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1. Direct simulation of the motion of settling ellipsoids in
Newtonian fluid

T.-W. Pan1, R. Glowinski2, D.D. Joseph3, R. Bai4

1. Introduction. In this article we first discuss the generalization of a Lagrange
multiplier based fictitious domain method [7, 10] to the simulation of the motion of
particles of general shape in a Newtonian fluid. Unlike the cases where the particles
are spheres, we attach two points, besides the center of mass, to each particle of general
shape and move them according to the rigid-body motion of the particle in order to
track this motion. The equations describing the motion of these two points are solved
by a distance preserving scheme so that rigidity can be maintained. We then apply
it to simulate ellipsoids settling in a narrow channel filled with a Newtonian fluid. In
the simulations, when there is only one ellipsoid it turns its broadside orthogonal to
the stream as expected; for the two ellipsoid case they interact with each other as
observed in experiments.

2. A model problem and fictitious domain formulation for three di-
mensional particulate flow. To perform the direct numerical simulation of the
interaction between particles and fluid, we have developed a methodology which is a
combination of a distributed Lagrange multiplier based fictitious domain (also called
domain embedding) method and operator splitting methods [6, 8, 7, 9, 10], this ap-
proach (or closely related ones derived from it) has become the method of choice for
other investigators around the world (refs., Baaijens in [2] and Wagner et al. in [21]).
In the following we are going to recall the ideas at the basis of the above methodology,
but with generalization to the motion of a single particle of general shape in a New-
tonian viscous incompressible fluid (of density ρf and viscosity νf ) under the effect
of gravity. For the situation depicted in Figure 2.1 below, the flow is modeled by the
Navier-Stokes equations, namely, (with obvious notation)

ρf

[∂u
∂t

+ (u ·∇)u
]
− νf∆u + ∇p = ρf g in (Ω \ B̄)× (0, T ), (2.1)

∇ · u = 0 in (Ω \ B̄)× (0, T ). (2.2)

u(0) = u0(x), (with ∇ · u0 = 0) (2.3)

u = g0 on Γ× (0, T ), with

∫

Γ

g0 · n dΓ = 0, (2.4)

where Γ = ∂Ω, g is gravity and n is the unit normal vector pointing outward to the
flow region. We assume a no-slip condition on γ(= ∂B) The motion of particle B
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Figure 2.1: The flow region with one particle

satisfies the Euler-Newton’s equations, namely

v(x, t) = V(t) + ω(t)×−−−→G(t)x, ∀{x, t} ∈ B(t)× (0, T ), (2.5)

dG
dt

= V, (2.6)

Mp
dV
dt

= Mp g + FH + Fr, (2.7)

d(Ip ω)
dt

= TH +
−−→
Gxr × Fr, (2.8)

with hydrodynamical forces and torques given by

FH = −
∫

γ

σn dγ, TH = −(
∫

γ

−→
Gx× σn dγ), (2.9)

completed by the following initial conditions,

G(0) = G0, V(0) = V0, ω(0) = ω0. (2.10)

Above, Mp, Ip, G, V and ω are the mass, inertia, center of mass, translation velocity
of the center of mass and angular velocity of particle B, respectively. In (2.8) we found
preferable to deal with the kinematic angular momentum Ip ω making the formulation
more conservative. In order to avoid particle-particle and particle-wall penetration
which can happen in the numerical simulation, we have introduced an artificial force
Fr in (2.7) (for more details, see, e.g., [7] and [10]) and then a torque in (2.8) acting
on the point xr where Fr applies on B.

To solve system (2.1) – (2.10) we can use, for example, Arbitrary Lagrange-Euler
(ALE) methods as in [12, 14, 17], or fictitious domain methods, which allow the flow
calculation on a fixed grid, as in [6, 8, 7, 9, 10]. The fictitious domain methods that
we advocate have some common features with the immersed boundary method of Ch.
Peskin (see, e.g., refs. [18, 19]) but also some significant differences in the sense that
we take systematically advantage of distributed Lagrange multipliers to force the rigid
body motion inside the particle, which seems still to be a relatively novel approach
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in this context, and whose possibilities have not been fully explored yet. As with the
methods in [18, 19], our approach takes advantage of the fact that the flow can be
computed on a grid which does not have to vary in time, a substantial simplification
indeed.

The principle of fictitious domain methods is simple. It consists of

• Filling the particles with a fluid having the same density and viscosity as the
surrounding one.

• Compensating the above step by introducing, in some sense, an anti-particle of
mass (−1)Mp ρf/ρs and inertia (−1)Ip ρf/ρs, taking into account the fact that
any rigid body motion v(x, t) verifies ∇ · v = 0 and D(v) = 0 (ρs : particle
density).

• Finally, imposing the rigid body velocity on B(t), namely

v(x, t) = V(t) + ω(t)×−−−→G(t)x, ∀x ∈ B(t),∀t ∈ (0, T ), (2.11)

via a Lagrange multiplier λ supported by B(t). Vector λ forces rigidity in B(t)
in the same way that ∇p forces ∇ · v = 0 for incompressible fluids.

We obtain then an equivalent formulation of (2.1)–(2.10) defined on the whole domain,
namely

For a.e. t > 0, find {u(t), p(t),V(t),G(t), ω(t), λ(t)} such that

u(t) ∈ Wg0(t), p(t) ∈ L2
0(Ω), V(t) ∈ R3, G(t) ∈ R3, ω(t) ∈ R3, λ(t) ∈ Λ(t) (2.12)

and 



ρf

∫

Ω

[
∂u
∂t

+ (u ·∇)u
]
· vdx−

∫

Ω

p∇ · vdx + νf

∫

Ω

∇u : ∇vdx

+(1− ρf

ρs
)[Mp

dV
dt

·Y +
d(Ip ω)

dt
· θ]− Fr ·Y −−−→Gxr × Fr · θ

=< λ,v −Y − θ ×−→Gx >Λ(t) +(1− ρf

ρs
)Mp g ·Y + ρf

∫

Ω

g · vdx,

∀v ∈ (H1
0 (Ω))3, ∀Y ∈ R3, ∀θ ∈ R3,

(2.13)

∫

Ω

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω), (2.14)

dG
dt

= V, (2.15)

< µ,u(t)−V(t)− ω(t)×−−−→G(t)x >Λ(t)= 0, ∀µ ∈ Λ(t), (2.16)
V(0) = V0, ω(0) = ω0, G(0) = G0, (2.17)

u(x, 0) = ũ0(x) =

{
u0(x), ∀x ∈ Ω\B(0),
V0 + ω0 ×−−→G0x, ∀x ∈ B(0),

(2.18)

with the following functional spaces

Wg0(t) = {v|v ∈ (H1(Ω))3, v = g0(t) on Γ},
L2

0(Ω) = {q|q ∈ L2(Ω),
∫

Ω

q dx = 0}, Λ(t) = (H1(B(t)))3.
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Figure 3.1: An example of grids covering the surface of B(t)

In (2.12) – (2.18), only the center of mass, the translation velocity of the center of mass
and the angular velocity of the particle are considered. Knowing these two velocities
and the center of mass of the particle, one is able to translate and rotate the particle
in space by tracking two extra points x1 and x2 in each particle, which follow the rigid
body motion

dxi

dt
= V(t) + ω(t)×−−−−→G(t)xi, xi(0) = xi,0, i = 1, 2. (2.19)

In practice we shall track two orthogonal normalized vectors rigidly attached to the
body B and originating from the center of mass G.

3. Time and space discretization. For simplicity, we assume that Ω ⊂ R3 is
a rectangular parallelepiped. Concerning the space approximation of problem (2.12)–
(2.19) by a finite element method, we have

Wh = {vh|vh ∈ (C0(Ω))3, vh|T ∈ (P1)3, ∀T ∈ Th}, (3.1)

W0h = {vh|vh ∈ Wh, vh = 0 on Γ}, (3.2)

L2
h = {qh|qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ T2h}, L2

0h = {qh|qh ∈ L2
h,

∫

Ω

qh dx = 0}
(3.3)

where Th is a tetrahedrization of Ω, T2h is twice coarser than Th, and P1 is the
space of the polynomials in three variables of degree ≤ 1. A finite dimensional space
approximating Λ(t) is as follows: let {ξi}N

i=1 be a set of points from B(t) which cover
B(t) (uniformly, for example); we define then

Λh(t) = {µh|µh =
∑N

i=1
µiδ(x− ξi), µi ∈ R3, ∀i = 1, ..., N}, (3.4)

where δ(·) is the Dirac measure at x = 0. Then we shall use < ·, · >h defined by

< µh,vh >h=
∑N

i=1
µi · vh(ξi), ∀µh ∈ Λh(t), vh ∈ Wh. (3.5)

A typical choice of points for defining (3.4) is a collection of grid points for velocity
field covered by the interior of the particle B(t) and selected points from the surface
of B(t). An example of choice of surface points is shown in Figure 3.1
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Using the above finite dimensional spaces leads to the following approximation for
problem (2.12)–(2.19):

For a.e. t > 0, find u(t) ∈ Wh(t), ph(t) ∈ L2
0h(Ω), V(t) ∈ R3, G(t) ∈ R3,

ω(t) ∈ R3, λh(t) ∈ Λh(t) such that




ρf

∫

Ω

[
∂uh

∂t
+ (uh ·∇)uh

]
· vdx−

∫

Ω

ph∇ · vdx + νf

∫

Ω

∇uh : ∇vdx

+(1− ρf

ρs
)[Mp

dV
dt

·Y +
d(Ip ω)

dt
· θ]− Fr ·Y −−−→Gxr × Fr · θ

=< λh,v −Y − θ ×−→Gx >h +(1− ρf

ρs
)Mpg ·Y + ρf

∫

Ω

g · vdx,

∀v ∈ W0h, ∀Y ∈ R3, ∀θ ∈ R3,

(3.6)

∫

Ω

q∇ · uh(t)dx = 0, ∀q ∈ L2
h, (3.7)

uh = g0h on Γ, (3.8)
dG
dt

= V, (3.9)

dxi

dt
= V(t) + ω(t)×−−−−→G(t)xi, xi(0) = xi,0, i = 1, 2, (3.10)

< µ,uh(t)−V(t)− ω(t)×−−−→G(t)x >h= 0, ∀µ ∈ Λh(t), (3.11)
V(0) = V0, ω(0) = ω0, G(0) = G0, (3.12)
u(x, 0) = ũ0h(x). (3.13)

In (3.8), g0h is an approximation of g0 belonging to γWh = {zh|zh ∈ (C0(Γ))3, zh =

z̃h|Γ with z̃h ∈ Wh} and verifying
∫

Γ

g0h · ndΓ = 0.

3.1. An operator-splitting scheme à la Marchuk-Yanenko. Many operator-
splitting schemes can be used to time-discretize (3.6)–(3.13). One of the advantage of
operator-splitting schemes is that we can decouple difficulties like (i) the incompress-
ibility condition, (ii) the nonlinear advection term, and (iii) a rigid-body-motion pro-
jection, so that each one of them can be handled separately, and in principle optimally.
Let 4t be a time discretization step and tn+s = (n + s)4t. By an operator-splitting
scheme à la Marchuk–Yanenko as in [16], we have the following scheme after dropping
some of the subscrips h (similar ones are discussed in [6, 8, 7, 9, 10]):

u0 = ũ0, G0 = G0, V0 = V0, ω0 = ω0, x0
1 = x1,0, x0

2 = x2,0 given; (3.14)

for n ≥ 0,un(' u(tn)), Gn, Vn, ωn, xn
1 and xn

2 being known, we compute un+1/5,
pn+1/5 via the solution of





ρf

∫

Ω

un+1/5 − un

4t
· vdx−

∫

Ω

pn+1/5∇ · vdx = 0, ∀v ∈ W0h,
∫

Ω

q∇ · un+1/5dx = 0, ∀q ∈ L2
h,

un+1/5 ∈ Wh, un+1/5 = gn+1
0h on Γ, pn+1/5 ∈ L2

0h.

(3.15)
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Next, compute un+2/5 via the solution of




∫

Ω

∂u
∂t

· vdx +
∫

Ω

(un+1/5 ·∇)u · vdx = 0,

∀v ∈ Wn+1,−
0h , a.e. on (tn, tn+1),

u(tn) = un+1/5,

u(t) ∈ Wh, u(t) = gn+1
0h on Γn+1

− × (tn, tn+1),

(3.16)

and set un+2/5 = u(tn+1).

Then, compute un+3/5 via the solution of




ρf

∫

Ω

un+3/5 − un+2/5

4t
· vdx + ανf

∫

Ω

∇un+3/5 : ∇vdx = ρf

∫

Ω

g · vdx,

∀v ∈ W0h; un+3/5 ∈ Wh, un+3/5 = gn+1
0h on Γ.

(3.17)

Now predict the motion of the center of mass and the angular velocity of the particle
via

dG
dt

= V(t), (3.18)

dxi

dt
= V(t) + ω(t)×−−−−→G(t)xi, for i = 1, 2, (3.19)

(1− ρf/ρs)Mp
dV
dt

= (1− ρf/ρs)Mpg + Fr, (3.20)

(1− ρf/ρs)
d(Ip ω)

dt
=
−−→
Gxr × Fr, (3.21)

G(tn) = Gn, V(tn) = Vn, (Ip ω)n = (Ip ω)(tn), (3.22)
x1(tn) = xn

1 , x2(tn) = xn
2 ,

for tn < t < tn+1. Then set Gn+4/5 = G(tn+1), Vn+4/5 = V(tn+1), (Ip ω)n+4/5 =
(Ip ω)(tn+1), xn+4/5

1 = x1(tn+1), xn+4/5
2 = x2(tn+1), and un+4/5 = un+3/5.

With the center Gn+4/5, xn+4/5
1 and xn+4/5

2 obtained at the above step, we enforce the
rigid body motion in the region B(tn+4/5) occupied by the particle





ρf

∫

Ω

un+1 − un+4/5

4t
· v dx + βνf

∫

Ω

∇un+1 : ∇v dx

+(1− ρf

ρs
)Mp

Vn+1 −Vn+4/5

4t
·Y + (1− ρf

ρs
)
(Ip ω)n+1 − (Ip ω)n+4/5

4t
· θ

=< λn+4/5, v −Y − θ ×
−−−−−−→
Gn+4/5x >h, ∀v ∈ W0h,Y ∈ R3, θ ∈ R3,

un+1 ∈ Wh,un+1 = gn+1
0h on Γ, λn+4/5 ∈ Λn+4/5

h ,Vn+1 ∈ R3,ωn+1 ∈ R3,

(3.23)

< µ, un+1 −Vn+1 − ωn+1 ×
−−−−−−→
Gn+4/5x >h= 0, ∀µ ∈ Λn+4/5

h . (3.24)

In (3.14)–(3.24), Γn+1
− = {x|x ∈ Γ, gn+1

0h (x) · n(x) < 0} and Wn+1,−
0h = {v|v ∈

Wh, v = 0 on Γn+1
− }, Λn+s

h = Λh(tn+s), and α + β = 1. In the numerical simulation,
we usually choose α = 1 and β = 0.
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3.2. On the solution of subproblems (3.15), (3.16), (3.17), (3.18)-(3.22),
and (3.23)-(3.24). The degenerated quasi-Stokes problem (3.15) is solved by an
Uzawa/preconditioned conjugate gradient algorithm as in [11], where the discrete
elliptic problems from the preconditioning are solved by a matrix-free fast solver from
FISHPAK due to Adams et al. in [1]. The advection problem (3.16) for the velocity
field is solved by a wave-like equation method as in [4, 5]. Problem (3.17) is a classical
discrete elliptic problem which can be solved by the same matrix-free fast solver.

System (3.18)-(3.22) is a system of ordinary differential equations thanks to op-
erator splitting. For its solution one can choose a time step smaller than 4t, (i.e.,
we can divide 4t into smaller steps) to predict the translation velocity of the center
of mass, the angular velocity of the particle, the position of the center of mass and
the regions occupied by each particle so that the repulsion forces can be effective to
prevent particle-particle and particle-wall overlapping. At each subcycling time step,
keeping the distance as constant between the pair of points x1 and x2 in each particle
is important since we are dealing with rigid particles. We have applied the following
approach to satisfy the above constraint:

• Translate x1 and x2 according to the new position of the mass center at each
subcycling time step.

• Rotate Gx1 and Gx2, the relative positions of x1 and x2 to the center of mass
G, by the following Crank-Nicolson scheme (a Runge-Kutta scheme of order 2,
in fact):

Gxnew
i −Gxold

i

τ
= ω × Gxnew

i + Gxold
i

2
(3.25)

for i = 1, 2 with τ as a subcycling time step. By (3.25), we have |Gxnew
i |2 =

|Gxold
i |2 for i = 1, 2 and |Gxnew

2 −Gxnew
1 |2 = |Gxold

2 −Gxold
1 |2 (i.e., scheme

(3.25) is distance and in fact shape preserving).

Remark 3.1 In order to activate the short range repulsion force, we have to find the
shortest distance between two ellipsoids. Unlike the cases for spheres, it is not trivial
to locate the point from each surface of the ellipsoid where the distance is the shortest
between two ellipsoids. There is no explicit formula for such distance. In practice, we
first choose a set of points from the surface of each ellipsoid. Then we find the point
among the chosen points from each surface at which the distance is the shortest We
repeat this (kinf of relaxation) process in the neighborhood of the newly located point
on each surface of ellipsoid untill convergence, usually obtained in very few iterations.

For the shortest distance between the wall and ellipsoid, there exists an explicit
formula. To check whether two ellipsoids overlap each other, there exists an algorithm
used by people working on computer graphics and in robotics (e.g., see, [20]).

After solving (3.18)-(3.22), the rigid body motion is enforced in B(tn+4/5), via
equation (3.24). At the same time those hydrodynamical forces acting on the particles
are also taken into account in order to update the translation and angular velocities
of the particles. To solve (3.23)-(3.24), we use a conjugate gradient algorithm as
discussed in [7]. Since we take β = 0 in (3.23) for the simulation, we actually do not
need to solve any non-trivial linear systems for the velocity field; this saves a lot of
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computing time. To get the angular velocity ωn+1, computed via

ωn+1 = (In+4/5
p )−1(Ip ω)n+1, (3.26)

we need to have In+4/5
p , the inertia of the particle B(tn+4/5). We first compute the

inertia I0 in the coordinate system attached to the particle. Then via the center of
mass Gn+4/5 and points xn+4/5

1 and xn+4/5
2 , we have the rotation transformation Q

(QQT = QT Q = Id, detQ=1) which transforms vectors expressed in the particle
frame to vectors in the flow domain coordinate system and In+s

p = QI0QT . Actually
in order to update matrix Q we can also use quaternion techniques, as shown, in the
review paper [3].

4. Numerical experiments.

4.1. One settling ellipsoid. The orientation of symmetric long body (loosely,
a long body is a body where one dimension is much prevailing upon the other two) in
liquids of different nature is a fundamental issue in many problems of practical interest
(see [15], and references therein). In the first test case, we consider the simulation of
the motion of a settling ellipsoid in a narrow channel of infinite length filled with a
Newtonian fluid. The computational domain is Ω = (0, 1) × (0, 0.25) × (0, 4) initially,
then it moves down with the center of the ellipsoid (see, e.g., [13] for adjusting the
computational domain according to the position of the particle). The fluid density is
ρf = 1 and the fluid viscosity is νf = 0.01. The flow field initial condition is u = 0.
The three semi-axes of the ellipsoid are 0.2, 0.1 and 0.1. The initial velocity and
angular velocity of the ellipsoid are 0. The density of the ellipsoid is ρs = 1.25. Its
vertical axis is the longest semi-axis (see Figure 4.1). The mesh size for the velocity
field (resp., pressure) is hv = 1/80 (resp., hp = 2hv). The time step is 4t = 0.001.
The positions of the ellipsoid at different times in the channel are shown in Figure
4.1. (The computation was performed in a moving frame of reference, so the ellipsoid
appears not moving downward.) The motion of the ellipsoid is very violent at the
beginning, it moves very close to the side wall after release from its initial position.
Later on the motion becomes periodic (see Figures 4.1 and 4.2). As expected, the
ellipsoid turns its broadside to the stream while oscillating as shown in the last three
snapshots of Figure 4.1. The averaged particle speed at the end of the simulation
is about 4.256 so the particle Reynolds number with the long axis as characteristic
length is 170.24.

4.2. Two ellipsoids sedimenting side-by-side. It had been observed exper-
imentally by Joseph and Bai that when two ellipsoid-like long bodies sedimente side-
by-side in a narrow channel filled with a Newtonian fluid, they interact each other
periodically as shown in Figures 4.3. The particle Reynolds number is about 120. To
reproduce this phenomenon, we consider the following test case. The computational
domain is Ω = (0, 1) × (0, 0.25) × (0, 4) initially, then it moves down with the lower
center of two ellipsoids. The initial positions of the centers are (0.22, 0.125, 0.75) and
(0.78, 0.125, 0.75), respectively. The frames rigidly attached to the ellipsoids initially
are {(cos π/3, 0, sin π/3), (0, 1, 0), (cos 5π/6, 0, sin 5π/6)} and {(cos(−π/3), 0, sin(−π/3)),
(0, 1, 0), (cos π/6, 0, sin π/6)}, respectively (see Figure 4.4). All others parameters are
as in the previous case. Averaged terminal speed is about 2.497 obtained from last
300 time steps, so the averaged particle Reynolds number is 99.88 based on the length
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Figure 4.1: Position of the ellipsoid at t = 0, 0.41, 0.46, 0.56, 0.66, 0.75, 18.1, 18.18,
and 18.28 (from left to right and from top to bottom).
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Figure 4.2: Histories of the x-coordinate of the center (left) and the y-component of
the angular velocity of the ellipsoid (right) .
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Figure 4.3: Snapshots of a period of the motion of two ellipsoid-like long bodies
sedimenting in a narrow channel filled with a Newtonian fluid.

of the long axis (which is 0.4). In the simulation, we obtained result as seen in Figure
4.4 similar to the one in Figure 4.3 (the computation was performed in a moving frame
of reference, so the ellipsoids appear not moving downward), which is in good agree-
ment with experimental results qualitatively. In Figure 4.5, we can see very strong
interaction between two ellipsoids of long axes 0.4. We also have tested the case with
two ellipsoids of long axes 0.36 and found that they settle in the channel with very
weak interaction between each other (see Figure 4.5).
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