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We study the steady translational fall of a homogeneous body of revolution around an
axis a, with fore-and-aft symmetry, in a second-order liquid at nonzero Reynolds (Re)

and Weissenberg (We) numbers. We show that, at first order in these parameters, only
two orientations are allowed, namely, those with a either parallel or perpendicular to
the direction of the gravity g. In both cases the translational velocity is parallel to g.
The stability of the orientations can be described in terms of a critical value Ec for the
elasticity number E = We/Re, where Ec depends only on the geometric properties of
the body, such as size or shape, and on the quantity (Ψ1 + Ψ2)/Ψ1, where Ψ1 and Ψ2

are the first and second normal stress coefficients. These results are then applied to the
case when the body is a prolate spheroid. Our analysis shows, in particular, that there
is no tilt-angle phenomenon at first order in Re and We.
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1. Introduction

It is a well-established experimental fact that homogeneous particles in the shape

of bodies of revolution around an axis a (say) with fore-and-aft symmetrya (like

cylinders, round ellipsoids, etc., of constant density), when dropped in a quiescent

viscous liquid will eventually reach a steady state that is purely translatory (no

spin), and with a forming an angle with respect to the gravity g, that depends on

the weight of the body, on its geometric properties (like being prolate or oblate

in shape), and on the physical properties of the liquid (viscosity, inertia, non-

Newtonian characteristics, etc.).1,4,6,19,21,25,28 In particular, if the liquid is viscous

and Newtonian, (homogeneous) cylinders or prolate spheroids will always reach

an equilibrium orientation with a orthogonal to the gravity, no matter what their

initial orientation1,25; see Fig. 1(a). It is important to observe that, in these ex-

periments, the Reynolds number Re = V d/ν can be very small. This is due to the

fact that, typically, the product of the terminal speed V of the body and its char-

acteristic length d is small compared to the kinematical viscosity ν of the liquid.

For example, in a 85% aqueous solution of glycerine for a body having d = 0.5 cm

and V = 1 cm/sec, the corresponding Reynolds number is Re = 0.44. However,

despite the smallness of the Reynolds number involved, these phenomena are gen-

uinely nonlinear, and originate from the inertia of the liquid. In fact, if we make

the liquid very viscous (99.9% of glycerine, say), so that the Reynolds number re-

duces approximately to zero and inertial effects can be neglected, then it is observed

that the body will always keep its initial orientation with g.28 In other words, all

orientations are admissible at Re = 0.b

If a small amount of polymer is added to the Newtonian liquid (typically,

a 0.5%–2% aqueous solution), the situation changes dramatically and the final

orientation may be completely different from that observed for a Newtonian liquid

at nonzero Re. Detailed experimental studies were performed on slender cylin-

ders sedimenting in aqueous solution polyacrylamide of different concentration; see

Refs. 4 and 19. In these experiments Re is much smaller than the corresponding

dimensionless elasticity parameter, so that the effect due to the inertia of the liquid

can be neglected, a fact that typically happens when particles are very light, as in

a fiber suspension.

The final orientation of all particles is observed to be with their broadside parallel

to g; see Fig. 1(b). This is quite remarkable, since it is in sharp contrast with

the Newtonian case where, as we described before, a long particle will reach an

equilibrium configuration with its broadside perpendicular to g; see Fig. 1(a).

aBy this latter we mean that there is a plane Π orthogonal to a that is of symmetry for B.
bThe conservation of the initial orientation depends, of course, on the elapsed observation time.
This means that, if we wait a sufficiently long time (depending on the viscosity), inertia will
eventually prevail and the body will turn with a perpendicular to g. In practice, we would need
a sufficiently tall liquid container in which to drop the body, in order to observe a significant
deviation from its initial orientation.
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(a)

(b)

Fig. 1. Orientation of cylinders with round ends in a Newtonian liquid at nonzero Reynolds
number (a), and in a purely viscoelastic liquid at vanishingly small Reynolds number (b).17 In
the Newtonian case (a) the initial configuration is with the major axis parallel to the gravity
(unstable) and the terminal configuration is with the major axis perpendicular to the gravity
(stable). In the purely viscoelastic case (b) the situation is reversed.

A recent experimental study on the orientation of long particles sedimenting in

viscoelastic liquid,21 shows another remarkable feature. Let us call tilt angle the

angle formed by the long axis of symmetry a of the particle with the horizontal,

when the body reaches its final equilibrium orientation. In Ref. 21 it is found that for

squared-off cylinders the tilt angle may vary continuously from 0◦ to 90◦, depending

on the physical properties of the cylinder and on the concentration of polymeric

liquid. The tilt angle is very stable and it is reached no matter how and where the

cylinder is released. Analogous conclusions on the tilt angle were reached in the

experiments on sedimentation of very light cylinders reported in Ref. 6.

Dimensionless numbers involved in all the above experiments may be very small.

For example, for cylinders made of plastic, Teflon, aluminum and titanium, with

length ∼ 2 cm and diameter in the range 0.25–1 cm, it is found that Re varies from
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0.016 to ∼ 5, while the Weissenberg number We = λV/d, with λ the relaxation

time, ranges between 0.048 and ∼ 0.3,21 p. 580. Furthermore, “wall effects” play no

role on the preferred orientation of the particle. (For example, in Ref. 6, the ratio of

the length of the cylinders to the diameter of the container is of the order of 10−2.)

The following qualitative explanation of the tilt angle phenomenon was more

recently proposed in Ref. 18, and it is based on the competition between inertia

and normal stress effects (see Fig. 2). In fact, if the liquid is purely Newtonian,

(We = 0, say) inertial effects are relevant near the two stagnation points S1 and S2,

where the pressure has a maximum. This generates a torque that tends to rotate

the body with its broadside perpendicular to g, a fact first discovered by Lord

Kelvin.29 However, if the liquid is purely viscoelastic and the motion of the body

is slow (Re = 0), the fluid rheology can be described by a second-order model, and

in Ref. 18 it is then proved that the normal stresses on the body are compressive

and are large at points of high shear A and B. Therefore, a viscoelastic torque is

generated that tends to align the body with its broadside parallel to g. When both

inertia and normal stress effects are present, the two torques will compete, and

the tilt angle would be the equilibrium configuration arising from this competition.

Since this can occur even when the two effects are very weak, it is suggested that

a perturbation analysis could explain the result of the experiments. In Ref. 9 a

numerical computation of the torque on a prolate spheroid translating in a second-

order liquid, based on perturbation theory was carried out, with the objective of

supporting the validity of this conjecture. However, this paper contains an error

that invalidates the main results. Successively, in Ref. 15 results were reported

of a direct 2D numerical simulation of the sedimentation of elliptic particles of

eccentricity e = 0.745 in Oldroyd-B liquids at small Reynolds and Deborah (De)

numbers (. 1). These results do not show the occurrence of the tilt angle. Rather,

they suggest the existence of a critical valueEc for the elasticity number E = De/Re

Fig. 2. Slow flow around an elliptic particle. At the two stagnation points S1, S2 the pressure is
a maximum. Strong shears produce large normal stresses at points A and B.
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with the following property: for E < Ec the liquid behaves as Newtonian, in the

sense that the final orientation of the ellipse is broadside-on for all values of the

fall velocity V , while if E > Ec the ellipse finally settles with its long axis vertical,

provided V is not too large. In Ref. 15 it was also found that, if shear-thinning was

incorporated in the Oldroyd-B model by using the Carreau–Bird law, the ellipse

would eventually reach an orientation with a well-defined tilt angle between 0◦ and

90◦. This suggests that shear-thinning, more than normal stresses, could be the

important parameter for the tilt angle phenomenon. This would also agree with the

outcome of the experiments made in Ref. 6.

In view of these yet non-conclusive results, it seems appropriate to study the

problem of orientation of symmetric particles by a rigorous mathematical analysis.

Only partial quantitative results along these lines are available in the literature, and

only when either We = 0 (purely Newtonian case8,13,14) or when Re = 0 (purely

viscoelastic case3,5,11,19,20). However, for the problem we are interested here, it is

crucial to consider both Re and We to be nonzero.

In this paper we investigate the orientation of a homogeneous body B of revolu-

tion around a, possessing the fore-and-aft-symmetry, and slowly settling through an

otherwise quiescent viscoelastic liquid, modeled as a second-order fluid. Specifically,

we present a mathematical analysis aimed at finding all possible orientations of B
at small and nonzero Reynolds and Weissenberg numbers. Our analysis relies upon

the evaluation of the torque M exerted by the liquid on the body. Specifically,

taking a coinciding with the x1-axis of a frame attached to B, and, without loss,

the translational velocity U = (U1, U2, 0), we show that (Sec. 2)

M = (ReGI + We G(ε)
V )U1U2e3 +N (Re,We) . (I)

Here e3 is a unit vector in the x3-direction. GI and G(ε)
V are scalar quantities —

that we call inertial and viscoelastic torque coefficients, respectively — depending

on the geometric properties of B, such as size or shape, but otherwise independent

of its orientation. G(ε)
V depends also on the parameter ε = 2(Ψ1 + Ψ2)/Ψ1, where

Ψ1 and Ψ2 are the first and second normal stress coefficient. A typical variation

range of ε is between 1.6 and 2.16 Finally N (Re,We) is a “remnant” that can be

estimated as follows:

|N (Re,We)| ≤ C(Re2−η + We2) ,

where η is arbitrary in (0, 2) and C is a constant depending only on B, ε and η, with

C →∞ as η → 0. The expression (I) for the torque is obtained as a special case of

a general method for the evaluation of the torque that is presented in Sec. 1, and

which applies, in principle, to different or much more complicated liquids. Taking

into account that in an equilibrium orientation of B, the torque, must be zero, from

(I) we draw a number of consequences. Actually, we prove (Sec. 3) that, provided

G ≡ ReGI + WeG(ε)
V is not zero, at first order in Re and We there are only two

possible orientations, namely those for which g is either parallel or orthogonal to a.

If, however, G = 0, then all orientations are possible at first order. This excludes the
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possibility of a tilt angle. Moreover, if G 6= 0, the stability to small disorientations

of the two possible orientations is related to the sign of G. We see that if G > 0,

then the orientation with g perpendicular to a is stable and the other is unstable.

The reverse holds if G < 0. These results are then analyzed in more details in Sec. 3,

in the case when B is a prolate spheroid of eccentricity e ∈ [0, 1]. In this case it

turns out that GI is a computable negative function of e ∈ (0, 1) that vanishes at

e = 0, 1. Moreover, G(ε)
V is a positive function of e ∈ (0, 1) vanishing at e = 0, 1,

provided ε & 1. So, in this range of ε, the two torques (inertial and non-Newtonian)

are in competition, as expected. Another interesting feature is that for ε = 1.8

(a commonly accepted value for polymer solutions16 p. 516), G(ε)
V is almost five

times bigger than |GI |, for e ∼ 0.85. Concerning the stability of orientation, we

show that it can be formulated in terms of a critical elasticity number defined as

Ec = Ec(e, ε) ≡ |GI|G(ε)
V

. Specifically, if E < Ec the liquid behaves as Newtonian, that

is the orientation with a perpendicular to g is stable with respect to “quasi-steady”

small disorientations, while if E > Ec, the other is stable. In the last section, we

compare our results with the experiments performed in Ref. 21 with cylinders with

round ends. They are in a good agreement for ε = 1.8.

The paper ends with the appendices that include all the technical proofs needed

to obtain our main results.

2. Calculation of the Torque

The physical mechanism responsible for the orientation of a rigid body moving in a

liquid by translational motion is the torqueM exerted by the liquid on the body.

The objective of this section is to furnish a general method to evaluateM, at first

order, for the case of a body of revolution with fore-and-aft symmetry.

Assume that a body B is moving in a viscous liquid L, with a constant transla-

tional velocity V. The appropriate equations of motion can be written in a nondi-

mensional form as follows

Rev · gradv = div TN (v, p) + λdiv S(v)

div v = 0

}
in Ω

v = 0 at Σ ≡ ∂Ω ,

lim
|x|→∞

v(x) = −U .

(2.1)

Here v and p are (nondimensional) velocity and pressure fields of L, Ω is the infinite

region occupied by L, i.e. the complement of B, U = V/V0, and

Re =
ρV0d

µ
(Reynolds number)

with V0 scaling velocity, d diameter of B, ρ the density of L, and µ the shear viscosity

coefficient. Moreover, TN denotes the Newtonian stress tensor, namely,

TN = −pI + 2D(v) ,
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with

D(v) =
1

2
(gradv + (gradv)T) .

Finally, λ is a (nondimensional) parameter related to the non-Newtonian character

of L and S is the non-Newtonian part of the stress tensor. Thus, the total stress is

given by

T = TN + λS .

The total torqueM exerted by L on B is given by

M ≡ −
∫

Σ

x×T · n , (2.2)

where n is the unit normal at Σ, directed toward B. Our objective is to computeM
at first order in Re and λ. To this end, we introduce the fields H(i), P (i), i = 1, 2, 3,

defined as follows14:

div TN (H(i), P (i) = 0

div H(i) = 0

}
in Ω

H(i) = ei × x at Σ

lim
|x|→∞

H(i) = 0

(2.3)

where {ei} is an orthonormal basis in R3. Multiplying (2.3)1 by H(i), integrating

by parts over Ω and using (2.3)2,3,4 we find

Mi = 2

∫
Ω

D(v) : D(H(i)) + λ

∫
Ω

S : D(H(i)) + Re

∫
Ω

v · gradv ·H(i) . (2.4)

The first integral on the right-hand side of this relation can be evaluated by multi-

plying (2.3)1 by v + U and integrating by parts over Ω (see Ref. 20). We get

2

∫
Ω

D(v) : D(H(i)) = U ·
∫

Σ

T(H(i)) · n . (2.5)

From (2.2), (3.3) and (2.5) we thus obtain

M =MS + ReMI + λMNN , (2.6)

where, for i = 1, 2, 3,

MS
i = −U ·

∫
Σ

T(H(i)) · n ,

MI
i = −

∫
Ω

v · gradv ·H(i) ,

MNN
i = −

∫
Ω

S(v) : D(H(i))

(2.7)

are the torque in the Stokes approximation (i.e. Re = λ = 0), the torque due to

inertia, and the torque due to the non-Newtonian character of L, respectively.
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We now denote by (vS , pS) and by (vNS , pNS) the solutions to (2.1) with Re =

λ = 0 and λ = 0, respectively. We also set

u = v− vNS , w = vNS − vS

and

M0,I
i = −

∫
Ω

vS · gradvS ·H(i) ,

M0,NN
i = −

∫
Ω

S(vS) : D(H(i)) .

(2.8)

From (2.6) we thus get

M =M0,I + ReM0,I + λM0,NN +N , (2.9)

where

N = Re(MI −M0,I) + λ(M0,NN −M0,NN )

≡ ReN 1 + λN 2 .

By a straightforward calculation we find

N1i = −
∫

Ω

[(u + w) · gradv + vS · grad(u + w)] ·H(i) ,

N2i = −
∫

Ω

[S(v)− S(vNS)] : D(H(i))−
∫

Ω

[S(vNS)− S(vS)] : D(H(i)) .

(2.10)

From (2.10) it is expected that both N 1 and N 2 should vanish as Re, λ→ 0, i.e.

N = o(Re) + o(λ) as Re, λ→ 0 . (2.11)

In this case, from (2.9) we deduce that, at first order in Re, λ

M =MS + ReM0,I + λM0,NN . (2.12)

The above considerations apply to any body B (and to any liquid L). Now we

would like to consider the special case when B is a homogeneousc body of revolution

around an axis a (say) with fore-and-aft symmetry. By this latter we mean that

there is a plane orthogonal to a, that is of symmetry for B. In such a case, it is well

known that (see Sec. 5-5 of Ref. 14)∫
Σ

T(H(i)) · n = 0 , i = 1, 2, 3 .

This fact has two main consequences. The first (obvious) is:

MS = 0 , (2.13)

and the second is (see Chap. V of Ref. 10):

‖gradH(i)‖s <∞ , for all s ∈ (1,∞) , i = 1, 2, 3 . (2.14)

cThat is, the density of B is a constant.
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Here and in the following we use the standard notation

‖f‖q ≡


(∫

Ω

|f |q
)1/q

if 1 ≤ q <∞ ,

ess sup|f(x)| if q =∞ .

(2.15)

From (2.10)1, by an integration by parts we find

N1i =

∫
Ω

[(u + w) · gradH(i) · (v + U) + vS · gradH(i) · (u + w)] . (2.16)

For the sake of simplicity, we take (without loss) V0 = V , so that |U| = 1. From

well-known results on the Stokes problem10 we then find

‖vS‖∞ ≤ c , (2.17)

where c is a positive constant depending only on B.

Assume now that there are Re0, λ0 > 0 such that for all 0 < Re < Re0, and

0 < λ < λ0 the following conditions hold

(H1) ‖v + U‖∞ ≤ c1,
(H2) ‖u‖q1 ≤ c2λβ1 , for some q1 ∈ (1,∞), β1 > 0,

(H3) ‖w‖q2 ≤ c2 Reγ1 , for some q2 ∈ (1,∞), γ1 > 0,

where c1, c2, c3 are (positive) constants depending only (at most) on B, Re0, λ0 and

q. Then, using Hölder’s inequality and (2.14) in (2.16), we find

|N 1| ≤ c4(Reγ1 + λβ1) ,

with a constant c4 independent of Re and λ.

Likewise, assume that for all 0 < Re < Re0, and 0 < λ < λ0 the following

conditions hold

(H4) ‖S(v)− S(vNS)‖q3 ≤ c′2λβ2 , for some q3 ∈ (1,∞), β2 > 0,

(H5) ‖S(vNS)− S(vS)‖q4 ≤ c′3Reγ2 , for some q4 ∈ (1,∞), γ2 > 0,

with c′2, c
′
3 independent of Re, λ. Then, using again Hölder’s inequality and (2.14)

in (2.10)2, we find

|N 2| ≤ c′4(Reγ2 + λβ2) .

The results just described are summarized in the following.

Lemma 2.1. Let B be a homogeneous body of revolution with fore-and-aft

symmetry. Assume that conditions (H1)–(H5) hold. Then, there are positive Re0

and λ0 such that for all 0 < Re ≤ Re0, and 0 < λ ≤ λ0 the total torque (2.2)

exerted by the liquid L on B is given by

M = ReM0,I + λM0,NN +N ,

whereM0,I andM0,NN are defined in (2.8), while

|N | ≤ C(Re1+γ + λ1+β) ,

with C, γ and β positive constants independent of Re and λ.
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3. The Torque for a Second-Order Fluid

The aim of this section is to show that conditions (H1)–(H5) of Lemma 2.1 are

indeed satisfied for a second-order fluid. We recall that, in this case, the “extra-

stress” S can be written as

S = 2(A1 + 2εD2) ,

where A1 is the Rivlin–Ericksen tensor which in the steady case takes form

A1 = v · gradD + D · (gradv)T + gradv ·D .

Moreover, λ ≡We, where

We =
|α1|V0

dµ
(Weissenberg number) ,

ε = α2/|α1|, and α1, α2 are related to the normal stress coefficients Ψ1 and Ψ2 by

the formulas α1 = − 1
2Ψ1, α2 = Ψ1 + Ψ2 (see Chap. 17 of Ref. 16). The equations

of motion (2.1) then become

Rev · gradv = div(−pI + 2D + 2We(A1 + 2εD2))

div v = 0

}
in Ω

v = 0 at Σ ,

lim
|x|→∞

v(x) = −U .

(3.1)

In the Navier–Stokes case, i.e. We = 0, the above problem specializes to the

following one

RevNS · gradvNS = div(−pNSI + 2D)

div vNS = 0

}
in Ω

vNS = 0 at Σ ,

lim
|x|→∞

vNS(x) = −U .

(3.2)

Finally, by taking Re = 0, this problem reduces, in turn, to the Stokes problem

div(−pSI + 2D) = 0

div vS = 0

}
in Ω

vS = 0 at Σ ,

lim
|x|→∞

vS(x) = −U .

(3.3)

In what follows, we need to assume some regularity on Ω. We, therefore, suppose

throughout that Ω is of class C3.

The key results of this section are collected in Theorems 3.1 and 3.2, while the

main result is stated in Theorem 3.3. The proof of Thorems 3.1 and 3.2 is rather

technical, and it will be given in Appendix A.
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Theorem 3.1. There exist positive numbers Re0 = Re0(Ω, ε), C1 = C1(Ω,Re0, q)

and C2 = C2(Ω,Re0, ε, q) such that for any 0 < Re ≤ Re0, and 1 < q < 3/2 we

have

(i) ‖vNS − vS‖ 3q
3−2q

≤ C1Re1−η,

(ii) ‖S(vNS)− S(vS)‖q ≤ C2Re1−η,

where η can be taken arbitrarily close to zero, by choosing q arbitrarily close to 3/2

(C1, C2 →∞ as q → 3/2).

For a given C > 0, we shall say that a solution v, p to (2.1) belongs to the class

CC if and only if

Re
1
2 ‖v + U‖ 2q

2−q
+ Re

1
4 ‖gradv‖ 4q

4−q
+ ‖D2v‖1,q + ‖D2v‖1,t

+ ‖gradp‖q + ‖gradp‖t ≤ C .

We have the following.

Theorem 3.2. Let v, p ∈ CC for some C > 0. Then, there exist positive numbers

We0 = We0(Ω, ε, C), Re0 = Re0(Ω, ε, C), and C3 = C3(Ω,We0,Re0, ε, q) such that

for any 0 < Re ≤ Re0, 0 < We ≤We0, and 1 < q < 3/2 we have

(i) ‖v + U‖∞ ≤ C3,

(ii) ‖v− vNS‖ 3q
3−2q

≤ C3We,

(iii) ‖S(v) − S(vNS)‖q ≤ C3We.

From Lemma 2.1, Theorems 3.1 and 3.2 we immediately obtain the main result

of this section.

Theorem 3.3. Let B be a homogeneous body of revolution with fore-and-aft sym-

metry moving in a second-order liquid L by constant translational motion. Let

v, p ∈ CC , some C > 0. Then, there are positive Re0 and We0 depending on B,
ε and C, such that for all 0 < Re ≤ Re0, and 0 < We ≤We0 the total torque (2.2)

exerted by L on B is given by

M = ReM0,I + WeM0,NN +N , (3.4)

withM0,I andM0,NN defined in (2.8), while

|N | ≤ K(Re2−η + We2) ,

where K and η are positive constants independent of Re and We, and where η can

be taken arbitrarily close to zero (K →∞ as η → 0).
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4. On the Orientation of a Body of Revolution with Fore-and-Aft

Symmetry Falling in a Second-Order Fluid at Small and

Nonzero Re and We

Let B be a body of revolution around an axis a, with fore-and-aft symmetry with

respect to a plane Π orthogonal to a. The objective of this section is to study the

orientations of B falling by a translational motion with velocity U in a second-

order liquid, under the action of acceleration of gravity g, at small but nonzero Re

and We.

Specifically, in the first part, we shall show that B has (at least) two possible ways

of orienting itself, namely, with a either parallel or perpendicular to g. Successively,

using the results of Theorem 3.3 we show that, provided that the componentsM0,I
3

and M0,NN
3 (say) of M0,I and M0,NN , respectively, in the plane orthogonal to

U and g are not both zero, the mentioned orientations are the only possible ones.

Finally, again using (3.4), we perform a “quasi-steady” stability analysis that shows

that one or the other orientation is stable, depending on the competition between

inertia and visco-elasticity, and on the sign of M0,I
3 andM0,NN

3 .

In the next two sections we shall specialize these results to the case when B is a

prolate spheroid and compare them with the experimental observations of Liu and

Joseph.21

We recall that a body B moving under the action of gravity in a quiescent liquid

L filling the whole space, is said to undergo a free steady translational fall if and

only if there are v, p, U and g satisfying the following problem,27,30

div T = Rev · gradv + g

div v = 0

}
in Ω

v = 0 on Σ

lim
|x|→∞

v(x) = −U∫
Σ

T(v, p) · n = mg∫
Σ

x×T(v, p) · n = 0 .

(4.1)

Definition 4.1. We shall say that a homogeneous body B is symmetric around

the axis a ≡ x1 (say), if and only if:

(x1, x2, x3) ∈ Σ =⇒
{

(x1,−x2, x3) ∈ Σ ,

(x1, x2,−x3) ∈ Σ .

One can show that every symmetric body can perform a steady translational fall,

provided Re and We are not too large. Even though this fact seems very intuitive, its

rigorous proof is rather technical and we will postpone it until Appendix B. We have:

Theorem 4.1. Let B be a symmetric body around the axis a. Then, for g directed

along a, there are Re0,We0, C > 0 depending only on B and ε, such that for any
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Fig. 3. Choice of the axes.

0 ≤ Re ≤ Re0 and 0 ≤We ≤We0 problem (4.1) has at least one solution (v, p,U,g)

with (v, p) ∈ CC . The translational velocity U is also parallel to g with U · g > 0.

Moreover, if (v1, p1,U,g1) is any other solution to (3.1) with (v1, p1) ∈ CC ,
then v1 = v, p1 = p, and g1 = g.

Since bodies of revolution around a, possessing fore-and-aft symmetry with

respect to Π are symmetric (in the sense of Definition 4.1) around a and around any

other axis belonging to Π, from Theorem 4.1 we deduce the following general result.

Theorem 4.2. A homogeneous body of revolution around an axis a, possessing

fore-and-aft symmetry can execute at small Reynolds and Weissenberg numbers at

least two types of translational steady falls, determined by the following directions

of g:

(a) g is parallel to a;

(b) g is orthogonal to a.

In both cases, g is parallel to U, with U · g > 0.d

Our next objective is to show that, at first order in Re and We, these are the

only possible translational falls. In other words, the only possible orientations for

B are with a either parallel or perpendicular to g. A fundamental role in proving

this result is played by the evaluation of the torque furnished in Theorem 3.3.

Without loss of generality, we take the x1-axis of a frame attached to B
coinciding with the axis of revolution a of B, and assume the translational velocity

U contained in the plane x1, x2; see Fig. 3. The Stokes velocity fields vS solutions

to (3.3), can then be expressed as

vS = U1h
(1) + U2h

(2) , (4.2)

dWe assume that the mass of the body minus the mass of the displaced liquid (effective mass) is
positive, as appropriate for sedimentation.
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where, for i = 1, 2,

div TN (h(i), p(i)) = 0

div h(i) = 0

}
in Ω

h(i) = 0 at Σ

lim
|x|→∞

h(i) = −ei .

(4.3)

We shall next introduce some symmetry classes. To this end we denote by Pi,
i = 2, 3, the following operators:

P1f(x1, x2, x3) = f(−x1, x2, x3) ,

P2f(x1, x2, x3) = f(x1,−x2, x3) ,

P3f(x1, x2, x3) = f(x1, x2,−x3) .

(4.4)

We shall say that a vector field w belongs to the class C1 if and only if

w1 = P2w1 = P3w1 , w2 = −P2w2 = P3w2 , w3 = P2w3 = −P3w3 . (4.5)

Likewise, w ∈ C2 if and only if

w1 = −P1w1 = P3w1 , w2 = P1w2 = P3w2 , w3 = P1w3 = −P3w3 , (4.6)

w ∈ C3 if and only if

w1 = −P1w1 = −P2w1 , w2 = P1w2 = P2w2 , w3 = P1w3 = −P2w3 , (4.7)

w ∈ C4 if and only if

w1 = P1w1 = P2w1 , w2 = −P1w2 = −P2w2 , w3 = −P1w3 = P2w3 (4.8)

and finally, w ∈ C5 if and only if

w1 = P1w1 = −P2w1 , w2 = −P1w2 = P2w2 , w3 = −P1w3 = −P2w3 . (4.9)

Thus, using the symmetry properties of B and the uniqueness of Stokes problems

(2.3) and (4.3), it is easy to show that h(i), i = 1, 2, and H(j), j = 1, 2, 3, satisfy

the following conditions:

h(1) ∈ C1 , h(2) ∈ C2
H(1) ∈ C3 , H(2) ∈ C4 , H(3) ∈ C5 .

(4.10)

Using (4.5)–(4.9) along with (4.10), from (2.8) and (4.2) one shows directly that

M0,I
1 =M0,I

2 =M0,NN
1 =M0,NN

2 = 0

and that

M0,I
3 = U1U2GI , M0,NN

3 = U1U2G(ε)
V , (4.11)

where

GI = −
∫

Ω

(h(1) · gradh(2) + h(2) · gradh(1)) ·H(3) (4.12)
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and

G(ε)
V = −

∫
Ω

(h(1) · gradD(h(2)) + (gradh(1))T ·D(h(2)) + D(h(1)) · gradh(2)

+h(2) · gradD(h(1)) + (gradh(2))T ·D(h(1)) + D(h(2)) · gradh(1)

+ 2εD(h(1)) ·D(h(2))) : D(H(3)) . (4.13)

Clearly, the quantities GI and G(ε)
V (for fixed ε) depend only on the geometric

properties of B, such as size or shape, but are otherwise independent of the orienta-

tion of B and of the properties of the liquid. We call GI and G(ε)
V the inertial torque

coefficient and viscoelastic torque coefficient, respectively, and set

G = ReGI + WeG(ε)
V . (4.14)

Therefore, at first order in Re and We, from Theorem 3.3 we obtain that the torque

M acting on B is given by

M = GU1U2e3 . (4.15)

In the case of a steady fall, the torque must vanish (see (4.1)6), and from (4.15) we

deduce that, provided G is not zero, this can happen only if U is either directed

along the axis of revolution a of B or it is perpendicular to it. From Theorem 4.1 it

then follows that U has the same orientation as g and so we conclude that provided

G is not zero, the only possible orientations of B at first order in the Reynolds and

Weissenberg numbers are with a either parallel or perpendicular to g.

Let us briefly analyze the possibility of having G = 0. Strictly speaking, this

means that the torque at first order is zero and, consequently, every orientation

is possible at first order. However, for a given body B possessing both torque

coefficients nonzero, as in the case of a prolate spheroid (see the next section),

the condition G = 0 is verified only for those values of Re and We belonging to

the straight line passing through zero and with angular coefficient −GI/G(ε)
V (see

Fig. 9, for the case of a prolate spheroid). Therefore, in such a case, one can make

G 6= 0 by slightly changing Re or We (or both).

We shall now consider the stability of such orientations, when G 6= 0. Since

U1 = cos θ, U2 = − sin θe (see Fig. 1), Eq. (4.15) can also be written as follows:

M = −G sin θ cos θe3 . (4.16)

Thus, if we limit ourselves to perturbations in the form of infinitesimal disorien-

tations of the type δθe3, for a configuration to be stable [respectively, unstable]

the variation ofM(θ) from its value at the equilibrium configuration, should have

a sign opposite to δθ [respectively, the same sign]. Therefore, denoting by θ0 the

eRecall that |U| = 1.
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Fig. 4. Absolute value of the inertial torque coefficient as a function of e.

equilbrium configuration (i.e. θ0 is either 0 or π/2), we have

d(M · e3)

dθ

∣∣∣∣
θ=θ0

< 0 =⇒ stability ,

d(M · e3)

dθ

∣∣∣∣
θ=θ0

> 0 =⇒ instability .

Consequently, taking into account (4.14), we obtain

θ = 0

{
stable if ReGI > −WeG(ε)

V ,

unstable if ReGI < −WeG(ε)
V ,

θ =
π

2

{
stable if ReGI < −WeG(ε)

V ,

unstable if ReGI > −WeG(ε)
V .

From this we see that, perhaps at odds with intuition, the competition between the

inertial and viscoelastic torques does not produce an “intermediate” equilibrium

configuration corresponding to an angle θ 6= 0, π/2, as conjectured in Ref. 18.

Rather, it is only responsible for the stability/instability of the configurations θ =

0, π/2.

5. The Orientation of a Prolate Spheroid Falling in a

Second-Order Liquid

This section aims at discussing the nature of the torque in the case when B is a

prolate spheroid of eccentricity e. The evaluation of GI was already performed in

Ref. 13 and it was found that it is always negative for e ∈ (0, 1) and that it becomes

zero for e = 0, 1. Variation of−GI with e is given in Fig. 4. We shall next evaluate the

viscoelastic torque coefficient G(ε)
V . In the case ε = 1 this has been done analytically

in Ref. 11. However, the general case ε 6= 1 seems to be much more complicated,
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and we have evaluated G(ε)
V numerically using the software Mathematica (Wolfram

Inc.). The procedure used here follows the arguments presented in Ref. 13 for the

purely Newtonian case. Integrating by parts several times in the integral in (4.12),

we find the following expression for G(ε)
V :

G(ε)
V =

{
3− ε

2

∫
Σ

x× nω(1) ·ω(2) + (ε− 1)

[∫
Ω

(3H · gradh(1) ·∆h(2)

+ 3H · gradh(2) ·∆h(1) + H · (gradh(1))T ·∆h(2)

+H · (gradh(2))T ·∆h(1))

]}
, (5.1)

where, for simplicity, we set H(3) = H, and where ωi = curlh(i), i = 1, 2. Note

that for ε = 1, the volume integral in (5.1) disappears and we revert back to the

case considered in Ref. 11. The evaluation of the volume integral becomes simpler

if we notice that (see (4.3))

∆h(i) = grad p(i)

for i = 1, 2. So the torque coefficient takes the following form

G(ε)
V =

{
3− ε

2

∫
Σ

x× nω(1) · ω(2) + (ε− 1)

[∫
Ω

(3H · gradh(1) · gradp(2)

+ 3H · gradh(2) · grad p(1) + H · (gradh(1))T · grad p(2)

+H · (gradh(2))T · gradp(1)

]}
. (5.2)

All fields involved in the integral are explicitly known; see, e.g., Ref. 7. The value

of ε is not well established. However, there seems to be reason to believe that

1.6 ≤ ε ≤ 2.2,21 A detailed discussion on the effect of this parameter is included at

the end of the section.

In Cartesian components, the fields h(1), h(2), and the corresponding pressure

fields, p1 and p2, are given by7

h(1) = −e1 + 2α1e1B10 + α1rer

(
1

R2
− 1

R1

)
− α1r

2e1B30 + 2β1 gradB11 ,

h(2) = −e2 + α2e2B10 + α2x2e1

(
1

R2
− 1

R1

)
− α2rx2erB30 − β2 gradB ,

p1 = 2α1

(
1

R1
− 1

R2

)
, p2 = 2α2

x2

r2

(
x− e
R2

− x+ e

R1

)
,

while the field H is given by7

H = ((α3 − α′3)(2A1 + A3)x2 + (γ′3 − γ3)A3x2)e1 + (2(α3 − α′3)B31x
2
2

+ 2(γ3 − γ′3)B11)e2 + 2(α3 − α′3)B31x2x3e3 + 4(β3 − β′3)grad [x2A2] .
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In the above formulas we have set er = (x2e2 + x3e3)/r and

r =
√
x2

2 + x2
3 , R =

√
x2

1 + r2 ,

R1 =
√

(x1 + e)2 + r2 , R2 =
√

(x1 − e)2 + r2 ,

B = x2

(
x1 − e
r2

R1 −
x1 + e

r2
R2 +B10

)
,

B10 = ln
R2 − x1 + e

R1 − x1 − e
, B11 = R2 −R1 +B10 ,

B30 =
1

r2

(
x1 + e

R2
− x1 − e

R1

)
, B31 =

(
1

R2
− 1

R1

)
+ x1B30 ,

B32 = −e
(

1

R2
+

1

R1

)
+B10 + x1B31 , B33 = −e2

(
1

R2
− 1

R1

)
+ 2B11 + x1B32 ,

A1 = x1B31 −B32 , A2 = e2B30 −B33 , A3 = e2B30 −B32 ,

α1 = e2

[
−2e+ (1 + e2) ln

1 + e

1− e

]−1

, α2 = 2e2

[
2e+ (3e2 − 1) ln

1 + e

1− e

]−1

,

β1 =
(1− e2)α1

2e2
, β2 =

(1− e2)α2

2e2
,

α3 =
4e2

(1− e2)
β3 = 2e2γ3

[
−2e+ ln

1 + e

1− e

] [
2e(2e2 − 3) + 3(1− e2) ln

1 + e

1− e

]−1

,

γ3 = (1− e2)

[
−2e+ (1 + e2) ln

1 + e

1− e

]−1

,

α′3 =
4e2

(1− e2)
β′3 = e2γ′3

[
−2e+ (1− e2) ln

1 + e

1− e

]
,

×
[
2e(2e2 − 3) + 3(1− e2) ln

1 + e

1− e

]−1

,

γ′3 =
γ3

e2 − 1
.

It is next observed that the calculation of G(ε)
V is considerably simpler in prolate-

spheroidal coordinates (ζ, µ, θ) with the transformation from Cartesian coordinates

given by

x1 = eµζ , x2 = e
√
µ2 − 1

√
1− ζ2 cos θ , x3 = e

√
µ2 − 1

√
1− ζ2 sin θ ,

and the scale factors

qµ =

√
µ2 − 1

e
√
µ2 − ζ2

, qζ =

√
1− ζ2

e
√
µ2 − ζ2

, qθ =
1

e
√
µ2 − 1

√
1− ζ2

.
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The components of h(i), i = 1, 2,H, p1 and p2 in these new coordinates are given

by

h(1)
µ = ζu1 , h

(1)
ζ = u2 , h

(1)
θ = 0 ,

h(2)
µ = v1 cos θ , h

(2)
ζ = v2ζ cos θ , h

(2)
θ = v3 sin θ ,

Hµ = H1ζ cos θ , Hζ = H2 cos θ , Hθ = H3ζ sin θ ,

p1 = ζP1 , p2 = P2 cos θ ,

with

u1 =
1√

µ2 − 1
√
µ2 − ζ2

(
1− 4β1µ+ 2(α1 + β1)(µ

2 − 1) ln
µ+ 1

µ− 1

)
,

u2 =

√
1− ζ2√
µ2 − ζ2

(
−2α1 − 4β1 − µ+ 2(α1 + β1)µ ln

µ+ 1

µ− 1

)
,

v1 =

√
1− ζ2

(µ2 − 1)
√
µ2 − ζ2

(
− 4β2 + µ+ 2β2µ

2 − µ3 + 2α2(µ
2 − 1)

+ (α2 − β2)µ(µ2 − 1) ln
µ+ 1

µ− 1

)
,

v2 =
1√

µ2 − 1
√
µ2 − ζ2

(
−1− 2β2µ+ µ2 − (α2 − β2)(µ

2 − 1) ln
µ+ 1

µ− 1

)
,

v3 =
1

µ2 − 1

(
−1− 2β2µ+ µ2 − (α2 − β2)(µ

2 − 1) ln
µ+ 1

µ− 1

)
,

H1 =
−e
√

1− ζ2

(µ2 − 1)
√
µ2 − ζ2

[
6(1− µ2)(α′3 − αa3 + γ′3 − γ3) + (48µ2 − 56)(β′3 − β3)

+ (µ2 − 1) ln
µ+ 1

µ− 1
{(3µ2 − 3)(α3 − α′3) + (1− 3µ2)(γ3 − γ′3)

+ (12− 24µ2)(β′3 − β3)}
]
,

H2 =
e√

µ2 − 1(µ2 − ζ2)
3
2

[
2ζ2(µ2 − 1)

{
2(−1 + ζ2)(α3 − α′3) + 2ζ2(γ′3 − γ3)

+ 2µ2(γ3 − γ′3)− (γ3 − γ′3)µ(µ2 − ζ2) ln
µ+ 1

µ− 1

}
+ 4(β3 − β′3)(2ζ2 − 1)

×
{

4− 6µ2 + 3µ(µ2 − 1) ln
µ+ 1

µ− 1

}
− µ(1− ζ2)

(µ2 − ζ2)

{
2µ(α3 − α′3)(2 + ζ2 − 3µ2)

+ 2µ(γ′3 − γ3)(ζ
2 − µ2) + (3α3 − 3α′3 + γ′3 − γ3)(µ

2 − ζ2)(µ2 − 1) ln
µ+ 1

µ− 1

}]
,
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H3 =
2e

µ2 − 1

[
(8− 12µ2)(β3 − β′3) + 2(µ2 − 1)(γ3 − γ′3)

+ (6β3 − 6β′3 + γ′3 − γ3)µ(µ2 − 1) ln
µ+ 1

µ− 1

]
,

P1 =
−4α1

e(µ2 − ζ2)
,

P2 =
−4α2µ

√
1− ζ2

e
√

(µ2 − 1)(µ2 − ζ2)
.

We write the components of h(1), h(2) and H in the above form in order to exploit

the symmetry of the problem in the ζ and θ directions.

Next we perform the numerical evaluation of the integral in (5.2) with the

software Mathematica (Wolfram Inc.).

Graphs of the variation of the viscoelastic torque coefficient G(ε)
V with eccen-

tricity are shown in Figs. 6 and 7. They also depict the variation of G(ε)
V with the

parameter ε. The essential profile of the curve stays remarkably consistent for each

value of the parameter ε (see Fig. 6), changing slightly when ε < 1 (see Fig. 7).

Also, G(ε)
V increases with increasing ε. It is also interesting to note in Fig. 7 that

G(ε)
V is always positive for each e if ε is greater than approximately 1. As ε becomes

less than one, the torque coefficient changes sign for e close to one. Let us analyze

the two situations ε & 1 and ε . 1 separately.

The case ε & 1. In this case we have that GI and G(ε)
V have opposite sign. In view

of the results of Sec. 2, this means that for ε & 1 the stable orientation of the prolate

spheroid is with its major axis a perpendicular to the gravity g if −ReGI > WeG(ε)
V

(inertia prevails on normal stresses) while the stable orientation is with a parallel to

g if −ReGI < WeG(ε)
V (normal stresses prevail on inertia). This result can be more

easily stated in terms of the elasticity number E = We/Re. Specifically, introducing

the critical elasticity number

Ec = Ec(e, ε) ≡
|GI |
G(ε)
V

,

we have that if E < Ec the liquid behaves as Newtonian, that is the orientation

with a perpendicular to g is stable, while if E > Ec, the other is stable. A plot of

Ec(e, ε) versus e, for ε = 1, 1.8 is given in Fig. 5.

The case ε . 1. For values of eccentricities in the range (0,∼ 0.9) the stability

of the equilibrium configuration is the same as in the case ε & 1. However, for

very slender spheroids (e ∼ 1) G(ε)
V becomes negative. Therefore, if ε . 1, sediment-

ing slender spheroids will have GI and G(ε)
V acting in the same direction, and the

configuration with a perpendicular to g is always stable, as in the case of a purely

Newtonian fluid. Since slender bodies in a viscoelastic fluid orient themselves with

a parallel to g,19 our result confirms that the predicted value of a lower bound of
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Fig. 5. Critical elasticity number Ec versus eccentricity e, for ε = 1.8. If E > Ec the ellipsoid
falls with its major axis a parallel to g, while if E < Ec, the fall with a parallel to g is stable.

Fig. 6. Viscoelastic torque coefficient G(ε)
V vs. eccentricity e for different values of ε.

∼ 1.6 for ε is appropriate. In Fig. 7 we plot G(ε)
V versus e for ε = 0.7, 0.8, since the

dramatic turn to negative values is more prominent in these cases.

Another important feature is that the viscoelastic torque coefficient is several

times larger than the absolute value of the inertial torque coefficient, mainly for

eccentricities close to 1. Figure 8 compares the absolute value of the inertial torque

coefficient to the viscoelastic torque coefficient for two different values of ε. We

have chosen ε = 1.8 which is the value recommended in the experiments of Liu

& Joseph,21 see also Sec. 17.11 of Ref. 16, and ε = 1, that is the value for which

the viscoelastic torque coefficient can be computed analytically.11 The viscoelastic
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Fig. 7. Viscoelastic torque coefficient G(ε)
V versus e, for ε = 0.7, 0.8. The torque coefficient changes

sign for e at approximately 0.9. Note also that the curves achieve their peaks at decreasing values
of e as ε decreases.

Fig. 8. Comparision of the inertial torque coefficient to the viscoelastic torque coefficient, for
different values of ε. The viscoelastic torque coefficient is almost five times larger than the inertial
one for e around 1 (slender ellipsoids) and ε = 1.8.

effects seem to outweigh the inertial ones. This helps explain the experimental

observation which we shall discuss in the following section.

6. Comparison with Experiments

It is interesting to see how our theoretical results match with the experiments

of Liu & Joseph21 on particle sedimentation. Typically, particles considered by

these authors are cylinders with round or flat ends. One of the main features of

these studies is the observation of equilibrium configurations where the axis of

the cylinders forms an angle with the horizontal, the tilt angle βtilt, that may
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Fig. 9. Critical ratios of inertial versus viscoelastic torques for varying eccentricities e.

range continuously from 90◦ to 0◦. These configurations are achieved by suitably

varying the weight of the particles and the polymeric concentration of the liquid.

Liu and Joseph suggest that the existence of the “intermediate” configuration,

i.e. 0◦ < βtilt < 90◦, is due to the balance between inertia and viscoelastic torques.

We have seen earlier that the second-order model only predicts βtilt = 0◦, 90◦.

Recall that in the equilibrium state, the balance of inertial to viscoelastic

torques, at first order in Reynolds and Weissenberg numbers is represented by

(ReGI + WeG(ε)
V ) cos θ sin θ = 0 .

Introducing, for e 6= 0, 1, the ratio ρ of inertia to viscoelastic torquef :

ρ =
Re|GI |
WeG(ε)

V
,

we then have a critical ratio

ρc = 1 . (6.1)

When ρ > ρc, then inertia dominates and the spheroid falls horizontally (i.e. βtilt =

0◦), while when ρ < ρc, viscoelasticl effects dominate and the spheroid falls verti-

cally (i.e. βtilt = 90◦). Figure 9 shows the critical curves for varying eccentricities

e. The critcal curves are seen to be lines of varying slopes for the different eccen-

tricities. Qualitatively, since G(ε)
V is much larger than GI (Fig. 8), varying the ratio

of Re and We would determine the final orientation of the body. For the body to

acquire the horizontal state, Re should far exceed We by an amount which can be

read from Fig. 9.

fRecall that, for e 6= 0, 1, GI is negative, and G(ε)
V is positive, in the range of physically meaningful

values of ε.
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We shall now make a comparison of our results with experimental observations.

Liu and Joseph have observations of the tilt angle for varying materials, and varying

Re and We. It must be emphasized that the experiments we are referring to were

performed using cylinders with flat and round edges whereas the results presented

here are for ellipsoidal objects. It has been noted,19,21 that the phenomenon of tilt

angle is very sensitive to the geometry of the body. Hence we make this comparison

with some apprehension. However, lack of sufficient experimental data leaves us

with no other choice. Also, it must be noted that “eccentricities” of the cylinders

used in the experiments have been approximated to between 0.85 and 0.92. Also,

we take
√

1−D2/L2 as a measure of the “eccentricity”, whereD is the diameter of

the cylinder and L is its length. We set L = 0.8 inches. The drawback of this is that

at eccentricities close to 1 the torques seem to drop rather rapidly. A small variation

in the approximation of e may lead to a large error in the corresponding value of the

torque. Therefore, more observations at lower eccentricities would render a more

reliable comparison. This will be the object of future experimental work.

Figures 10 and 11 show how experimental observations match with our theo-

retical predictions. Comparisons have been shown for three different values of ε

indicated on the plot. They expect to give an idea of how predictions of the ex-

periment get better with increasing values of ε. The different symbols on each plot

refer to the different materials used. � represents brass, N aluminum, � plastic

and J tin. The observed tilt angles are mentioned besides the plotted points. The

dashed line indicates the critical ratio ρc. If the observations lie above the line,

then the predicted tilt angle is βtilt = 0◦, otherwise βtilt = 90◦. It is seen from the

figures above that the predictions seem to get better progressively, with increasing

ε. For the case when ε = 1.0, 1.6 the ratio of the two torques is not quite large

enough. However, at ε = 1.8 all the experimental data fall in the correct category

of the graph. As mentioned earlier, the model fails to account for the tilt angle.

Fig. 10. Comparison with experimental data for ε = 1.
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Fig. 11. Comparison with experimental data for ε = 1.8.

The two observed cases of tilt angle (namely of 53◦ and 31◦) fall above the critical

line for each off the cases. The calculations here seem to suggest, one more time,

that ε = 1.8 better explains the experimental data than ε = 1. However, as is

evident, a more complicated model is required to verify and explain the tilt angle

phenomenon. This will be the object of future work.

Appendix A. Proof of Theorems 3.1 and 3.2

We begin to introduce some standard notation. As a rule, if X is a space of scalar

functions, we shall use the same symbol X to denote the corresponding space of

vector and tensor-valued functions. By Lq(Ω), 1 ≤ q ≤ ∞, we denote the usual

Lebesgue spaces with the associated norm (2.15). Moreover,Wm,q(Ω), m ≥ 0, is the

Sobolev space of functions that belong to Lq(Ω) together with their (generalized)

derivatives up to the order m inclusive. Furthermore, by Wm−1/q,q(Σ), we indicate

the trace space at the boundary Σ of functions from Wm,q(Ω). Norms in Wm,q(Ω)

andWm−1/q,q(Σ) will be denoted by ‖·‖m,q and ‖·‖m−1/q,q(Σ), respectively. Finally,

we set

D2f =
∂li+ljf

xlii ∂x
lj
j

, li + lj = 2 , li, lj = 0, 1 , i, j = 1, 2, 3 .

In order to prove these theorems, we recall several preliminary results.

The first one concerns the Stokes problem and its proof is given in

Theorems V.4.1 and V.5.1 of Ref. 10,

Lemma A.1.

F ∈ Lq(Ω) , 1 < q < 3/2 .
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Then the problem

∆u = F + gradφ

div u = 0

}
in Ω

u = 0 on Σ

lim
|x|→∞

u(x) = 0

(A.1)

admits one and only one solution u, φ such that

u ∈ L3q/(3−2q)(Ω) , gradu ∈ L3q/(3−q)(Ω) , D2u ∈ Lq(Ω)

φ ∈ L3q/(3−q)(Ω) , gradφ ∈ Lq(Ω) .

This solution satisfies the following estimate:

‖u‖3q 3q
3−2q

+ ‖gradu‖ 3q
3−q

+ ‖D2u‖q + ‖φ‖ 3q
3−q

+ ‖gradφ‖q ≤ c1‖F‖q ,

where the positive constant c1 depends on q and Ω.

The second one concerns the Oseen problem. Let (h, π) be a solution to the

Oseen problem in Ω, i.e.

−∆h + Re
∂h

∂x1
+ gradπ = f

div h = 0

(A.2)

with

Z = Z∗ at Σ

lim
|x|→∞

h(x) = 0 .
(A.3)

We have

Lemma A.2. Suppose that

f ∈ Lq(Ω) ∪W 1,t(Ω) , 1 < q <
3

2
, 1 < t <∞ , Z∗ ∈W 3− 1

t ,t(Σ) .

Then, there exists a unique corresponding solution (Z, π) to the Oseen problem

(A.2)–(A.3). Moreover

a1‖Z‖ 2q
2−q

+ a2‖gradZ‖ 4q
4−q

+ ‖D2Z‖q + δ‖D2Z‖1,t + ‖gradπ‖q + δ‖gradπ‖1,t

≤ C(‖f‖q + δ‖f‖1,t + ‖Z∗‖2− 1
q ,q(Σ) + δ‖Z∗‖3− 1

t ,t(Σ)) (A.4)

with a1 = min(1,Re
1
2 ), a2 = min(1,Re

1
4 ), δ = 0 or 1.

Proof. The part with δ = 0 is proved in Chap. VII of Ref. 10, the other part can

be easily deduced from results given there. See also Sec. III.5.3 of Ref. 26.



October 15, 2002 16:27 WSPC/103-M3AS 00227

Orientation of Symmetric Bodies in a Second-Order Liquid 1679

We also need the following result on the steady transport equation, for whose

proof we refer to Ref. 24; see also Refs. 12 and 26.

Lemma A.3. Consider the following transport equation

w + λu · gradw = f (A.5)

where λ is a positive number, f ∈W 1,q(Ω), 1 < q <∞, and u is a solenoidal vector

field in Ω, such that

u ∈ C1(Ω̄) , and u · n = 0 at Σ .

Then, if

λ‖u‖C1(Ω̄) < 1/2 ,

Eq. (A.3) has one and only one solution w ∈ W 1,q(Ω). Moreover, the solution

satisfies the estimates

‖w‖q ≤ ‖f‖q ,

‖gradw‖q ≤ 2‖grad f‖q .

The next two results regard the nonlinear problems (3.2) and (3.1). The

following is a particular case of Lemma 2.2 proved in Ref. 13.

Lemma A.4. Let vNS , pNS be a solution to (2.2), with gradvNS ∈ L2(Ω), and let

1 < s < 3/2. There exists c0 = c0(Ω, s) > 0 such that if Re ≤ c0, then vNS satisfies

the following estimates for all σ ∈ (3/2,+∞).

‖(vNS −U)(1 + |x|)‖∞ + ‖gradvNS‖σ

+ (Re)
1
4 ‖gradvNS‖ 4s

4−s
+ ‖D2vNS‖s ≤ c , (A.6)

with c = c(Ω, s, σ).

Concerning problem (3.1) we have the following result.

Lemma A.5. Let ε0 > 0. There exist positive numbers Re0, and We0, such that

for any 0 < Re ≤ Re0, 0 < We ≤ We0, 0 < ε < ε0, problem (3.1) has at least one

solution. Moreover, there is a positive constant C = C(Ω, t, q,We0,Re0, ε0) such

that

Re
1
2 ‖v + U‖ 2q

2−q
+ Re

1
4 ‖gradv‖ 4q

4−q
+ ‖D2v‖1,q + ‖D2v‖1,t

+ ‖gradp‖q + ‖gradp‖t ≤ C , (A.7)

q ∈ (1, 3/2), t ∈ (1,∞).g Finally, for any given C1 > 0 there exist We1, Re1 such

that for all 0 < Re ≤ Re1, 0 < We ≤ We1 the solution is unique in the class of

solutions satisfying (A.7), with C = C1.

gIn the applications of Lemma A.5 given in this section, we will typically pick two different values
for t : t1 < 3/2, sufficiently close to 1, and t2 > 3/2, sufficiently close to ∞.
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Proof. The proof is relatively standard (see e.g. Ref. 31) and is based on the

following idea (see Ref. 23). Consider the mapping

M : S 7→ (Z, π) 7→ s ,

where

−∆z + Re
∂Z

x1
+ gradπ = S

div Z = 0

(A.8)

in Ω, with

Z = U at Σ

Z→ 0 |x| → ∞
(A.9)

and

s + We (Z−U) · grad s = −ReZ · gradZ + We Re
∂2Z

∂x2
1

+ We div

[
2D(Z) · (gradZ)T + 2εD2(Z)

+ Re
∂Z

∂x1
⊗ Z− π(gradZ)T

]
(A.10)

in Ω, namely, (Z, π) solves the Oseen problem, and s solves the steady transport

equation. Let (w, φ) be the solution to (A.8)–(A.9) corresponding to the fixed point

of the operator M . Then (v, p) = (w − U, φ + We(w − U) · gradφ) solves (3.1).

Now, combining estimates for the Oseen problem from Lemmas A.2 and A.3 we

get the result using the contraction principle. Let us shortly sketch this procedure.

Take t1 ∈ (1, 4/3] and t2 ∈ (3/2,∞), sufficiently large, q ∈ (1, 3/2). Take K > 0

and assume

‖S‖1,q + ‖S‖1,t1 + ‖S‖1,t2 ≤ K .

Set, further,

[|Z, π|] = Re
1
2 ‖Z‖ 2q

2−q
+ Re

1
4 ‖gradZ‖ 4q

4−q
+ Re

1
2 ‖Z‖ 2t1

2−t1
+ Re

1
4 ‖gradZ‖ 4t1

4−t1

+ ‖D2Z‖1,q + ‖D2Z‖1,t1 + ‖D2Z‖1,t2

+ ‖gradπ‖1,q + ‖gradπ‖1,t1 + ‖gradπ‖1,t2 .

Then, in view of (A.4),

[|Z, π|] ≤ C(1 +K) .

Moreover, applying Lemma A.3 to (A.10) and observing that, by Sobolev embed-

ding theorems, we have

‖Z‖C1(Ω̄) ≤ c[|Z, π|] ≤ cC(1 +K) ,
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with c = c(Ω, q, t1, t2), we can show that for We sufficiently small, the following

estimate holdsh

‖s‖1,q + ‖s‖1,t1 + ‖s‖1,t2 ≤ C(Re,We)(1 + [|Z, π|]2) ,

where C → 0 as Re→ 0 and We→ 0. We also easily prove that

‖s1 − s2‖t1 + ‖s1 − s2‖q ≤ C(Re,We)(1 +K)‖S1 − S2‖q
with si = MSi, i = 1, 2, and the existence of unique solution to (3.1) in the ball

C(Re,We)(1+[|Z, π|]2) ≤ K is established. Note that we can take [|Z, π|] arbitrarily

large; but then Re, We must be very small.

Remark A.1. Problem (3.2) can be solved even without the smallness assumption

on Re. Nevertheless, since we want to construct strong solution to (3.2), we can

apply similar method and obtain an estimate corresponding to (A.7) (with the

W 1,s-norm of gradpNS instead of Ls-norm, and with C independent of We0) in a

very similar way as in Lemma A.5 (even easier).

We end our preliminary results by recalling the following useful interpolation

result due to Maremonti (see Ref. 22 for more general version)

Lemma A.6. Let gradZ ∈ Ls(Ω), s > 3 and Z ∈ Lq(Ω), q ≥ 1. Then there exist

C = C(s, q, a) and C1 = C1(τ) such that

‖Z‖∞ ≤ C(‖gradZ‖as‖Z‖1−aq + C1‖gradZ‖a−τs ‖Z‖1−a+τ
q ) , (A.11)

where a ∈ [0, 1), τ ∈ (0, a] and a(1/s− 1/3) + (1− a)1/q = 0.

We are now in a position to prove the main results.

Proof of Theorem 3.1. Setting w = vNS − vS , from (3.2), (3.3) we find

∆w = RevNS · gradvNS + gradΦ

div w = 0

}
in Ω

w = 0 on Σ

lim
|x|→∞

w(x) = 0 .

(A.12)

From Lemma A.1 and by the Hölder inequality we have, for all 1 < q < 3/2,

‖w‖ 3q
3−2q

+ ‖gradw‖ 3q
3−q

+ ‖D2w‖q ≤ c3 Re
(
‖vNS + U‖ 2q

2−q
‖gradvNS‖2

+ ‖gradvNS‖q
)
. (A.13)

Choosing q > 4/3, we have 2q/(2 − q) ∈ (4, 6). Thus, applying Lemma A.4

(Eq. (A.6)), we obtain

‖vNS + U‖ 2q
2−q
‖gradvNS‖2 ≤ c4 . (A.14)

hThe bound t1 ≤ 4/3 comes from the estimate of the convective term.
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Moreover, for any 4/3 < r ≤ 3/2 we can find σ > 3/2, and s ∈ (1, 12/11) such that

q2 ≡ 4s/(4− s) < r. Therefore, with this choice of q1, by the convexity inequality

and Lemma A.4, we get

‖gradvNS‖r ≤ ‖gradvNS‖θq2‖gradvNS‖1−θσ ≤ c5 Re−θ/4 , θ =
q2(r − σ)

r(q2 − σ)
.

(A.15)

Setting η = θ/4, from (A.15) and (A.14) with r = q, we deduce

‖w‖ 3q
3−2q

+ ‖gradw‖ 3q
3−q

+ ‖D2w‖q ≤ cRe1−η , (A.16)

where η can be made close to zero, by fixing q2 and by choosing q and σ close to

3/2. Estimate (i) of Theorem 3.1 then follows from (A.16). To show estimate (ii),

we observe that for any u1,u2, setting u = u1 − u2, it is

S(u1)− S(u2) = 2(u · gradD(u1) + u2 · gradD(u)) + S1(gradu1, gradu2) (A.17)

with

|S1(gradu1, gradu2)| ≤ C|gradu|(|gradu1|+ |gradu2|) (A.18)

and C = C(ε0). Using these formulas with u1 = vNS , u2 = vS and applying

Hölder’s inequality we obtain

‖S(vNS)− S(vS)‖q ≤ ‖w‖ 3q
3−2q
‖gradvNS‖ 3

2
+ ‖vS‖∞‖D2w‖q

+C‖gradw‖ 3q
3−q

(‖gradvNS‖3 + ‖gradvS‖3) . (A.19)

Clearly,

‖gradvS‖3 ≤ c1 , (A.20)

and, from (A.15) with r = 3/2,

‖gradvNS‖ 3
2
≤ c2 Re−η . (A.21)

Moreover, from Lemma A.4, we get

‖gradvNS‖3 ≤ c3 . (A.22)

Thus, part (ii) of Theorem 3.1 follows from (A.19), (2.17) and (A.20)–(A.22). This

concludes the proof of Theorem 3.1.

Proof of Theorem 3.2. Estimate (i) is an easy consequence of (A.7) and (A.11).

Namely

‖v + U‖∞ ≤ C
(
‖gradv‖a3t2

3−t2
‖v + U‖1−a3q

3−2q

+ C(τ)‖gradv‖a−τ3t2
3−t2
‖v + U‖1−a+τ

3q
3−2q

)
for some t2 > 3/2 and q < 3/2. Then, since v + U ∈ L

2q
2−q and gradv ∈ L

4q
4−q , we

have

‖v + U‖∞ ≤ C
(
‖D2v‖at ‖D2v‖1−aq + C(τ)‖D2v‖a−τt ‖D2v‖1−a+τ

s

)
≤ C .
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Further, to show (ii) and (iii), let us write the equation for the difference v−vNS ≡
u. We have

−∆u + Re
∂u

x1
+ grad(p− pNS) = −Rey(v + U) · gradu−Reu · gradvNS

+ 2We grad(A1(v) + 2εD2(v)) ≡ F

div v = 0 ,

and

u = 0 at Σ

lim
|x|→∞

u(x) = 0 .

Applying estimate (A.4) with δ = 0 we have

Re
1
2 ‖u‖ 2q

2−q
+ Re

1
4 ‖gradu‖ 4q

4−q
+ ‖D2u‖q ≤ C‖F‖q . (A.23)

Now, using (A.7) for both v and vNS , we have

Re‖(v + U) · gradu‖q ≤ Re
1
4 ‖gradu‖ 4q

4−q
Re

3
4 ‖v + U‖4

≤ Re
3
4 ‖D2v‖ 12

11
Re

1
4 ‖gradu‖ 4q

4−q

≤ 1

2C
Re

1
4 ‖gradu‖ 4q

4−q

for an appropriately chosen t1, and for Re sufficiently small. Analogously,

Re‖u · gradvNS‖q ≤ Re
1
2 ‖u‖ 2q

2−q
Re

1
2 ‖gradvNS‖2

≤ Re
1
2 ‖u‖ 2q

2−q
Re

1
2 ‖D2vNS‖ 6

5

≤ 1

2C
Re

1
2 ‖u‖ 2q

2−q
.

The other two terms are now easily estimated by

CWe(‖D2v‖21,t1 + ‖D2v‖21,t2 + 1)

for some t1, t2 appropriately chosen. Thus, from (A.23) we have

Re
1
2 ‖u‖ 2q

2−q
+ Re

1
4 ‖gradu‖ 4q

4−q
+ ‖D2u‖q ≤ CWe .

Since 1 < q < 3/2, we find

‖u‖ 3q
3−2q

≤ C‖D2u‖q ≤ CWe

and (ii) is proved. To show (iii), we use (A.17) and (A.18) with u1 ≡ v and u2 ≡
vNS . We get

S(v)− S(vNS) = 2(u · gradD(v) + vNS · gradD(u)) + S1(gradv, gradvNS) ,
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where

|S1(gradv, gradvNS)| ≤ C|gradu|(|gradv|+ |gradvNS |) .

Nowi

‖vNS · gradD(u)‖q ≤ C‖D2u‖q‖vNS‖∞ ≤ C(1 + ‖vNS + U‖∞)‖D2u‖q ≤ CWe ,

‖ |gradu| |gradvNS |‖q ≤ ‖gradu‖ 3q
3−q
‖gradvNS‖3 ≤ C‖D2u‖q ≤ CWe .

Similarly,

‖u · gradD(v)‖q ≤ ‖u‖ 3q
3−2q
‖D2v‖ 3

2
≤ C‖D2u‖q‖D2v‖ 3

2
≤ CWe

‖ |gradu| |gradv|‖q ≤ ‖gradu‖ 3q
3−q
‖grad ]v‖3 ≤ C‖D2u‖q‖D2v‖ 3

2
≤ CWe

and also (iii) is shown. The theorem is proved.

Appendix B. Proof of Theorem 3.1

We assume a ≡ x1. Denote by C(s)
C , some C > 0, the subclass of CC consituted by

vectors v and scalars p such that (see (4.5))

v ∈ C1 , p = P2p = P3p .

By a direct inspection, we find that, in the class C(s)
C , it is

U = Ue1 ,∫
Σ

x×T(v, p) · n = 0 ,∫
Σ

T(v, p) · n = ηe1 , for some η ∈ R .

Moreover, dot-multiplying both sides of (4.1)1 by h(1) +e1 and integrating by parts

over Ω we get

e1 ·
∫

Σ

T(v, p) · n = We

∫
Ω

S(v) : D(h) +

∫
Ω

D(v) : D(h)

+ Re

∫
Ω

v · gradv · (h + e1) + |B|g · e1 ,

where, for simplicity, the subscript “(1)” has been omitted, and where |B| is the

volume of the body B. Moreover, dot-multiplying both sides of (4.3) (with i = 1)

by v + U and integrating by parts over Ω we find∫
Ω

D(v) : D(h) = U ·
∫

Σ

T(h, p(1)) · n .

iNote that for ‖vNS + U‖∞ we can get the same estimate as for ‖v + U‖∞.
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Therefore, given g = ge1, g > 0 (say) the steady fall problem (4.1) in the class C(s)
C

is equivalent to find a triple {v, P, U} such that

We divS(v) + div TN (v, P ) = Rev · gradv

div v = 0

}
in Ω

v = 0 on Σ

lim
|x|→∞

v(x) = −Ue1

KU = meg −Re

∫
Ω

v · gradv · (h + e1)−We

∫
Ω

S(v) : D(h) ,

(B.1)

where

K = e1 ·
∫

Σ

TN (h, p(1)) · n ,

P = p − gx1, and me = m − |B| is the “effective mass”, which we are assuming

positive (for sedimentation to occur). As is well known14 the number K is strictly

positive. A solution to (B.1) can be obtained as a fixed point of a suitable map.

Actually, let us consider the following equations:

We Ũ div S(u) + divTN (u, π) = Re Ũu · gradu

div u = 0

}
in Ω

u = 0 on Σ

lim
|x|→∞

u(x) = −e1

(B.2)

and

KU = meg −Re Ũ2

∫
Ω

u · gradu · (h + e1)−We Ũ2

∫
Ω

S(u) : D(h) . (B.3)

Let T : Ũ 7→ U be the composition of the maps T1 and T2 defined as follows: for a

given Ũ ∈ (U0/8, U0), some fixed U0 > 0, T1 maps Ũ in the solution (u, π) to (B.2),

while T2 maps (u, π) into U defined through (B.3). If we show that T possesses a

fixed point, i.e. Ũ = U , then a solution to the problem (B.1) is obtained by setting

v = Uu, P = Uπ. The choice of 1/8 as coefficient of U0 is made for the sake

of definiteness. We might have chosen as interval of definition of the map T any

interval of the type (aU0, bU0), with 0 < a < b.

For q ∈ (1, 3/2), t ∈ (1,∞), set

‖u, π‖q,t = (Re Ũ)
1
2 ‖u + e1‖ 2q

2−q
+ (Re Ũ)

1
4 ‖gradu‖ 4q

4−q

+ ‖D2u‖1,q + ‖D2u‖1,t + ‖gradπ‖q + ‖gradπ‖t ,

and fix ε > 0. From Lemma A.5 we have that there exist positive constants γ1, γ2

(depending on q, t, ε) such that (B.2) has one and only one solution satisfying

‖u, π‖q,t < γ1 , (B.4)
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whenever (Re + We)U0 < γ2. Reasoning exactly as in the proof of parts (i) and (ii)

of Theorem 3.2, we show that

‖u‖∞ + ‖S(u)‖q ≤ γ ,

where γ is a positive constant independent of Re, We and Ũ . Moreover, we recall

the well-known summability properties for the Stokes velocity field10 h:

(h + e1) ∈ Ls(Ω) , for all s > 3

D(h) ∈ Lσ(Ω) , for all σ > 3/2 .

Therefore, from this latter inequality, from (B.3) and from the Hölder inequality

we find

|KU −meg| ≤ Re Ũ2‖u‖∞‖gradu‖s′‖h + e1‖s + We Ũ2‖S(u)‖σ′‖D(h)‖σ

≤ κ(Re Ũ2‖gradu‖σ′ + We Ũ2) , (B.5)

where κ is independent of Re, We and Ũ . Since σ′ is arbitrary in (1, 3), Eqs. (B.4)

and (B.5) imply

|KU −meg| ≤ κ1(Re
3
4 Ũ

7
4 + WeŨ2) . (B.6)

Choose U0 = 2meg/K. Then, for Ũ ∈ (0, U0), and for Re and We sufficiently small

(B.6) furnishes

|U − U0/2| ≤
κ1

K
((Re

3
4U

7
4
0 + WeU2

0 ) ≤ U0/4 .

From this relation we find

1

4
U0 ≤ U ≤

3

4
U0 , (B.7)

which implies, in particular, that the map T trasforms the interval (U0/8, U0) in

itself. It remains to prove that T is a contraction. To this end, we define u′ and φ

as follows:

u = u′ − e1 , π = φ+ We Ũu · gradφ .

Since gradπ ∈ Lt(ω) for all t ∈ (1,∞), in view of Lemma A.3 the field φ exists in

a suitable functional class if We Ũ is sufficiently small. Consequently, (B.2) can be

equivalently written as follows (see (A.8)–(A.10):

−∆u′ + Re Ũ
∂u′

x1
+ gradφ = w ,

div u′ = 0 ,

u′ = e1 at Σ , u′ → 0 as |x| → ∞ .

(B.8)
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w + We Ũ(u′ − e1) · gradw = −Re Ũu′ · gradu′ + We Re Ũ2 ∂
2u′

∂x2
1

+ We Ũ div

[
2D(u′) · (gradu′)T + 2εD2(u′)

+ Re Ũ
∂u′

x1
⊗ u′ − φ(gradu′)T

]
.

Let (u1, φ1) and (u2, φ2) be the two solutions to (B.8) corresponding to Ũ1 and Ũ2,

respectively. Setting

V = u1 − u2 , Ũ = Ũ1 − Ũ2 , φ = φ1 − φ2 , w = w1 −w2

we find

−∆V + Re Ũ1
∂V

x1
+ gradφ = w −Re Ũ

∂u2

x1
,

div V = 0 ,

V = 0 at Σ , V(x)→ 0 as |x| → ∞ .

(B.9)

w + We Ũ1(u1 − e1) · gradw = WeF1 + ReF2 + We ReF3 + We divF ≡ f ,

where the vector functions Fi, i = 1, 2, 3 are given by

F1 = Ũ(u1 − e1) · gradw2 + Ũ2V · gradw2

F2 = Ũ1V · gradu1 + Ũ1u2 · gradV + Ũu2 · gradu2

F3 = Ũ2
1

∂2V

∂x2
1

+ (Ũ2
1 − Ũ2

2 )
∂2u1

∂x2
1

,

while the tensor function F is defined as follows:

F = 2(Ũ1D(V) · (gradu1)
T + Ũ1D(u2) · (gradV)T + ŨD(u2) · (gradu2)

T)

+ 2ε(Ũ1D(V) ·D(u1) + Ũ1D(u2) ·D(V) + ŨD2(u2))

+ Re

(
Ũ2

1

∂V

∂x1
⊗ u1 + Ũ2

1

∂u2

∂x1
⊗V + (Ũ2

1 − Ũ2
2 )
∂u2

∂x1
⊗ u2

)
− Ũ1φ(gradu1)

T − Ũ1φ2(gradV)T − Ũφ2(gradu2)
T .

From Lemma A.3 applied to (B.9)4, and using (B.4), for We sufficiently small we

find

‖w‖q ≤ C‖f‖q . (B.10)

We wish to estimate the right-hand side of (B.10). Set

〈〈V, φ〉〉 = (Re Ũ1)
1
2 ‖V‖ 2q

2−q
+ (Re Ũ1)

1
4 ‖gradV‖ 4q

4−q
+ ‖D2V‖1,q + ‖gradφ‖q .
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Taking into account (B.4), that Ũi ∈ (U0/8, U0), i = 1, 2, and using the following

Sobolev-type estimates10

‖V‖ 3q
3−2q

+ ‖gradV‖ 3q
3−q
≤ γ‖D2V‖q , 1 < q <

3

2
(B.11)

by a straightforward calculation that also uses several times the Hölder inequality

we can prove the validity of the following relation for all q ∈ (1, 3/2)

‖f‖q ≤ C0(Re,We)(〈〈V, φ〉〉 + |Ũ |) , (B.12)

where C0(Re,We) → 0 as Re,We → 0. From Lemma A.2 applied to (B.9)1,2,3 we

also deduce

〈〈V, φ〉〉 ≤ C(‖w‖q + Re|Ũ | ‖gradu2‖q) . (B.13)

As a consequence, choosing q ∈ (4/3, 3/2), from (B.4), (B.10), (B.12) and (B.13) it

follows, for sufficiently small Re and We, that

〈〈V, φ〉〉 ≤ γ0|Ũ | , (B.14)

for a suitable positive constant γ0 which can be made independent of Re, We and Ũ .

Next, from (B.3) we have that U ≡ T (Ũ1)− T (Ũ2) satisfies the following equation:

KU = −Re

∫
Ω

{Ũ2
1 (V · gradu1 + (u1 + e1) · gradV)

+ (Ũ2
1 − Ũ2

2 )(u2 · gradu2)} · (h + e1)

−We

∫
Ω

{Ũ2
1 (S(u1 + e1)− S(u2 + e1))− (Ũ2

1 − Ũ2
2 )S(u2 + e1)} : D(h) .

(B.15)

Using (B.11) and (B.4) we easily establish, for that

‖Ũ2
1 (V · gradu1 + (u1 + e1) · gradV) + (Ũ2

1 − Ũ2
2 )(u2 · gradu2)‖q

≤ c1 Re−
1
2 (〈〈V, φ〉〉 + |Ũ |) . (B.16)

Furthermore, again from (B.4) and (A.17), (A.18) we get

‖(S(u1 + e1)− S(u2 + e1))− (Ũ2
1 − Ũ2

2 )S(u2 + e1)‖q

≤ c2(〈〈V, φ〉〉 + |Ũ |) . (B.17)

In Eqs. (B.16) and (B.17) the constants c1, c2 are independent of Re and We. Thus,

from (B.15), with the help of (B.14), (B.16) and (B.17) we conclude that

|U | ≤ c0(Re,We)|Ũ | ,
where c0(Re,We) → 0 as Re,We → 0. This shows that T is a contraction and,

therefore, the existence part of Theorem 3.1 is accomplished. The uniqueness part is

immediately obtained as follows. The fields (v, p) and (v1, p1) are solutions to (4.1)

corresponding to the same U and in the same class CC . Therefore, by Lemma A.5,

the two solutions coincide for Re and We sufficiently small, and therefore, from

(4.1)5, it follows g = g1, and the proof of the theorem is completed.
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