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Abstract

Lift forces acting on particles play a central role in many cases, such as sediment transport, proppant
transport in fractured reservoirs, removal of drill cuttings in horizontal drill holes and cleaning of particles
from surfaces. We study the problem of lift using 2D direct numerical simulations and experimental data.
The lift-off of single particles and many particles in horizontal flows follow laws of similarity, power laws,
which may be obtained by plotting simulation data on log–log plots. Data from slot experiments for
fractured reservoirs is processed (for the first time) on log–log plots. Power laws with a parameter de-
pendent power emerge as in the case of Richardson–Zaki correlations for bed expansion by drag.
� 2002 Published by Elsevier Science Ltd.

1. Introduction

Transport of particles in a channel by fluids occurs in variety of settings such as sediment
transport, proppant transport in oil reservoirs, removal of drill cuttings, etc. Our focus is on the
problem of sand or proppant transport in hydraulic fracturing applications.
Hydraulic fracturing is a process often used to increase the productivity of a hydrocarbon well.

A slurry of sand or proppants in a fluid is pumped into the well to be stimulated, at sufficient
pressure to exceed the horizontal stresses in the rock at reservoir depth. This opens a vertical
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fracture penetrating from the well bore far into the pay zone. When the pumping pressure is
removed, the rigid sand particles act to prop the fracture open. Productivity is enhanced because
the proppant-filled fracture offers a higher-conductivity path for oil extraction.
A typical vertical fracture or crack may be 3 m high, 30 m long and 2 cm wide. The diameter of

a typical sand grain is 2 mm, so that the crack width to proppant diameter ratio is about 10. The
proppant density is about 2.4 g/cm3.
Fig. 1 shows the side view of the crack. The fluid–proppant mixture is injected from the well

bore. The proppants settle to the bottom as they are dragged forward. A mound of proppant
develops and grows until the gap between the top of the crack and the mound reaches an equi-
librium value; this value is associated with a critical condition. The velocity in the gap between the
mound and the top of the slot increases as the gap size decreases. For velocities below critical the
mound gets higher and spreads laterally; for larger velocities proppant is washed out until the new
equilibrium height and velocity are established (Kern et al., 1959). The accumulation of proppant
at the bottom causes good vertical filling to be lost. This reduces well productivity and can also
interfere with the fracture growth process by blocking downward extension.
Despite many years of practice and experiments a suitable model for proppant transport or a

simulation tool to predict proppant placement is yet to be fully accomplished. We have partnered
with STIM-LAB (http://www.stimlab.com), a research laboratory in Duncan, OK, which is
supported by a consortium of oil production and oil service companies. STIM-LAB has been
collecting data on proppant transport in slots for 15 years.
The physical processes in proppant transport in fractures, described above, are settling and

washout. Washout could be by sliding and slipping called the bed-load transport; however, a
more efficient transport mechanism is by advection after suspension or fluidization by lift called
the suspended-load transport. Lift force plays a central role in the suspension of particles in
channel flows. Joseph (2002) proposed that ideas analogous to the Richardson and Zaki (1954)
correlation must come into play in problems of slurries, where the particles are fluidized by lift
rather than by drag. The problems of fluidization by lift can be decomposed into two separate
types of study: (1) single particle studies in which the factors that govern lifting of a heavier-than-
liquid particle off a wall by a shear flow are identified and (2) many particle studies in which
cooperative effects on lift-off are investigated.
Direct numerical simulation (DNS) can be used to extract information implicit in the equations

of fluid–particle motion. We have investigated the lift-off of a single particle and many particles in
pressure driven flows by 2D DNS (Patankar et al., 2001a,b; Ko et al., in preparation; Joseph et al.,
2002; Choi and Joseph, 2001). We show that the lift-off of single particles and many particles in

Fig. 1. Sand (proppant) transport in a fractured reservoir.
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horizontal flows follow laws of similarity, power laws, which may be obtained by plotting sim-
ulation data on log–log plots. Power laws emerge as in the case of Richardson–Zaki (RZ) cor-
relations for fluidization by drag. Powers laws are expected from the experimental data based on
our predictions from 2D numerical simulations. The primary objective of this paper is to process
the data from STIM-LAB’s experiments in the same way we process data from numerical sim-
ulations. The engineering correlations for lift-off can be used to predict proppant placement in the
crack.
The fracturing industry makes extensive use of numerical simulation schemes based on models

and programmed to run on PC’s to guide field operations. These simulations are used to predict
how the fracture crack opens and closes and how proppant is transported in the crack. Com-
mercial packages dealing with these problems and propriety packages developed by oil service
companies are used extensively. These numerical schemes solve the average equations for the fluid
and the proppant phases. The solid and the fluid are considered as inter-penetrating mixtures,
which are governed by conservation laws. Interaction between the inter-penetrating phases is
modeled. Models for drag and lift forces on the particles must be used for fluid–proppant in-
teraction. Models for the drag force on particles in solid–liquid mixtures is a complicated issue
and usually rely on the well-known Richardson and Zaki (1954) correlation. Models for lift forces
in mixtures are much less well developed than models for drag. Therefore, none of the packages
model the all important levitation of proppants by hydrodynamic lift. The power law models we
are developing from DNS and experiments may be incorporated in the model-based simulation
techniques similar to the model for drag.
The experiments of Segr�ee and Silberberg (1962) have had a big influence on studies of the fluid

mechanics of migration and lift. Eichhorn and Small (1964) performed experiments to study the
lift and drag forces on spheres suspended in a Poiseuille flow. Bagnold (1974) experimentally
studied the fluid forces on a body in shear flow. Ye and Roco (1992) experimentally measured the
angular velocity of neutrally buoyant particles in a planar Couette flow.
Different analytical expressions for the lift force on a single particle can be found in literature.

They are based on perturbing Stokes flow with inertia (e.g. Rubinow and Keller, 1961; Saffman,
1965; Bretherton, 1962; Asmolov, 1990; McLaughlin, 1991; Krishnan and Leighton, 1995 and
reference therein) or on perturbing potential flow (e.g. Auton, 1987; Drew and Passman, 1999)
with a little vorticity. In particular Schonberg and Hinch (1989); Hogg (1994) and Asmolov (1999)
analytically studied the inertial migration of spherical particles in Poiseuille flows. The effect of
curvature of the unperturbed velocity profile was found to be important. The domain of pa-
rameters for which these analytic expressions are applicable is rather severely restricted. The
perturbation analyses are of considerable value because they are analytic and explicit but they are
not directly applicable to engineering problems like proppant transport, removal of drill cuttings,
sediment transport or even lift-off of heavy single particles.
Dandy and Dwyer (1990) and Cherukat et al. (1999) reported computational studies of the

inertial lift on a sphere in linear shear flows. Mei (1992) obtained an expression for the lift force by
fitting an equation to Dandy and Dwyer’s (1990) data for high Reynolds numbers and Saffman’s
expression for low Reynolds numbers. The numerical results of Dandy and Dwyer (1990) are said
to be valid for non-rotating spheres. Hence they cannot be applied, strictly speaking, to the case of
freely rotating spheres in shear flows. Kurose and Komori (1999) performed numerical simula-
tions to determine the drag and lift forces on rotating spheres in an unbounded linear shear flow.
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Morris and Brady (1998) studied the migration of non-neutrally buoyant spheres in pressure
driven flows of Newtonian fluids. They performed Stokesian dynamic simulations of a monolayer
of spheres. These studies are valid in the creeping flow limit. In applications such as the transport
of slurries or proppants, the effect of Reynolds number on the lift force is important.
A detailed investigation of the lift-off of single and many particles in channel flows at finite

Reynolds numbers is necessary. In Section 3 we will review and discuss these results obtained from
our 2D DNSs. New discussion on the implication of these results as compared to the RZ cor-
relation for drag will be presented.
Shields (1936) reported one of the earliest works on modeling sediment transport. Vanoni

(1975) reviews the problem of sedimentation engineering. Shields (1936) is used to predict the
initial motion of sediment particles. For higher fluid flow rates the particles in the moving bed are
suspended leading to transport by advection. The problem of determining the flow condition at
which the suspension of the sediment begins has been addressed by Bagnold (1966); van Rijn
(1984a,b); Sumer (1986) and Celik and Rodi (1991), among others. There are reasons to inves-
tigate the problem further since these studies often provide inconsistent results in determining the
condition of the initiation of suspension.
In Section 2 we will discuss fluidization by drag and lift. In Section 3 we will discuss the results

from DNS. The experimental setup will be described in Section 4. The correlations based on
experimental data will be presented in Section 5. Conclusions will be presented in Section 6.

2. Analogy between fluidization by drag and lift

Fluidization by drag and shear is depicted in the cartoons in Fig. 2. In Fig. 2a the fluid enters at
the bottom of a vertical column at a uniform fluidization velocity. At equilibrium, the drag ex-
erted by the fluid balances the net buoyant weight of the particles. The particle bed acquires a
height corresponding to the average particle fraction /. When the fluidizing velocity is increased
the particle bed expands. Richardson and Zaki (1954) did experiments with different fluids,
particles and fluidization velocities. They plotted their data in log–log plots; miraculously this
data fell on straight lines whose slope and intercept could be determined. This showed that the
variables follow power laws; a theoretical explanation for this outstanding result has not been
proposed. After processing the data Richardson and Zaki found that

V/ ¼ V0½1� /�nðR0Þ; ð1Þ

Fig. 2. (a) Heavy particles fluidized by uniform fluid flow from the bottom of a vertical column. (b) Heavy particles

fluidized by lift due to shear flow of the fluid in a horizontal channel. Gravity acts vertically downwards.
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where V/ is the fluidization velocity at the column entrance or the composite velocity. V0 is the
‘‘blow out’’ velocity, when / ¼ 0; when V/ > V0 all the particles are blown out of the bed. Clearly
V/ < V0 for a fluidized bed. For fluidization columns with large cross-section in comparison to the
particle size, the RZ exponent nðR0Þ depends on the Reynolds number R0 ¼ V0d=m only, where d
denotes the particle size, e.g. diameter of a spherical particle and m is the kinematic viscosity of the
fluid. The power law in the RZ case is an example of what Barenblatt (1996) calls ‘‘incomplete
self-similarity’’ because the power itself depends on the Reynolds number, a third parameter. Pan
et al. (in press) carried out 3D DNS of the fluidization of 1204 spheres and obtained a correlation
in agreement with Eq. (1). The RZ correlation gives different expressions for n for different values
of R0. In Appendix A R.D. Barree presents a way of representing the various expressions for n by
a single continuous function.
Eq. (1) describes the complicated dynamics of fluidization by drag. The single particle fluidi-

zation velocity plays a key role in obtaining the fluidization velocity of concentrated suspensions.
An expression for the drag force Fdð1Þ on a single isolated particle in an infinite ambient of the
fluid is given by a drag law, e.g.

Fd 1ð Þ ¼ 3pgdV0; laminar;
0:055pqfd

2V 20 ; turbulent;

�
ð2Þ

where g is the fluid dynamic viscosity, qf is the fluid density and spherical particles are considered.
In a fluidized bed the total force F acting on a particle is (Foscolo and Gibilaro, 1984; Joseph,
1990)

F e;R0ð Þ ¼ Fd eð Þ � FB eð Þ; ð3Þ

where e is the fluid fraction, FdðeÞ is the drag on a single particle in the fluid–particle mixture
and FBðeÞ is the effective buoyant weight of a particle in the suspension. We have, FBðeÞ ¼
Vpðqp � qcÞg ¼ eVpðqp � qfÞg ¼ eFBð1Þ, where qp is the particle density, Vp is the volume of the
particle, g is the gravitational acceleration, FBð1Þ is the buoyant weight of an isolated particle and
qc ¼ eqf þ /qp is the effective or composite density of the fluid–particle mixture. At steady con-
ditions

F e;R0ð Þ ¼ 0;
i:e: Fd eð Þ ¼ FB eð Þ ¼ eFB 1ð Þ;
i:e: Fd eð Þ ¼ eFd 1ð Þ:

ð4Þ

For spherical particles, Eqs. (1), (2) and (4) give

pd3

6

h i
qp � qf
� �

g ¼ 3pgdV/e�nðR0Þ; laminar;
0:055pqfd

2V 2/ e�2nðR0Þ; turbulent;

�
or

RG ¼ 18e�nðR0ÞR/; laminar;

e�nðR0ÞR/

� �2
; turbulent;

( ð5Þ

where RG ¼ qf ½qp � qf �gd3=g2 represents the Reynolds number based on the sedimentation ve-
locity scale VG ¼ ½qp � qf �gd2=g and R/ ¼ qfV/d=g. Eq. (5) is another form of the correlation for
fluidization by drag and can be written as
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RG ¼ a R0ð ÞRp R0ð Þ
/ eq R0ð Þ: ð6Þ

Fig. 2b shows the fluidization of particles by shear flow observed in experiments and numerical
simulations. At equilibrium the average lift exerted by the fluid should balance the net buoyant
weight of the particles. When the applied shear rate is increased the particle bed expands. This is
similar to the fluidization by drag where the mechanism for bed expansion is different. Correla-
tions analogous to Eq. (6) may be expected for fluidization by shear. In that case a Reynolds
number based on the applied shear rate should be defined instead of R/. The prefactor and the
exponents may be determined from experimental or numerical data.
In the following sections we will first show that our previous DNS results are in agreement with

the above expectation. New discussion based on some of our previous DNS results will be pre-
sented. We will then show that the experimental data obtained from STIM-LAB also give power
law correlations.

3. Direct numerical simulation of solid–liquid flows

We used a numerical method, described in detail by Hu (1996) and Hu et al. (2001), to study the
lift-off of a single particle in Newtonian and viscoelastic fluids (Patankar et al., 2001a; Joseph
et al., 2002; Ko et al., in preparation). It is an Arbitrary-Lagrangian–Eulerian (ALE) numerical
method using body-fitted unstructured finite element grids to simulate particulate flows. A closely
related numerical method for particulate flows, based on a Chorin (1968) type fractional step
scheme, was introduced by Choi (2000). Choi and Joseph (2001) and Patankar et al. (2001b) use
this scheme to study the fluidization by lift of 300 circular particles in a plane Poiseuille flow by
DNS.

3.1. Single particle lift-off

The principal features of lift-off and levitation to equilibrium in 2D simulations are shown in
Fig. 3. A heavy particle freely translating and rotating in contact with a plane wall in Poiseuille
flow is lifted from the wall and suspended in the fluid if the shear Reynolds number R is greater
than a critical value. Beyond the critical shear Reynolds number the particle rises from the wall to
an equilibrium height at which the buoyant weight FB just balances the hydrodynamic lift L from
the fluid. In Fig. 3, _ccw is the shear rate at the wall in the absence of the particle, Up and Xp are the
translational and angular velocities of the particle, respectively, at steady state and he is the
equilibrium height.

Fig. 3. Lift-off and levitation to equilibrium of a single particle.
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At steady state the lift force on a freely rotating and translating circular particle in a Poiseuille
flow of a Newtonian fluid depends on various parameters

L ¼ f1 _ccw; he; qf ; gd;H1
� �

; ð7Þ

where d is the particle diameter and H1 is the channel height. At equilibrium L ¼
ðpd2=4Þðqp � qfÞg. Using this relation and non-dimensionalizing (Buckingham’s Pi theorem) we
get

RG ¼ f2 R;
H1
d
;
he
d

	 

; ð8Þ

where the shear Reynolds number R ¼ qf _ccwd
2=g and the gravity Reynolds number or non-

dimensional lift RG ¼ qfðqp � qfÞgd3=g2. Freely moving particles in steady flow have zero accel-
eration. The density ratio qp=qf vanishes as a parameter when the particle accelerations are zero.
In practical applications the particle acquires some finite separation distance from the wall due

to the presence of surface roughness. Patankar et al. (2001a) and Ko et al. (in preparation) defined
the critical Reynolds number as the minimum shear Reynolds number required to lift a particle to
an equilibrium height greater than 0.501d. They reported that the effect of the channel height on
the critical shear Reynolds number for H1=d > 12 was not significant. At the critical condition,
Eq. (8) implies that RG should be a function of R only. The correlation that Patankar et al. (2001a)
found for the lift-off of a single circular particle in a Newtonian fluid is of the form

RG ¼ aRn; a ¼ 2:36; n ¼ 1:39: ð9Þ

This is similar to the form expected from Eq. (6) and shows that self-similarity lies at the foun-
dation of solid–liquid flows. Similar correlations were found for lift-off in Oldroyd-B fluids by Ko
et al. (in preparation). There the fluid elasticity was an additional parameter. Eq. (9) was obtained
for R > 1. In the low Reynolds number limit n ¼ 2 may be expected (Leighton and Acrivos, 1985).
We found that obtaining a general expression for RG in terms of the R, he=d and H1=d is not

straightforward. This is primarily because of the presence of multiple equilibrium position of a
heavy particle at the same Reynolds number, first detected by Choi and Joseph (2001). It was
explained by Patankar et al. (2001a) to be due to the presence of a turning point bifurcation of the
equilibrium solution (Fig. 4). Turning point bifurcations have also been found in computations of
levitation to equilibrium of particles in viscoelastic fluids of Oldroyd-B type (Ko et al., in prep-
aration). This implies that the correlation function in Eq. (8) will not be a single valued mo-
notonous form. We have not observed multiple equilibrium heights of the particle bed in our
many particle simulations at the parameters we tested. Hence, many particle correlations for lift in
terms of a single particle variable analogous to Eq. (1) is not preferred. In the next subsection we
see that it is more convenient to obtain many particle correlations similar in form to Eq. (6).
Multiple stable equilibrium positions are not observed for neutrally buoyant particles. A

neutrally buoyant particle has a stable equilibrium position between the channel axis and the wall.
This is known since the well-known experiments of Segr�ee and Silberberg (1962). They found that
at low Reynolds number Poiseuille flows, the equilibrium position of a sphere from the pipe axis
was found to be 0.6 times the pipe radius.
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A general expression for single particle lift force analogous to the drag formula, valid at all
Reynolds numbers, has not been obtained yet. Joseph et al. (2002) have suggested that the slip
angular velocity discrepancy defined as the difference between the slip angular velocity of a mi-
grating particle and the slip angular velocity at its equilibrium position may be an important
variable to model lift. It is positive below the position of equilibrium and negative above it. This
discrepancy is the quantity that changes sign above and below the equilibrium position for
neutrally buoyant particles, and also above and below the lower equilibrium position for heavy
particles. On the other hand the translational slip velocity discrepancy does not change sign. The
translational slip velocity is the fluid velocity at the particle center when there is no particle minus
the particle velocity. The angular slip velocity is similarly defined.

3.2. Direct numerical simulation of levitation to equilibrium of 300 circular particles

The transport of a slurry of 300 heavier than liquid particles in a plane pressure driven flow of
Newtonian fluids was studied using 2D DNS by Choi and Joseph (2001) and Patankar et al.
(2001b). Particles are initially placed at the bottom of a periodic channel of height H1 in a close
packed ordered configuration. The flow is driven by an external pressure gradient. At steady
condition, the particle bed reaches a constant height (Fig. 5). The height of the clear fluid region
above the particle bed is H2 and the average fluid fraction in the particle bed is e. Similar to Eq. (8)
we expect that

RG ¼ f3 R; e; emax;
H1
d

	 

; ð10Þ

where

e ¼ 1� Npd2

4 H1 � H2½ �l ; emax ¼ 1�
Npd2

4H1l
;

Fig. 4. Turning point ‘‘bifurcations’’ shown in the equilibrium height (cm) vs. Reynolds number curve. There are two

stable branches separated by an unstable branch. The channel height is 12 cm (Patankar et al., 2001a).
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where N is the number of particles, l is the channel length and emax is the fluid fraction in the
particle bed if the particles occupy the entire height of the channel, i.e. if H2 ¼ 0.
During the simulations emax and H1=d were constant (Patankar et al., 2001b, Choi and Joseph,

2001). Therefore, RG should be a function of R and e only. Patankar et al. (2001b) obtained the
following correlation:

RG ¼ 3:27� 10�4e�9:05R1:249; or

RG ¼ 3:27� 10�4 emax � H2=H1
1� H2=H1

� ��9:05
R1:249:

ð11Þ

The correlation above is of the same form as that expected from Eq. (6). This shows that flui-
dization of slurries by lift also falls into enabling correlations of the RZ type and the above
correlation by Patankar et al. (2001b) could be called a RZ type of correlation for fluidization by
lift. Lift results for fluidized slurries are power laws in appropriate dimensionless parameters.
These power laws are in the form of engineering type correlations; to use them in applications we
need rules for converting 2D to 3D results. The goal of our future work is to generate power laws
for engineering applications by processing results of simulations in 3D just as we have done in 2D.

Fig. 5. Lift-off of 300 heavy particles in a plane pressure driven flow of a Newtonian fluid, Re ¼ 1800. Contour plot of

the horizontal velocity component is shown (Patankar et al., 2001b).
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The DNS results are in agreement with the expected power law form in Eq. (6) from the
analogy between fluidization by drag and shear. In the next sections we analyze the experimental
data for proppant transport to verify the prediction of power laws from DNS.

4. Experimental setup

Kern et al. (1959) reported the earliest experimental investigation of proppant transport in
narrow slots. STIM-LAB did more experiments to better understand the processes involved in
proppant transport by water and other thin fluids. We have analyzed the data obtained from their
experiments. The apparatus used by STIM-LAB was constructed so that the transport of prop-
pant in a horizontally oriented slot could be observed. A schematic of the apparatus is shown in
Fig. 6.
Proppant can be added at a constant rate and water flow rate is also constant. Proppant and

water enter the 8 mm wide slot through an open end that is 30.5 cm tall. The proppant and water
then move through the 2.44 m length of the slot where they exit via three 8 mm perforations
spaced 7.62 cm apart on the 30.5 cm tall end of the slot. The proppant and water flow rates were
varied, proppants of varying size and density were added and water at different temperatures was
used. Observations were recorded and portions of the experiments were video taped.
The evolution of the proppant bed in the experiments is well described in Fig. 7. The portion

shown in Fig. 7 is marked in Fig. 6. In the steady state there is an initial development length (see
Fig. 6) followed by a flat bed region shown in Fig. 7 and marked in Fig. 6. There are three distinct
zones in the flat bed region. The bottom part of the bed is immobile; it is a stationary porous
medium that supports liquid throughput that might be modeled by Darcy’s law. Above the

Fig. 6. The experimental setup for proppant transport. Proppant and fluid are added at the left where they enter over

the full height of the slot. Materials exit at the right through perforations.
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immobile bed is a mobile bed in which particles move by sliding and rolling or advection after
suspension or a combination of these modes. Above the mobile bed is the clear fluid zone. At
steady state the volumetric fluid flow rate Qf and the volumetric proppant flow rate Qp in and out
of this region are constant. At steady state, these are equal to the rate at which the fluid and
proppant are injected in the slot.
STIM-LAB carried out two types of experiments looking at the transport of proppants in thin

fluids. In Case 1 only fluid is pumped, QP ¼ 0, H1 ¼ H2; the particles are immobile. In Case 2
proppants are also injected, QP 6¼ 0, H1 6¼ H2; there is a mobile bed of height H1 � H2. The channel
width W ¼ 8 mm. A simplified description of the experiment is that a bed of proppant is eroded
by the flow of water. When proppant is not injected as in Case 1, the faster the flow of water the
deeper is the channel above the proppants. We are seeking to predict the height above the channel
for the given fluid flow rate. In Case 2, we seek to predict both the clear fluid height as well as the
mobile bed height as functions of Qf and Qp. In the experiments the fluid and the proppant flow
rates are controlled and the heights H1, H2 are measured.
In the DNS of 300 particles reported by Choi and Joseph (2001) and Patankar et al. (2001b)

(Fig. 5), we have a set up similar to that in Fig. 7. The value of H1 in Fig. 7 is equivalent to the
height of the channel in the simulations. In the simulations, data is obtained for a fixed value of
H1=d. This is not the case with the experimental data.

5. Experimental correlations for sediment/proppant transport

We develop combined correlations for the two cases studied experimentally by STIM-LAB.

5.1. Case 1: H1 ¼ H2 ¼ H

This case finds the critical condition of the initial motion of the proppant. Only fluid is injected
in the channel. The particle bed is immobile. There is an equilibrium value of H corresponding to
a given fluid flow rate. When the fluid flow rate is increased beyond the critical value for a given

Fig. 7. Proppant transport in thin fluids at steady state conditions. In Case 1 only fluid is pumped, QP ¼ 0, H1 ¼ H2; the
particles are immobile. In Case 2 proppants are also injected, QP 6¼ 0, H1 6¼ H2; there is a mobile bed of height H1 � H2.
The channel width W ¼ 8 mm.
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initial height H, the proppants are eroded from the bed and washed out until a new equilibrium
height H of the clear fluid region above an immobile bed is achieved for the new flow rate.
Table 1 gives the data from these experiments. The parameters of this problem are listed below:
Fluid Reynolds number based on channel width

Rq ¼
qf ~VV W

g
¼ qfQf

W g
; where ~VV ¼ Qf

W 2
:

Gravity Reynolds number

RG ¼
qf ½qp � qf �gd3

g2
:

Table 1

Data from experiments on the initiation of sediment motion (Case 1)

Prop-

pants

d (cm) H

(cm)

g
(g/cm s)

qf
(g/cm3)

Qf
(cm3/s)

qp
(g/cm3)

RG ~VV
(cm/s)

Rq H=W

60/40

Brady

0.034212 1.7 0.01115 0.999 36.778 2.65 521.1645 58.37416 4184.12 2.141732

0.034212 2.3 0.01115 0.999 58.289 2.65 521.1645 92.51649 6631.36 2.897638

0.034212 5.6 0.01115 0.999 133.295 2.65 521.1645 211.5662 15164.55 7.055118

0.034212 7.8 0.01115 0.999 232.588 2.65 521.1645 369.1644 26460.80 9.826772

20/40

Ottawa

0.056043 2.3 0.01115 0.999 46.556 2.65 2290.822 73.89383 5296.48 2.897638

0.056043 5.2 0.01115 0.999 133.106 2.65 2290.822 211.2663 15142.90 6.551181

0.056043 8.2 0.01115 0.999 227.542 2.65 2290.822 361.1554 25886.49 10.33071

20/40

Light

beads

0.06 1.4 0.01115 0.999 7.885 1.05 86.83778 12.5151 897.05 1.76378

0.06 2 0.01115 0.999 10.409 1.05 86.83778 16.5212 1184.19 2.519685

0.06 3.9 0.01115 0.999 31.92 1.05 86.83778 50.66353 3631.42 4.913386

0.06 8.5 0.01115 0.999 128.438 1.05 86.83778 203.8572 14611.89 10.70866

0.06 12 0.01115 0.999 226.217 1.05 86.83778 359.0523 25735.84 15.11811

16/20

Carbolite

0.094946 1.5 0.01 0.998 31.542 2.73 14513.72 50.06356 3997.08 1.889764

0.094946 2.2 0.01 0.998 50.467 2.73 14513.72 80.10138 6395.30 2.771654

0.094946 9.9 0.01 0.998 258.642 2.73 14513.72 410.5174 32775.74 12.47244

16/20

Carbolite

0.094946 1.7 0.00378 0.972 36.778 2.73 100415.8 58.37416 12008.41 2.141732

0.094946 2.3 0.00378 0.972 58.289 2.73 100415.8 92.51649 19031.98 2.897638

0.094946 5.6 0.00378 0.972 133.295 2.73 100415.8 211.5662 43522.25 7.055118

0.094946 7.8 0.00378 0.972 232.588 2.73 100415.8 369.1644 75942.48 9.826772

16/30

Banrite

0.088437 0.4 0.01115 0.999 10.535 3.45 13363.76 16.72119 1198.53 0.503937

0.088437 0.6 0.01115 0.999 13.878 3.45 13363.76 22.02721 1578.85 0.755906

0.088437 1.3 0.01115 0.999 29.145 3.45 13363.76 46.25904 3315.71 1.637795

0.088437 3.5 0.01115 0.999 100.681 3.45 13363.76 159.8012 11454.08 4.409449

0.088437 8.3 0.01115 0.999 261.796 3.45 13363.76 415.5234 29783.50 10.45669

12/20

Badger

0.109021 1.3 0.01015 0.998 28.955 2.65 20342.9 45.95747 3615.03 1.637795

0.109021 2.5 0.01015 0.998 62.137 2.65 20342.9 98.62404 7757.81 3.149606

0.109021 5.8 0.01015 0.998 155.185 2.65 20342.9 246.3101 19374.85 7.307087

0.109021 9 0.01015 0.998 290.814 2.65 20342.9 461.5809 36308.13 11.33858
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Particle diameter/channel width: d=W .
Height H/channel width: H=W .
Fig. 8 shows a plot of Rq vs. H=W at different values of RG.
From Fig. 8 we get the following form for the correlation of the initiation of sediment motion:

Rq ¼ a½H=W �n; ð12Þ
where a and n are function of RG. We see that a and n may be regarded as constants for 521.37
6RG6 20342:9. The values of a and n listed in Fig. 8 are plotted in Fig. 9a and b, respectively.
We define an effective Reynolds number as

Reff ¼ Rq½W =H �n; ð13Þ
where the values of n are given in Fig. 8 and plotted in Fig. 9b. This leads to the following ex-
pression for the critical effective Reynolds number Rcreff for the initiation of bed motion

Rcreff ¼ aðRGÞ: ð14Þ
The value of a is given in Fig. 8 and plotted in Fig. 9a. Reff may be regarded as a Reynolds number
that accounts for the effect of the side walls of the channel.
Shields (1936) curve also gives the critical condition for the initiation of sediment motion. The

Shields parameter S is defined as S ¼ s=½qp � qf �gd, where s is a measure of the shear stress on the
particle bed. If we take s ¼ g ~VV=W , then S ¼ g ~VV=½qp � qf �gd2 ¼ Rq½d=W �=RG. From the Shields
(1936) curve one obtains (see also, Vanoni, 1975) S ¼ fsð

ffiffiffiffiffi
Rq

p
½d=W �Þ. Eq. (14), applicable for

proppant transport in narrow channels has W/H as another parameter.

5.2. Case 2: H1 6¼ H2

There are two sets of data for Case 2:

1. 20/40 Ottawa sand: The parameters are given in Table 2.
2. 16/30 Carbolite sand: The parameters are given in Table 3.

Fig. 8. Plot of Rq vs. H/W at different values of RG on a logarithmic scale.
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Fig. 9. (a) Plot of a vs. RG on a logarithmic scale. (b) Plot of n vs. RG on a logarithmic scale.

Table 2

Parameters for experiments with 20/40 Ottawa sand in Case 2

qp 2.65 g/cm3

d 0.06 cm

qf 1 g/cm3

g 0.01 g/cm s

W 0.8 cm

RG 3496

Table 3

Parameters for experiments with 16/30 Carbolite sand in Case 2

qp 2.71 g/cm3

d 0.09 cm

qf 1 g/cm3

g 0.01 g/cm s

W 0.8 cm

RG 12 229
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In this case the fluid and the proppant are both injected at a specified volumetric flow rate.
Since the proppants are injected, there is a moving particle bed in the channel. At equilibrium
there is a clear fluid region of height H2 above a moving bed of height H1 � H2. The experimental
data are given in Tables 4 and 5.
First we wish to obtain a correlation for the fluid Reynolds number Rq in terms of RG and e. It is

more convenient to obtain experimental correlations in terms of H1 and H2 instead of e. Power
laws in terms of H1=H2 were also obtained from numerical simulations (Eq. (11)).
A correlation obtained for Case 2 should reduce to the correlation for Case 1 when H1 ¼ H2.

From Case 1 we see that when RG ¼ 3496 (Ottawa) and 12229 (Carbolite) the critical effective
Reynolds number Rcreff ¼ 2053:4 and n ¼ 1:0937. We define an effective Reynolds number at the
fluid–proppant-bed interface as Reff ¼ RqðW =H2Þ1:0937 for the Carbolite and Ottawa data. This
is consistent with the definition of Reff in Eq. (13) since H2 is the height of the clear fluid region.
Fig. 10 shows a plot of Reff vs. ln(H1=H2) for the combined Carbolite and Ottawa data.
Two regimes are observed for the given values of RG:

Regime 1 : Reff � Rcreff ¼ 26838 lnðH1=H2Þ: ð15Þ
Regime 2 : Reff ¼ 8177ðH1=H2Þ1:1648: ð16Þ

Note that the y-intercept is taken to be equal to Rcreff . Regime 1 shows logarithmic behavior
whereas Regime 2 shows power law behavior. When H1=H2 ¼ 1, we recover the correlation in Eq.
(14). Thus Eqs. (15) and (16) represent a combined correlation for the data from Cases 1 and 2.
Regimes 1 and 2 have an overlap region; we may estimate the transition to begin at Reff ¼ 20000.
The following general form of the correlation may be proposed:

qfQf
H2g

	 

ðW =H2Þn�1 � aðRGÞ ¼ 26838 lnðH1=H2Þ; Regime 1; ð17Þ

Table 4

Experimental data for Case 2 with Ottawa sand

H1 (cm) H2 (cm) Qp (cm3/s) Qf (cm3/s) Q ¼ Qp þ Qf (cm3/s) Qp=Q Qf=Q

2.3 0.8 40 244.1 284.1 0.140795 0.859205

2.6 0.7 45.7 242.9 288.6 0.158351 0.841649

2.3 1 28.6 250.4 279 0.102509 0.897491

2.4 1.5 11.4 249.8 261.2 0.043645 0.956355

3 2.1 11.4 313.5 324.9 0.035088 0.964912

2.9 1.5 34.3 304.7 339 0.10118 0.89882

3.1 2.3 11.4 314.8 326.2 0.034948 0.965052

3 1.4 45.7 303.4 349.1 0.130908 0.869092

3 1.5 40 305.3 345.3 0.115841 0.884159

2.9 1.6 28.6 306 334.6 0.085475 0.914525

2.8 1.7 22.8 306 328.8 0.069343 0.930657

3.1 2 17.1 315.4 332.5 0.051429 0.948571

3.5 2.9 5.7 314.2 319.9 0.017818 0.982182

4.1 3.6 2.9 313.5 316.4 0.009166 0.990834

5.1 5 1.4 312.9 314.3 0.004454 0.995546

5.8 5.7 0.4 311.6 312 0.001282 0.998718
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and

qfQf
H2g

	 

ðW =H2Þn�1 ¼ 8177ðH1=H2Þ1:1648; Regime 2: ð18Þ

Eqs. (15) and (16) can also be represented by a single equation using a technique described in
Appendix A by R.D. Barree. The single equation is given by

Reff ¼
8177 H1=H2ð Þ1:1648

1þ H1=H2
0:9

� ��9
	 
5 : ð19Þ

Eq. (19) implies that correlations in the entire range can be represented by power laws connected
by transition regions. The logarithmic regime could be regarded as the ‘transition type’ region.
The above correlation suggests the following model for proppant transport. Consider some

experiment with a channel of given height H2 and width W. Begin the fluid flow in the channel.
After a critical value Qf , obtained from Eq. (14), the fluid begins to move or erode the proppant in

Table 5

Experimental data for Case 2 with Carbolite sand

H1 (cm) H2 (cm) Qp (cm3/s) Qf (cm3/s) Q ¼ Qp þ Qf (cm3/s) Qp=Q Qf=Q

2 1.2 11.2 180.4 191.6 0.058455 0.941545

2.1 1.2 16.8 180.4 197.2 0.085193 0.914807

1.7 0.5 22.3 180.4 202.7 0.110015 0.889985

1.9 0.6 27.9 180.4 208.3 0.133941 0.866059

1.9 0.4 33.5 180.4 213.9 0.156615 0.843385

1.7 0.2 44.7 180.4 225.1 0.198578 0.801422

2.4 1.5 5.6 192.4 198 0.028283 0.971717

2.8 2.1 2.8 193.7 196.5 0.014249 0.985751

3 2.8 1.4 193.7 195.1 0.007176 0.992824

3.3 2.8 0.7 195.6 196.3 0.003566 0.996434

4.3 3.9 0.3 195.6 195.9 0.001531 0.998469

2.9 1.6 22.3 306.6 328.9 0.067802 0.932198

2.9 2 11.2 307.2 318.4 0.035176 0.964824

3.3 2.6 5.6 306 311.6 0.017972 0.982028

4 3.2 2.8 309.7 312.5 0.00896 0.99104

4 3.2 1.4 311 312.4 0.004481 0.995519

4.2 3.5 0.7 311 311.7 0.002246 0.997754

5.3 5 0.3 316 316.3 0.000948 0.999052

3.1 1 44.7 315.4 360.1 0.124132 0.875868

3 1.2 39.1 314.2 353.3 0.110671 0.889329

3 1.3 33.5 308.5 342 0.097953 0.902047

3 1.3 27.9 310.5 338.4 0.082447 0.917553

2.9 1.6 22.3 309.1 331.4 0.06729 0.93271

3 1.8 16.8 312.1 328.9 0.051079 0.948921

3.2 2.1 11.2 318.6 329.8 0.03396 0.96604

3.4 2.6 5.6 321.1 326.7 0.017141 0.982859

3.5 2.9 4.2 316 320.2 0.013117 0.986883
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the bed. This results in a proppant flow rate corresponding to the given values of Qf and H2: The
height H2 remains almost the same but the depth H1 � H2 increases as the fluid flow rate is in-
creased. The depth H1 to which the bed moves can be found from Eq. (15). This is Regime 1 or the
bed erosion regime. This regime may also be regarded as the bed-load transport regime. The
correlation suggests a logarithmic behavior in the bed erosion regime.
Further increase in the fluid flow rate induces suspension of the particles, hence the bed begins

to ‘inflate’ or ‘expand’. This situation is identical to our numerical simulations. Bed expansion
now causes the value of H2 to decrease. This is Regime 2 or the bed expansion regime. As expected
from our numerical simulation results, the experimental data also shows power law relation be-
tween the fluid Reynolds number and H1=H2. The forms of numerical and experimental corre-
lations are not identical obviously due to additional complexities such as three dimensionality and
narrow slot in the case of experiments. Nevertheless, we observe that a power law behavior lies at
the foundation of these flows.
In order to obtain a fully predictive model another correlation for the proppant flow rate is

required. We found that the data correlates best with a non-dimensional variable Rp for proppant
flow rate given by Rp ¼ qfQp=H1g. The data is plotted in Fig. 11.
Once again we observe two regimes consistent with those in Fig. 10. The correlations are

Bed erosion regime : Reff � Rcreff ¼ 1057:7R0:397p ð20Þ

Bed expansion regime : Reff � Rcreff ¼ 0:0356R1:8522p : ð21Þ

The transition point is around Reff ¼ 20000. Using a technique presented in Appendix A by R.D.
Barree, Eqs. (20) and (21) can be given by a single equation representing power laws connected by
transition regions

Reff � Rcreff ¼
1057:7R0:397p

1þ Rp
1185:07

� �5	 
�0:291 : ð22Þ

Eqs. (15)–(22) represent correlations for proppant transport in a narrow channel. Power laws
are observed in agreement with the expectation from numerical results and the analogy between

Fig. 10. Plot of Reff vs. ln(H1=H2) for the combined Carbolite and Ottawa data.
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fluidization by drag and lift. The correlations in Eqs. (15)–(22) can be used as a predictive tool,
e.g. to obtain the values of H1 and H2 for given values of fluid and proppant flow rates. A cor-
relation in terms of e, giving an expression identical to the form in Eq. (6), may be desirable to
develop models for sediment transport for use in simulators. We are currently investigating this
aspect further.
The prediction of the transition point between the bed erosion and bed expansion regimes may

require further experimental and numerical investigation. Typically, our data fit curves have a
coefficient of determination (the R-squared value) of 0.93–0.99 (1 being the ideal case); exception
being Eq. (21) where the R-squared value is 0.7. Clearly, further experimental investigation is
required for that regime.
The power law fits we have obtained are valid for moderate to high Reynolds number cases.

Different exponents are expected in the low Reynolds number regime (particle Reynolds numbers
less than 1).
The correlations in Eqs. (19) and (22) are fully predictive, i.e. there are two equations for two

unknowns H1 and H2. These two equations are power laws. It is emphasized here, that more data
is required to develop generalized expression. Some exponents and prefactors that appear as
constants in the correlations (Eqs. (19) and (22)) need not be so and may be functions of pa-
rameters like RG in generalized expressions. In this work we have shown that the available data
leads to power law correlations for lift. Similar behavior should be expected from additional data.

6. Conclusions

We believe that research leading to optimal techniques of processing data for correlations from
real and numerical experiments is founded on the far from obvious property of self-similarity
(power laws) in the flow of dispersions. The basis for this belief are the excellent correlations of
experiments on fluidization and sedimentation done by Richardson and Zaki and the correlations
for sediment transport in horizontal channels obtained from our numerical simulations and the
analysis of the experimental data from STIM-LAB.

Fig. 11. Plot of Reff � Rcreff vs. Rp.
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Results of 2D simulations of solid–liquid flows give rise to straight lines in log–log plots of the
relevant dimensionless Reynolds numbers. Power laws are also obtained from the analysis of
experimental data. The extent and apparent universality of this property is remarkable and shows
that the flow of these dispersions are governed by a hidden property of self-similarity leading to
power laws. These power laws make a powerful connection between sophisticated high perfor-
mance computation, experiments and the world of engineering correlations.
The correlations obtained can be used as predictive tools or as a basis for models for sediment

transport in simulators used for design purposes.
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Appendix A. Fitting power law data with transition regions by a continuous function: General
framework and application to the RZ correlation

Many data sets representing naturally occurring phenomena can be described using a sigmoidal
distribution function. One such function that is particularly useful in fitting physical data is the
logistic dose–response curve given by

y ¼ aþ ðb� aÞ
1þ x

t

� �c� �d : ðA:1Þ

In this equation each of the constant terms or coefficients (a, b, c, d and t) have readily apparent
physical significance, which allows data modeling to be accomplished almost by inspection.
Fig. 12 shows the dose–response function for a ¼ 1, b ¼ 1000, c ¼ 2, d ¼ 1, and t ¼ 10. As can

be seen, the coefficients a and b represent the values of the lower and upper plateaus of the
function, respectively, or its range. The coefficient t defines the value of the independent variable
(x) where the function deviates from the constant first plateau value. The sharpness of curvature
during the deviation from the first plateau is determined by the coefficient c. The slope of the
power law straight line in transition from the first plateau to the second plateau is determined by
the product of coefficients c and d. The slope in this example is negative because both exponents
are positive in the denominator of the rational fraction.
The effects of changing the signs of the exponents can be examined (Fig. 13). If the sign of

coefficient c is changed, the plot is essentially rotated about a line parallel to the y-axis through the
transition value t (compare curves A and B in Fig. 13). If the sign of the coefficient d is changed,
the plot is rotated about a line parallel to the x-axis through the upper bound b (compare curves A
and C in Fig. 13). These relationships allow construction of a transition function in any general
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form. Another useful property of this function is that the bound corresponding to the coefficient a
can be eliminated by setting its value to zero. With a ¼ 0 the function yields a horizontal line at
the upper bound value b and a power law line of slope cd which extends to infinity (Curve A, Fig.
13). Various functions can then be modeled by products of functions with specified power law
slopes and transition points (Fig. 14). For curve A in Fig. 14 c1 ¼ 2, d1 ¼ 1 and for curve B
c2 ¼ 1:6, d2 ¼ �1. The final power law slope in the product is then c1d1 þ c2d2.
Combinations of these functions can be used in various forms to model many commonly ob-

served phenomena. The logistic dose–response curve can also be multiplied by a linear power law
function to impose an overall slope to the function. Quite complex systems can be modeled by
combining rational fractions or products of multiple functions.
This method has been used to model the RZ correlation that relates bed fluidization velocity to

the solids volume-fraction of particles in suspension. The RZ correlation is given by Eq. (1).
Specifically, the various functions representing the exponent n are (Richardson and Zaki, 1954)

Fig. 12. A typical logistic dose–response curve.

Fig. 13. Effects of changing signs of coefficients c and d in the logistic dose–response curve.
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n ¼ 4:65

	
þ 19:5 d

D



when R0 < 0:2;

n ¼ 4:35

	
þ 17:5 d

D



R�0:03
0 when 0:2 < R0 < 1;

n ¼ 4:45

	
þ 18 d

D



R�0:1
0 when 1 < R0 < 200;

n ¼ 4:45R�0:1
0 when 200 < R0 < 500;

n ¼ 2:39 when 500 < R0;

ðA:2Þ

In these relations d is particle diameter, and D is the diameter of the fluidization column. Note
that in Eq. (A.2) the value of n at the transition points is not unique. Nevertheless, these functions

Fig. 14. Obtaining a curve from the product of two different logistic dose–response curves.

Fig. 15. A continuous logistic dose–response curve for the RZ exponent n for d=D ¼ 0.
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can be replaced with a single continuous form of the logistic dose–response curve where R0 is the
independent variable and n is the dependent result (Fig. 15).
Fig. 15 shows a continuous curve for the RZ exponent n. The continuous form of the function

is formed assuming that n should not decrease below a value of 2.39 for any value of Re. The
continuous form is generated by the equation

n ¼ 2:39þ 2:26þ 19:5d=Dð Þ

1þ R0
T

� �0:7h i1:1 : ðA:3Þ

This function sets a minimum value of n ¼ 2:39 and a maximum that is a function of the ratio of
particle size to vessel diameter (first of Eq. (A.2)). The transition value T is also a weak function of
the diameter ratio d=D, and is given by

T ¼ 1þ 12:0

1þ d=D
0:1

� �� � : ðA:4Þ

The final calculation of n is then given by a combination of Eqs. (A.3) and (A.4). Rowe (1987)
obtained an empirical equation for the RZ exponent by using the logistic curve for d=D ¼ 0. We
verified that there is good quantitative agreement between Eq. (A.3) (for d=D ¼ 0) and Rowe’s
equation.
The above technique has been applied to obtain Eqs. (19) and (22) for proppant transport in

horizontal channels.
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