical code used in Part I is due to R. Bai. The code used in the more difficult problem here was devised by

and is described in Appendix A.
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6. Comparison with experiments

Here we compare the predictions of the theory given by (3.3)–(3.5), (5.2) and (5.3) subject to the
boundary condition in Section 4 which is appropriate to the experiments. To enhance under-
standing we will also present the comparisons with the constant relaxation time theory (5.1) in
certain cases; no comparison is given in the undershoot case arising in the depletion experiments
because undershoots do not arise in the constant relaxation theory.
In Fig. 1, we compared the nonlinear relaxation theory with data from the depletion experi-

ments of Kumar et al. (2000). There is a disagreement for small depletion volumes and large
depletion volumes. To understand the axes, note that with a constant rate of expansion
volume ðccÞ ¼ _vvt ð6:1Þ

where _vv is in cc/h and t is in hours. The experiments have a finite slope at small times when the
average pressure is above the saturation pressure 575 psi. The finite slope here tells how the
volume of live oil, without bubbles, increases as pressure drops. This represents the compress-
ibility of live oil; the live oil is assumed to be incompressible in the theory.
At large volumes (or times) the experimental pressure falls well below the predicted values. We

believe that this is due to the coalescence and then percolation of free gas in the experiments which
is ignored in the theory.
We turn next to a comparison of theory to the steady flow experiments of Maini and Sarma

(1994). In Fig. 2 we compare the pressure distributions for the most unfavorable case of steady
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Fig. 2. The pressure distribution for this steady problem at outlet pressure PL ¼ 0:75 MPa.
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flow from a live oil reservoir to the outlet at a lower pressure. The nonlinear relaxation is better
than the constant relaxation theory which is better than the single constant relaxation time given
in Part I. In the other cases, in which the outlet pressure PL > 0:75 MPa the agreements are better
and order in the same way as here.
In Fig. 3 we plotted the oil production rate against the outlet pressure drawdown, which is the

difference between the inlet and outlet pressure. The agreement between the nonlinear relaxation
theory and the experiments is good.
In Fig. 4 we plotted the gas fraction distribution, � vs. x when the outlet pressure is lowest.

There is no experimental data for this case. The figure shows that the nonlinear relaxation theory
suppresses evolution of gas when the gas fraction is small, consistent with our understanding of
nucleation, and growth of bubbles.
The blowdown experiment of Maini and Sarma (1994) is discussed and prepared for com-

parison with theory in Section 9 of Part I. A graph of the experiment is shown in Fig. 1 of Part I.
There are seven pressure taps along the length of the sand pack; this corresponds to six segments
between taps, as shown in Fig. 7.
The evolution of the differential pressure across each segment was recorded and is shown in Fig.

5. The pressure at the outlet x ¼ L in this experiment was dropped suddenly from
p ¼ 4:83 MPa to PL ¼ 0:75 MPa ð6:2Þ
The theoretical result for the nonlinear relaxation theory is given in Fig. 6. A somewhat better
than qualitative agreement is evident. The predicted differential pressure across each segment is
higher at long times than in the experiments, as they were in the depletion experiments shown in
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Fig. 3. The oil production rate for steady problems as a function of the drawdown pressure.
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Fig. 5. Experimental data for unsteady blowdown problem by Maini and Sarma (1994). The pressure drop across six

segments is presented with the greatest pressure drop across the segment at the outlet (open end) and smallest drops

across the segment at the closed end.
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Fig. 6. Numerical result for the differential pressure for nonlinear relaxation J1 and J2 (J1 ¼ 200 expð�500�Þ þ 5,
J2 ¼ �1:99 expð�200�Þ � 0:01).
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Fig. 1. Our tentative explanation is that the lower differential pressure observed in the experiments
is due to coalescence and percolation of free gas not allowed in the theory.
The pressure decay for the constant relaxation time theory shown in Fig. 8 is much slower than

in the experiments.
The evolution of the gas fraction at early times predicted by the nonlinear and constant re-

laxation time theories are in Figs. 9 and 10, respectively. The evolution of gas at early times is
markedly suppressed by the nonlinear theory modeling nucleation. Gas fractions were not
measured in the experiments.
The cumulative oil production in the blowdown was measured and is shown in Fig. 1. The

cumulative production may be obtained as the integral over time of the rate of production
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Fig. 10. Numerical result for the differential gas fraction at constant relaxation J1 and J2 (J1 ¼ 200, J2 ¼ �18).
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q0Q
�
ðtÞ ¼ q0

Z t

0

QðtÞdt; Q
�
¼ Akð1� �ÞdP

dX
ð6:3Þ
at the open end of the sand pack (see Section 9, Part I). Theoretical results for oil production are
also presented in Fig. 11. The nonlinear relaxation time theory represents very well the production
at early times. The discrepancy at long times is again compatible with the idea that oil production
in the experiments is suppressed by the percolation of free gas not allowed in the theories.
7. Conclusions

A summary of the main points is in the abstract of this paper. We stand by the conclusions
already presented in Part I with the caveat that the introduction of the continuum theory of
nucleation developed here represents an advance in the evolution of this theory. Future work
points to the incorporation of the compressibility of live oil, and an explicit recognition of the
effects of liberation of dissolved gases on the oil and transfer properties neglected here. The most
important feature lacking in the present work is the coalescence of dispersed gas and the per-
colation of free gas streams. It is not yet clear how many of these features can be incorporated in
a simple empirically based and mathematically elegant description of the flow of foamy oil in
porous media.
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Appendix A. Numerical method for the solution of (3.3)–(3.5) for sand pack problems

To solve the fully implicit constitutive equations, we write again (3.3)–(3.5) as follows:
U 0 ¼ 1

1þ Wn�1

� �m

Pn�1 þ 1
� �2.� �

oPn�1

oX
ðA:1Þ
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where the superscript n indicates the time level, and U 0 is intermediate velocity. Three variables, U ,
P and W, are decoupled in the rewritten four equations. The W in (A.2) and P in (A.4) are in-
tegrated using the Crank–Nicolson method (second-order accuracy). Before solving (A.2), the
velocity is updated with the values of the pressure and gas fraction at a previous time step through
(A.1). The velocity is calculated again in (A.3) with the new value of W obtained from (A.2) and
used in (A.4) to calculate P with the updated value ofW. By calculating (3.3) two times, we can get
converged values for each time step more quickly.
The constitutive equations are discretized using a Galerkin method. The weak formulations of

the constitutive equations are derived by multiplying them by a corresponding weighting function
and integrating over the spatial domain of a problem. The one-dimensional uniform grid is used
in a calculation domain. In (A.2) and (A.4), the global matrix of the equations has a tri-diagonal
matrix formation.
The main iteration is the loop of calculation for the four-step equations (A.1)–(A.4) to get the

converged value of variables U , P and W at each time step. The sub-iteration is done to linearize
the non-linear term for W in equation (A.2). The solution at steady state is sought through time
marching of the corresponding unsteady governing equation. Therefore, the value of 1=Dt can be
considered as an inertial relaxation factor of steady SIMPLE algorithm Patankar (1980).
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