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Abstract

An analysis of irrotational Faraday waves on an inviscid fluid was given by Benjamin and Ursell 1954.
Here we extend the analysis of the same problem to purely irrotational waves on a viscous fluid. Following our
earlier work on free surface problems, two irrotational theories are presented. In the first theory (VPF) the
effects of viscosity enter only through the viscous normal stress term evaluated on the potential. In the second
irrotational theory (VCVPF), a viscous contribution is added to the Bernoulli pressure; otherwise the second
theory is the same as the first. The second theory VCVPF gives rise to the same damped Mathieu equation
as the dissipation method. Pressure fields are not required and not used in the dissipation method. The
dissipation method is a purely irrotational theory, though it depends on viscosity, in which only irrotational
velocity fields u = ∇φ are needed. The two purely irrotational theories VPF and VCVPF are not restricted
to small viscosities; they are restricted to small vorticity and do not apply near no-slip wall where vorticity
is generated.

Our VCVPF and dissipation theories give the same damped Mathieu equation as the phenomenological
approximation of Kumar and Tuckerman 1994. The damping term in VCVPF is twice the damping rate
of VPF. The growth rates of unstable disturbances computed by VPF are uniformly larger than those
computed by VCVPF (or equivalently by Kumar and Tuckerman). Comparisons with the exact solution and
the Rayleigh-Taylor instability show that thresholds and growth rates for viscously damped waves are better
described by VPF than VCVPF.
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1 Introduction

The seminal paper of Benjamin & Ursell (1954) (referred to as BU hereafter) on the stability of the plane free
surface of a liquid in vertical periodic motion has spawned a huge literature which extends their analysis to
include effects of viscosity, two liquids, side wall, bottom and free surface boundary layers and nonlinear effects
associated with bifurcation and pattern formation. Review papers emphasizing different aspects of this problem
have been prepared by Miles & Henderson (1990), Dias & Kharif (1999), and Perlin & Schultz (2000). This
paper focuses of the effects of viscosity using viscous potential flow for exactly the same problem, in exactly the
same formulation as Benjamin & Ursell (1954).

The flow literature on Faraday waves is not widely relevant to our problem except as to point to the effects
which we do not consider. These neglected effects are the ones generated by no-slip boundary conditions at the
bottom and side walls and all nonlinear effects. We have derived the following two damped Mathieu equations
from systematic analysis of the irrotational motion of viscous fluids in the formulation and using the notations
introduced by BU. Thus

äm + Nνȧmk2
m + km tanh (kmh)

[
γ

ρ
k2

m + (g − f cos (ωt))
]

am = 0 (1.1)

where km is an eigenvalue of the vibrating membrane equation

∂2Sm

∂x2
+

∂2Sm

∂y2
+ k2

mSm = 0 (1.2)

and

N = 2 (VPF), N = 4 (VCVPF).

The damped equation (1.1) with N = 4 was presented as a phenomenological model using a damping coefficient
given by Landau & Lifshitz (1987) (§25) by Kumar & Tuckerman (1994). Their ad hoc equation is advertised
as valid for small damping. Here we obtain the equations with N = 2 and N = 4 from systematic analysis of
the equations which govern the irrotational flows of viscous fluids. No restrictions on the values of ν arise in the
analysis and we argue that equations are valid for large as well as small damping. Moreover, we find that the
damped Mathieu equation (1.1) with N = 2 gives a better approximation to small amplitude Faraday dynamics
than N = 4 for which the waves are “overdamped.”

Our analysis includes many tables and graphs which are rapidly, easily and accurately computed by a Runge-
Kutta (RK) integration of the initial value problems associated with (1.1) (see Funada et al. (2005)).

2 Energy equation

The energy equation is the basis of our VCVPF theory. We derive the mechanical energy equation from Navier-
Stokes equations

ρ
du

dt
= ∇ ·T + ρ (g − f cos(ωt)) ez (2.1)

in the usual way; scalar multiply (2.1) by u, integrate over the fluid domain V , apply Reynolds’ transport
theorem and Gauss’ theorem, to find

d
dt

∫

V

1
2
ρ |u|2 dV =

∫

Af

u ·T · ndA +
∫

Aw

u ·T · ndA−
∫

V

2µD : DdV + (g − f cos(ωt))
∫

V

ρ
dz

dt
dV, (2.2)

where Af is the free surface, Aw represents both the side walls and the bottom wall, and n is the outward

normal of V on A. The integrals
∫

Af

u ·T · ndA and
∫

Aw

u ·T · ndA are the power of traction. On the free

surface n ≈ −ez and we can show readily that

u ·T · n = − (uxTxz + uyTyz + uzTzz) . (2.3)
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We shall be considering the potential flow of viscous fluids called VPF. For these flows, the no-slip conditions
usually cannot be satisfied and they are replaced with (3.1) below. The stresses on the free surface are evaluated
using potential flow

Txz = τ i
xz = µ

(
∂ux

∂z
+

∂uz

∂x

)
,

Tyz = τ i
yz = µ

(
∂uy

∂z
+

∂uz

∂y

)
,

Tzz = −pi + τ i
zz = −pi + 2µ

∂uz

∂z
,





(2.4)

where pi is the irrotational pressure computed from the Bernoulli equation. Then the mechanical energy equation
for VPF may be written as

d
dt

∫

V

1
2
ρ |u|2 dV =

∫

Af

− [
uxτ i

xz + uyτ i
yz + uz

(−pi + τ i
zz

)]
dA +

∫

Aw

u ·T · ndA

−
∫

V

2µD : DdV + (g − f cos(ωt))
∫

V

ρ
dz

dt
dV .

(2.5)

The shear stresses τ i
xz and τ i

yz from the potential flow are not zero at the free surface. However, the shear
stresses should be zero physically. Txz and Tyz cannot be made zero in irrotational flows, but we can remove

the power by the shear stress
∫

Af

(
uxτ i

xz + uyτ i
yz

)
dA from the mechanical energy equation. At the same time,

a pressure correction pv is added to pi to compensate for the shear stresses. The mechanical energy equation
for VCVPF is then written as

d
dt

∫

V

1
2
ρ |u|2 dV =

∫

Af

− [
uz

(−pi − pv + τ i
zz

)]
dA +

∫

Aw

u ·T · ndA

−
∫

V

2µD : DdV + (g − f cos(ωt))
∫

V

ρ
dz

dt
dV .

(2.6)

A comparison of (2.5) and (2.6) gives rise to the relation between the pressure correction and the irrotational
shear stresses ∫

Af

[
uxτ i

xz + uyτ i
yz

]
dA =

∫

Af

(−pvuz) dA. (2.7)

3 VPF & VCVPF

There are two approaches to the analysis of the effects of viscosity in purely irrotational motions of real fluids.
The first and simplest approach is to include the effects of the viscous normal stress in the normal stress
balance; nothing more. The second approach is the same as the first except that an additional viscous pressure
is computed to remove the effects of irrotational shear from the energy balance. We call this second approach
VCVPF (viscous correction of viscous potential flow); it is equivalent to the well known dissipation method
in which no pressure, viscous or inviscid, is required. The two theories VPF and VCVPF give rise to different
results. Our experience with other problems is such as to suggest that VCVPF is closer to exact results for
progressive waves, and VPF is closer to exact results when waves do not propagate, more precisely, in this case
the eigenvalues are real. This second case, in which VPF is better, applies here to irrotational Faraday waves
on viscous fluids.

3.1 Potential flow

The velocity u = ∇φ = (ux, uy, uz) is expressed in terms of a harmonic potential ∇2φ = 0 in a coordinate
system moving with the container. Boundary conditions at the container walls are given by

∂φ

∂n
= 0 on the side walls,

∂φ

∂z
= 0 on the bottom wall at z = h.





(3.1)
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A harmonic solution satisfying (3.1) can be written as

φ(x, y, z, t) =
∞∑

m=0

fm(t) cosh [km (h− z)]Sm(x, y), (3.2)

where the eigenfunctions Sm(x, y) satisfy

∂Sm

∂n
= 0, (3.3)

on the side wall. The condition at the bottom wall gives

(
∂φ

∂z

)

z=h

=
∞∑

m=0

fm(t) (−km) sinh [km (h− z)]Sm(x, y)

∣∣∣∣∣
z=h

= 0. (3.4)

The normal stress balance at the free surface

z = ζ(x, y, t), (3.5)

in the linearized approximation, is
(

p− 2µ
∂uz

∂z

)

z=0

= γ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
. (3.6)

For VPF, p = pi where pi is given by the Bernoulli equation. For VCVPF, p = pi + pv where pv is a viscous
correction of the irrotational pressure pi.

3.2 Amplitude equations for the elevation of the free surface

Now consider the kinematic condition at z = 0

∂ζ

∂t
= uz =

∂φ

∂z
at z = 0 (3.7)

where
(

∂φ

∂z

)

z=0

=
∞∑

m=0

fm(t) (−km) sinh (kmh) Sm(x, y). (3.8)

If we write the surface elevation as

ζ =
∞∑

m=0

am(t)Sm(x, y), (3.9)

then

∂ζ

∂t
=

∞∑
m=0

dam

dt
Sm(x, y). (3.10)

Since the total volume of fluid is constant, a0(t) is constant

da0

dt
= 0

and

γ

ρ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
= −γ

ρ

∞∑
m=1

k2
mam(t)Sm(x, y). (3.11)
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Since k0 = 0, (3.11) and (3.8) show that f0(t) is undetermined. BU showed that a0(t) can be put to zero.
For m ≥ 1, (3.7), (3.8) and (3.10) give

dam

dt
Sm(x, y) = fm(t) (−km) sinh (kmh) Sm(x, y), hence fm(t) = −dam

dt

1
km sinh (kmh)

,

so that the potential is given by

φ(x, y, z, t) = −
∞∑

m=1

dam

dt

cosh [km (h− z)]
km sinh (kmh)

Sm(x, y). (3.12)

The Bernoulli’s equation is

pi

ρ
+

∂φ

∂t
− (g − f cos(ωt)) z = 0. (3.13)

The normal stress balance (3.6) is
(

pi + pv − 2µ
∂uz

∂z

)

z=0

= γ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
. (3.14)

Linearized governing equations for the viscous corrections are

ρ
∂uv

∂t
= −∇pv + µ∇2uv, ∇ · uv = 0. (3.15)

Hence,

∇2pv = 0. (3.16)

The solution of (3.16) may be written as

−pv =
∞∑

m=0

Cmr̂m(t)θm(z)Sm(x, y), θm = cm1ekmz + cm2e−kmz. (3.17)

At z = 0,

−pv(z = 0) =
∞∑

m=0

Cmrm(t)Sm(x, y), (3.18)

where rm = r̂m(t) (cm1 + cm2).
We may eliminate pi from (3.14) using (3.13)

[
pv + ρ (g − f cos (ωt)) ζ − ρ

∂φ

∂t
− 2µ

∂2φ

∂z2

]

x=0

= γ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
. (3.19)

Equation (3.19) may be evaluated on modal functions using (3.9), (3.11),

2µ
∂2φ

∂z2
= −2µ

∞∑
m=1

dam

dt
km

cosh [km (h− z)]
sinh (kmh)

Sm(x, y) (3.20)

and

∂φ

∂t
= −

∞∑
m=1

d2am

dt2
coth [km (h− z)]
km sinh (kmh)

Sm(x, y). (3.21)
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Hence
∞∑

m=1

[
−Cmrm(t) + ρ (g − f cos (ωt)) am(t) + ρ

d2am

dt2
coth (kmh)

km

+2µ
dam

dt
km coth (kmh) + γk2

mam(t)
]

Sm(x, y) = 0. (3.22)

The coefficients of the linearly independent functions Sm(x, y) vanish. Hence the amplitude equation for VCVPF
is

d2am

dt2
+ 2νk2

m

dam

dt
+ km tanh (kmh)

[
γ

ρ
k2

m + g − f cos(ωt)
]

am

−km

ρ
tanh (kmh) Cmrm(t) = 0. (3.23)

To evaluate Cmrm(t) in (3.23) we need to work only with mode m. To simplify the writing we shall suppress
the subscript m and write

ux = −da

dt

coth (kh)
k

∂S

∂x
, (3.24)

τxz = 2µ
da

dt

∂S

∂x
, (3.25)

uy = −da

dt

coth (kh)
k

∂S

∂y
, (3.26)

τyz = 2µ
da

dt

∂S

∂y
, (3.27)

uz =
da

dt
S, (3.28)

pv = −Cr(t)S, (3.29)

τzz = −2µ
da

dt
k coth (kh)S, (3.30)

∫

A

[uxτxz + uyτyz + pvuz] dA =
∫

A

{
−2µ

(
da

dt

)2 coth (kh)
k

[(
∂S

∂x

)2

+
(

∂S

∂y

)2
]
−Cr(t)

da

dt
S2

}
dA = 0.

Using Gauss’ theorem and the boundary condition on the side wall (3.3), we obtain
∫

A

[
∂

∂x

(
S

∂S

∂x

)
+

∂

∂y

(
S

∂S

∂y

)]
dA =

∫

L

[
S

∂S

∂n

]
dL = 0,

where L is the boundary of the free surface A and L is on the side wall. With the condition ∇2
2S = −k2S, we

can show that
∫

A

[(
∂S

∂x

)2

+
(

∂S

∂y

)2
]

dA = −
∫

A

S∇2
2SdA = k2

∫

A

S2dA. (3.31)

We find that
(

2µ

(
da

dt

)2

k coth (kh) + Cr(t)
da

dt

)∫
S2dA = 0 (3.32)

and

Cmrm(t) = Cr(t) = −2µk
da

dt
coth (kh) . (3.33)
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Inserting (3.33) into (3.23) we find the amplitude equation for VCVPF

d2a

dt2
+ 4νk2 da

dt
+ k tanh (kh)

[
γ

ρ
k2 + g − f cos(ωt)

]
a = 0. (3.34)

Viscous potential flow VPF is the same as VCVPF without the pressure correction pv. If pv is set to zero,
we find that

d2a

dt2
+ 2νk2 da

dt
+ k tanh (kh)

[
γ

ρ
k2 + g − f cos(ωt)

]
a = 0. (3.35)

The damping term can be written as

Nνk2 da

dt
(3.36)

with N = 2 for VPF and N = 4 for VCVPF.

4 Dissipation method

We now show that the dissipation method leads to the same amplitude equation (3.34) which we derived for
VCVPF. The two theories are equivalent, but no pressure, whatever is required to implement the dissipation
method. To show this, we evaluate (2.2), term by term. Thus

φ = −da

dt

cosh [k (h− z)]
k sinh (kh)

S(x, y), (4.1)

|u|2 = |∇φ|2 =
(

da

dt

)2 1
sinh2 (kh)

[
1
2

cosh (2k (h− z))

(
|∇2S|2

k2
+ S2

)
+

1
2

(
|∇2S|2

k2
− S2

)]
.

Using (3.31), we find that

∫

V

|u|2 dV =
∫ h

0

∫
|u|2 dAdz =

∫ h

0

(
da

dt

)2 cosh (2k (h− z))
sinh2 (kh)

dz

∫
S2dA =

(
da

dt

)2 coth (kh)
k

∫
S2dA.

Hence

d
dt

∫

V

1
2
ρ |u|2 dV = ρ

da

dt

d2a

dt2
coth (kh)

k

∫
S2dA. (4.2)

We next consider the power of traction
∫

Af

u ·T · ndA +
∫

Aw

u ·T · ndA. On the free surface n ≈ −ez and

we have already derived that

u ·T · n = − (uxTxz + uyTyz + uzTzz) .

The physical boundary conditions require that

Txz = 0, Tyz = 0, Tzz = −γ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
,

where uz = da/dtS(x, y) at the free surface and ζ = a(t)S(x, y) and

γ

ρ
|∇2S|2 =

γ

ρ

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
= −γ

ρ
k2aS(x, y).
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Hence
∫

Af

u ·T · ndA = −γ

ρ
k2a

da

dt

∫
S2dA. (4.3)

The power of traction on the side wall and the bottom wall can be written as
∫

Aw

n ·T · udA =
∫

Aw

n · (−p1 + 2µD) · udA =
∫

Aw

(−p) n · udA +
∫

Aw

n · 2µD · udA. (4.4)

Since n ·u = 0 on the side wall and the bottom wall, the power of pressure in (4.4) is zero. For potential flows,
we may express the dissipation integral as

∫

V

2µD : DdV =
∫

A

u · 2µD · ndA =
∫

Af

u · 2µD · ndA +
∫

Aw

u · 2µD · ndA. (4.5)

The integral on Aw will be canceled out by the last term in (4.4) when all the terms are inserted into (2.2). For
the integral on Af we use the expressions in section 3 and find

u · 2µD · n = − (uxτxz + uyτyz + uzτzz)

= −2µ

(
da

dt

)2 coth (kh)
k

|∇2S|2 − 2µ

(
da

dt

)2

k coth (kh) S2

and
∫

Af

u · 2µD · ndA = −4µ

(
da

dt

)2

k coth (kh)
∫

S2dA. (4.6)

The last term in (2.2) is the potential energy and can be written as

(g − f cos (ωt))
d
dt

∫

V

ρzdV = (g − f cos (ωt))
d
dt

{∫

A

dA

∫ h

ζ

ρzdz

}

= (g − f cos (ωt))
d
dt

{∫

A

dA
ρ

(
h2 − ζ2

)

2
dz

}

= − (g − f cos (ωt))
d
dt

∫
ρ

2
ζ2dA

= − (g − f cos (ωt)) ρa
da

dt

∫
S2dA. (4.7)

Finally using (4.1), (4.2), (4.3) and (4.6) to evaluates (2.2), we get

da

dt

{
ρ
d2a

dt2
coth (kh)

k
= −γak2 − 4µ

da

dt
k coth (kh)− ρ (g − f cos (ωt)) a

} ∫
S2dA.

Hence

d2a

dt2
+ 4νk2 da

dt
+ k tanh (kh)

[
γ

ρ
k2 + (g − f cos (ωt))

]
a = 0. (4.8)

Equation (4.8) is exactly the same as (3.35), thus the dissipation calculation gives the same results as VCVPF.
(4.8) and (3.35) are also in agreement with (4.21) of Kumar & Tuckerman (1994).
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5 Stability analysis

The amplitude equations are

ä + Nνȧk2 + k tanh (kh)
[
γ

ρ
k2 + (g − f cos (ωt))

]
a = 0 (5.1)

where

N = 2 (VPF), N = 4 (VCVPF). (5.2)

In the fourth order RK integration, we may take time difference ∆t = π/212 = π/4096 for which time at n steps
is given by t = n×∆t and periodic time T may be defined as

T =
[

t

2π

]
(5.3)

with Gauss’ symbol [ ]. According to Floquet theory, we may represent the solutions of (5.1) in the unstable
region as

ln (a(t)) = σt + β = σ2πT + β (5.4)

where exp(β(t)) = b(t) is periodic in t but constant in T , and the growth rate σ is positive; σ = 0 at the
marginal state. To check exp(β(t)) = b(t), we may use Fourier series expressed as

b(t) =
∞∑

n=−∞
An exp(int) (5.5)

where the Fourier coefficient A−n is the complex conjugate of An. The coefficient is evaluated as

Am =
1
2π

∫ t+2π

t

b(t) exp(−imt)dt =
1
2π

8192∑

j=1

[b(tj) exp(−imtj) + b(tj−1) exp(−imtj−1)]
∆t

2
(5.6)

with the trapezoidal rule; tj = t + j ×∆t.
The solution of (5.1) can be written in Floquet form.

a(t) = eσtb(t) (5.7)

where σ is the growth rate and b(t) is a bounded oscillatory function which is periodic when

σ = 0 (marginal state) (5.8)

or

σ > 0 (unstable state). (5.9)

A growth rate curve is given by

σ = σ(k) = σ(−k) (5.10)

which is an even function of k.
The maximum growth rate is

σm =
Max

k > 0 [σ(k)] = σ(km). (5.11)

The flow is stable when k > kc

σ(k) < 0, k > kc (5.12)

where kc is called the cut off wave number. This says that short waves are stable.
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5.1 Comparison of VPF and VCVPF for periodic waves in a deep liquid

The governing equation (5.1) for the oscillation amplitude in a deep liquid h →∞ is

ä + Nνȧk2 + k

[
γ

ρ
k2 + (g − f cos (ωt))

]
a = 0 (5.13)

where N = 2 (VPF) or N = 4 (VCVPF). The main goal of this calculation is to show that for any value of
the kinematic viscosity ν, the other parameters being constant, N = 2 has a larger maximum growth rate than
N = 4. Hence, the irrotational theory associated with the direct effects of the viscous normal stress (VPF) on
the motion of the waves will give a better description of the effects of viscosity on the waves, than the value
N = 4 (VCVPF) which has been universally used by researchers in this subject since the study of Kumar &
Tuckerman (1994).

Cerda & Tirapegui (1998) considered Faraday’s instability in a viscous fluid and found a Mathieu equation
based on lubrication theory rather than potential flow. They interpret the irrotational theory leading to N = 4
as appropriate to weak dissipation. Our irrotational theories are not restricted to small viscosity, but they do
not account for vorticity generated by the no-slip condition on the container side walls or bottom. For periodic
disturbances on deep water the irrotational theories are valid for all values of ν.

Our results apply to silicon oils with kinematic viscoucities ranging from zero to 10 cm2/sec, the density of
0.97 g/cm3 and surface tension of γ = 21 dyne/cm. The frequency ω = 15.87× 2π sec−1 is fixed and (g, f) =
(981, 981) cm/sec2.

In figure 5.1 and 5.2 we present graphs and tables for the Floquet representation a = eσtb(t) for the stability
of Faraday waves on an inviscid and a viscous fluid.

In figure 5.3 we have plotted σm vs ν for Faraday waves on an inviscid fluid (N = 0) and on a viscous fluid
using VPF (N = 2) and VCVPF (N = 4). These theories are all irrotational. VCVPF is the same as VPF with
an added viscous contributions to the pressure. VCVPF gives the same results as the dissipation method as
shown here in section 4. Previously, the dissipation theory with N = 4, was proposed by Kumar & Tuckerman
(1994) from heurestic considerations. In figure 5.4 we plot the critical wave number km vs ν. The growth rates
and critical wave number are largest for N = 0 and are larger for VPF than for VCVPF at each fixed ν.
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Spectrum of ae−σt for k = 1.974 cm−1.
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1 2.6445e-01 -3.4452e-01
2 2.5204e-09 3.7177e-09
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(c) σ versus k.

Figure 5.1: Floquet theory a = eσtb(t) for Faraday waves on an inviscid fluid (N = 0); ρ = 0.97 g/cm3,
γ = 21 dyne/cm, g = 981 cm/sec2, ω = 2π × 15.87 sec−1, f = g cm/sec2. (a) ln (a) vs t/ (2π), (b) ae−σt =
b(t) = b(t + 2π) vs t/ (2π), (c) σ(Nν) vs k. σm = 11.1274 sec−1 at km = 2.4246 cm−1.
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Figure 5.2: Floquet theory a = eσtb(t) for Faraday waves on a viscous liquid ν = 1 cm2/sec with N = 2 (VPF);
ρ = 0.97 g/cm3, γ = 21 dyne/cm, g = 981 cm/sec2, ω = 2π × 15.87 sec−1, f = g cm/sec2. (a) ln (a) vs t/ (2π),
(b) ae−σt = b(t) = b(t + 2π), (c) σ vs k. σm = 5.8790 sec−1 at km = 2.1874 cm−1. The dissipation theory with
N = 4 (VCVPF) is stable <{σ} < 0.
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5.2 Damped Mathieu equation; Experiments of Benjamin & Ursell

The damped Mathieu equation (5.1) can be transformed into a Mathieu equation through the following change
of variables.

Using a(t) = â(t)e−Nνk2t/2, we have a Mathieu equation:

d2â

dt2
+

[
k tanh (kh)

(
g +

γ

ρ
k2

)
−

(
Nνk2

2

)2

− fk tanh (kh) cos(ωt)

]
â = 0. (5.14)

The solution â(t) = eσ′tb(t) with a temporary growth rate σ′ and the periodic function b(t) gives the neutral
state when a(t) = â(t)e−Nνk2t/2 = eσ′tb(t)e−Nνk2t/2 = b(t), that is, when σ′ = Nνk2/2. The effective growth
rate is σ = σ′ −Nνk2/2.

Normalization as ωt/2 → t gives

d2â

dt2
+ [p− 2q cos(2t)] â = 0 (5.15)

with p and q

p =
4
ω2

[(
g +

γ

ρ
k2

)
k tanh(kh)−

(
Nνk2

2

)2
]

, 2q =
4
ω2

fk tanh(kh). (5.16)

Benjamin & Ursell (1954) studied Faraday waves on an inviscid fluid in a cylindrical container of radius
R and height h. For data [ρ, g, γ, h, R, ω] used by them, ρ = 1 g/cm3, g = 981 cm/sec2, γ = 72.5 dyn/cm,
h = 25.4 cm (as of infinite depth), R = 2.7 cm, ω = 2π × 15.87 sec−1 and k = 5.331/R =1.974 cm−1 and

p =
4k

ω2

(
g +

γ

ρ
k2

)
, 2q =

4kf

ω2
. (5.17)

The stability chart for Mathieu equation in BU (their figure 3) is reproduced in figure 5.5, by picking up their
data (q, p) obtained by experiments for the (2, 1) mode of kR = 5.331 = k2,1R, for which the value of km,lR
with the radial mode m and the azimuthal mode l gives zero points of the derivative of Bessel functions of the
first kind due to the side wall condition of circular cylindrical container. The numbered points in figure 5.5 have
the data (q, p) listed in table 5.1, where ω and f are computed with (5.17) for given [ρ, g, γ, k, q, p]. In table
5.1, listed are the phase function β and the growth rate σ defined by (5.4) for unstable solutions, which are
obtained by the RK integration of Mathieu equation (5.15) with (q, p) given by (5.17). In the case of figure 5.5,
b(t) is of period π and may be expressed as the Fourier series (5.5).

Using (5.17) for given values of k, we can plot values of p and q in the (q, p) plane as in figure 5.5 and find
the cross points at the borders, say (q1, p1) and (q2, p2), where the points in q1 < q < q2 and p1 < p < p2 are
unstable. The two cross points give the cut-off wave number kc1 and kc2, and then the maximum growth rate σm

can be found at the associated wave number km in kc1 < km < kc2. In figure 5.6 we plot the growth rate curve
σ versus k for the experiment of BU marked by point 3 in figure 5.5 and find that the value k2,1 =1.974 cm−1

is very close to km.
The maximum growth rate parameter σm and km for the 9 cases in tables 5.1 are listed in 5.2, and we find

that km deviates from k2,1. As shown in table 5.3, the (1, 4) mode with k1,4 for No.1-7 cases is included in
unstable region. In addition to this, other modes may cause instability for No.8 and 9 cases.

In table 5.4 we list values of the growth rate σ and the phase function β for different values of the viscosity
when N = 2. We find that Point 5 becomes stable for large value of viscosity.
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Figure 5.5: p versus q for theoretical stability curve and experimental data of the (2, 1) mode (after Benjamin
& Ursell (1954)). The numbered points have the data (q, p) listed in table 5.1.

Table 5.1: Data of q, p, ω, f , β and σ for ν = 0.
No. q p ω f β σ
1 0.1051 0.9130 104.551 290.9270 -6.9315e-01 3.1120e-02
2 0.0660 0.9530 102.333 175.0262 -6.9311e-01 2.3710e-02
3 0.0530 1.000 99.8995 133.9454 -6.9314e-01 2.6491e-02
4 0.0570 1.025 98.6737 140.5410 -6.9313e-01 2.5346e-02
5 0.0750 1.067 96.7122 177.6433 -6.9219e-01 1.5856e-02
6 0.1020 1.089 95.7303 236.7142 -6.9311e-01 2.3172e-02
7 0.1825 1.172 92.2783 393.5386 -6.9310e-01 2.2653e-02
8 0.2780 1.257 89.1037 558.9354 -6.9315e-01 3.6267e-02
9 0.3770 1.316 87.0834 723.9983 -6.9315e-01 7.9969e-02
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Figure 5.6: σ versus k for point 3, ν = 0 cm2/sec, σm = 0.026495 at km = 1.9754 cm−1, kc1 = 1.9031 cm−1,
kc2 = 2.0476 cm−1.
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Table 5.2: Maximum growth rate σm is found at k = km, which is obtained for various values of k by the RK
integration of Mathieu equation. Values of kmR and the cut-off wave number kc are also computed.

No. km kmR σm kc1 kc2

1 2.1044 5.6820 0.055855 1.9474 2.2613
2 2.0444 5.5200 0.034090 1.9476 2.1367
3 1.9694 5.3175 0.026429 1.8993 2.0433
4 1.9444 5.2500 0.028014 1.8669 2.0184
5 1.8894 5.1015 0.035828 1.7935 1.9842
6 1.8644 5.0340 0.048031 1.7371 1.9907
7 1.7744 4.7910 0.081421 1.5665 1.9828
8 1.6994 4.5885 0.11763 1.4070 1.9883
9 1.6594 4.4805 0.15379 1.2861 2.0264

Table 5.3: Wave number km,l within unstable region and the corresponding growth rate σ. In cases of No.1-7,
the (1, 4) mode with k1,4 is included in the unstable region kc1 < k < kc2 shown respectively in table 5.2. In
addition to k1,4, other modes may cause instability for No.8 and No.9 data.

No. k cm−1 σ
1 k1,4 = 1.9695 σ1,4 = 2.8342e−02
2 k1,4 = 1.9695 σ1,4 = 2.1715e−02
3 k1,4 = 1.9695 σ1,4 = 2.6429e−02
4 k1,4 = 1.9695 σ1,4 = 2.6240e−02
5 k1,4 = 1.9695 σ1,4 = 1.9213e−02
6 k1,4 = 1.9695 σ1,4 = 2.6730e−02
7 k1,4 = 1.9695 σ1,4 = 2.8899e−02

k1,0 = 1.4192 σ1,0 = 3.3493e−02
8 k1,3 = 1.556 σ1,3 = 1.0233e−01

k1,4 = 1.9695 σ1,4 = 4.2095e−02
k1,0 = 1.4192 σ1,0 = 1.1758e−01

9 k1,3 = 1.556 σ1,3 = 1.4769e−01
k1,4 = 1.9695 σ1,4 = 8.2920e−02
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Table 5.4: Values of the phase function β and growth rate σ defined in (5.4) for viscous fluids with ε = 4νk2/ω
(N = 2). Point 5 is unstable for ν = 0 and ν = 0.01 cm2/sec, but stable for large viscosity ν = 0.2 cm2/sec. At
the other points, the growth rate σ decreases with increasing ν.

ν = 0.01 cm2/sec
No. β σ ε
1 -6.9290e-01 3.0374e-02 1.4915e-03
2 -6.9279e-01 2.29475e-02 1.5238e-03
3 -6.9235e-01 2.5711e-02 1.5609e-03
4 -6.9187e-01 2.4556e-02 1.5803e-03
5 -6.8876e-01 1.5050e-02 1.6124e-03
6 -6.8995e-01 2.2358e-02 1.6289e-03
7 -6.8726e-01 2.1810e-02 1.6899e-03
8 -6.8779e-01 3.5394e-02 1.7501e-03
9 -6.9008e-01 7.9074e-02 1.7907e-03

ν = 0.2 cm2/sec
No. β σ ε
1 -6.8822e-01 1.6046e-02 2.9830e-02
2 -6.8668e-01 8.3559e-03 3.0476e-02
3 -6.7763e-01 1.0884e-02 3.1219e-02
4 -6.6839e-01 9.6054e-03 3.1607e-02
5 -6.2691e-01 -1.3444e-06 3.2248e-02
6 -6.3260e-01 7.1299e-03 3.2578e-02
7 -5.8469e-01 6.2595e-03 3.3797e-02
8 -5.9246e-01 1.9260e-02 3.5001e-02
9 -6.3374e-01 6.2351e-02 3.5813e-02



faraday-dec27.tex 18

6 Rayleigh-Taylor instability and Faraday waves

This section follows the work of Kumar (2000) who compared wave number selection in Rayleigh-Taylor (RT)
instability and Faraday instability on deep and highly viscous liquids. He used the dissipation theory (VCVPF)
of Faraday instability with N = 4, first proposed by Kumar & Tuckerman (1994). Our main goal is to introduce
VPF with N = 2 into this comparison. We shall also revise slightly the comparisons made by Kumar (2000)
so that a direct comparison of maximum growth rates in the two problems can be made.

Kumar (2000) compared a critical kc = km at f = fc (where σ(km) = 0, σ < 0 for k 6= km = kc) for Faraday
waves with the maximum growth rate of RT waves when the gravitational acceleration is replaced with

āc =
ω

π

∫ 5π/2ω

3π/2ω

[fc cos (ωt)− g] dt =
2
π

fc − g. (6.1)

This value of āc is an average upward acceleration in the Faraday problem. He used (6.1) with N = 4 in his
calculation.

The maximum growth rate for RT instability can be computed from the exact linear theory given by equation
(18) in Joseph, Belanger & Beavers (1999) or more easily and with good accuracy by the purely irrotational
theory by equation (28) with ν = µ2/ρ2 and g replaced by āc. In this case, their (28) gives

σ = −k2ν ±
√

kāc − k3γ

ρ
+ k4ν2. (6.2)

The function km(āc) is given by maximizing σ given by (6.2) with respect to k.

dσ

dk
= −2νk +

1
2

ā− 3γ
ρ k2 + 4k3ν2

√
āk − γ

ρ k3 + k4ν2
= 0 (6.3)

which can be arranged as

8ν2k3

(
ā +

γ

ρ
k2

)
=

(
ā− 3

γ

ρ
k2

)2

. (6.4)

This is a fifth order algebraic equation for k = km. When ā is large, we have

8ν2k3ā = (ā)2 . (6.5)

Hence

km =
( ā

8ν2

)1/3

(6.6)

gives the maximum growth rate for large ā.
The maximum growth rate σm = σ(km) and the wave number k = km of maximum growth rate for RT

instability and dissipative Faraday waves are compared in figures 6.1, 6.2 and 6.3. These figures show that the
dissipative theory with N = 4 introduced by Kumar & Tuckerman (1994) and used by Kumar (2000) are more
damped than the dissipative potential flow solution VPF with N = 2; damped solutions with σm < 0 at small
values of f/g are shown in figures 6.2 and 6.3. We can say that the demonstration that damped Faraday waves at
large viscosities are driven by the same acceleration mechanism which produce RT waves is better demonstrated
by VPF with N = 2 than by the dissipative theory which is equivalent to our irrotational VCVPF with N = 4.
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Figure 6.1: (a) km versus f/g and (b) σm versus f/g, for ν = 1 cm2/sec. (c), (d) σ versus k for N = 4 in a
transition region, in which the mark ∗ denotes the maximum growth rate.
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Figure 6.2: (a) km versus f/g and (b) σm versus f/g, for ν = 100 cm2/sec.
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Figure 6.3: (a) km versus f/g and (b) σm versus f/g, for ν = 300 cm2/sec. For small values of f/g the potential
flow solutions for Faraday waves are stable, σm < 0 but N = 2 is less stable and more like RT waves than
N = 4.
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7 Comparison of purely irrotational solutions with exact solutions

Kumar & Tuckerman (1994) presented a linear stability analysis of the interface between two viscous fluids.
Starting from the Navier-Stokes equations, they derived the relevant equations describing the hydrodynamic
system in the presence of parametric forcing and carried out a Floquet analysis to solve the stability problem.
The viscous problem does not reduce to a system of Mathieu equations with a linear damping term, which
is traditionally considered to represent the effect of viscosity. The traditional approach ignores the viscous
boundary conditions at the interface of two fluids. To determine the effect of neglecting these, they compared
their exact viscous fluid results with those derived from the traditional phenomenological approach. They call
the exact theory FHS (fully hydrodynamic system). The traditional phenomenological approach is an application
of the dissipation method; it is called a model. When applied to an air/liquid system the model is the same as
the dissipation method which is the same as our irrotational theory VCVPF with damping proportional to 4ν.

They compared the results of the FHS and of the model to experimental results obtained in a viscous
glycerine-water mixture (Edwards & Fauve 1993) in contact with air. They considered the glycerine-water
nixture to be a layer of finite height h = 0.29 cm, in contact with a layer of air of infinite height. In their figure
3 (our 7.1) they plotted the experimental data for the critical wavelength λc and amplitude fc as a function
of forcing frequency. The solid and dashed curves are obtained from the FHS and from the model with finite
depth corrections, respectively. They noted, however, that the values for the surface tension γ and the viscosity
ν were chosen so as to best fit the FHS to the experimental data. This led to values γ = 67.6× 10−3 N/m and
ν = 1.02× 10−4 m2/sec, which are in good agreement with the corresponding values given in the literature for
the mixture composed of 88% (by weight) glycerol and 12% water, at temperature 23 ◦C. With these values,
both the model and the FHS agree reasonably well with the experimentally measured wavelengths. They noted
that “... the experimentally measured amplitudes agree quite well with the FHS over the entire frequency range,
and not at all with the model. It is impossible to improve the fit of the critical amplitudes to the model by
varying γ and ν.”

The model results shown in the inset for fc/g in figure 7.1 are for the dissipative approximation VCVPF
(N = 4).

In figure 7.2 we have compared the exact solution with the irrotational approximation for N = 4 and N = 2.
It is apparent that the fit of the critical amplitudes to the model with N = 2 is rather good.
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Figure 7.1: Dispersion relation for glycerine-water mixture in contact with air at atmospheric pressure. Fitting
the experimental data (Edwards & Fauve 1993) with the results of the FHS (solid lines) leads to γ = 67.6 ×
10−3 N/m. Inset: Fitting of the experimental data for the stability threshold leads to ν = 1.02× 10−4 m2/sec.
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Figure 7.2: fC/g versus ω/(2π). Based on the data of λC = λC(ω/(2π)) for their exact solution in figure 7.1 of
Kumar & Tuckerman (1994), the critical value fC/g is estimated for VCVPF and VPF. VPF is closer to the
eact solution than VCVPF. ρ = 1.1848 g/cm3, h = 0.29 cm, ν = 1.02 cm2/sec, γ = 67.6 dnye/cm.
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8 Conclusion

We developed two purely irrotational theories for the effects of viscosity on Faraday waves. In both theories the
velocity is computed from the potential and the viscous term in the normal stress balance at the free surface
is evaluated on potential flow. In one theory, called VPF, the pressure is given by the Bernoulli equation;
it is the same pressure as would be computed for an inviscid fluid. The second irrotational theory, called
VCVPF, is the same as the first except for the introduction of an additional pressure generated to remove the
unphysical irrotational shear stress from the energy balance. The first theory leads to an amplitude equation
with a damping coefficient proportional to 2ν. The second theory leads to the same amplitude equation except
that the damping coefficient is proportional 4ν. We show that the VCVPF theory with damping coefficcient
4ν is identical to the well known dissipation theory in which no pressure, inviscid or viscous, appears. We
show then that the dissipation theory is identical to the damped theory which was introduced by Kumar &
Tuckerman (1994) following a heuristic argument. This theory, equivalent to VCVPF, with damping 4ν has
been universally regarded as the correct irrotational approximation for viscous damping for small ν. Here, we
show that both these ideas are not correct; the VPF theory with damping equal to 2ν is a better approximation
and the approximation is not restricted to small viscosities.
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