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Solution of Mathieu’s equation by Runge-Kutta
integration

T.Funada,∗ J.Wang,† D.D.Joseph,†‡ N.Tashiro,∗ Y.Sonoda∗
∗Department of Digital Engineering, Numazu College of Technology, 3600 Ooka, Numazu, Shizuoka, 410-8501,

Japan †Department of Aerospace Engineering and Mechanics, University of Minnesota, 110 Union St. SE,
Minneapolis, MN 55455, USA

In this note we shall show that Mathieu’s equation for x(t)

ẍ + [p− 2q cos(2t)]x = 0

may be efficiently and accurately integrated by the Runge-Kutta (RK) method under the initial conditions

x = 1, ẋ = 0

for the even Mathieu functions cen(t, q) → cos (nt) as q → 0 and

x = 0, ẋ = 1

for the odd Mathieu functions sen(t, q) → sin (nt) as q → 0.

1 Some properties of the Mathieu functions

The properties of Mathieu’s functions which we shall generate by RK integration are very briefly described in
the caption of figure 1.

Figure 1. Stability chart for the solutions of Mathieu’s equation. The shaded regions are unstable with
x(t) = eγtf(t), γ > 0, f(t) = f(t + 2π) in the half frequency region, f(t) = f(t + π) in the isochronous region
and f(t) = f(t + 2π) in the 3/2 frequency region. The marginal states are borders of stable-unstable regions

on which γ = 0 and the characteristic value is given by p = p(q). The solutions in stable regions are oscillatory
though not regularly periodic.

‡Author to whom correspondence should be addressed. Telephone: (612) 625-0309; fax (612) 626-1558; electronic mail:
joseph@aem.umn.edu
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2 Numerical method

In the fourth order RK integration, we may take the time difference ∆t = π/212 = π/4096 for which time at n
steps is given by t = n×∆t and a periodic time T may be defined as

T =
[

t

2π

]
(2.1)

with Gauss’ symbol [ ]. According to Floquet theory, we may represent the solutions of Mathieu’s equation in
the unstable region as

log x(t) = γt + b = γ2πT + b (2.2)

where b = f(t) is periodic in t but constant in T , and the growth rate γ is positive. The growth rate γ = 0 at
the marginal state. To check b = f(t), we may use Fourier series expressed as

f(t) =
∞∑

n=−∞
An exp(int) (2.3)

where the Fourier coefficient A−n is the complex conjugate of An. The coefficient is evaluated as

Am =
1
2π

∫ t+2π

t

f(t) exp(−imt)dt =
1
2π

8192∑

j=1

[f(tj) exp(−imtj) + f(tj−1) exp(−imtj−1)]
∆t

2
(2.4)

with the trapezoidal rule, tj = t + j ×∆t.
In tables 1 and 2 we give the values of γ and b in the Floquet formula (2.2) for the eight cases marked on

figure 2, where p = 2q is a representative function. Graphs of f(t) for the eight cases are shown in figures in
the following sections.
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Figure 2. Points on stability diagrams computed by RK integration (see tables 1, 2 and figures in the
following sections). “u” denotes unstable region and “s” denotes stable region. p = 2q. Points 1, 5, 8 are at

the marginal state with periodic solutions, which can be expressed by the Mathieu functions cen(t, q) or
sen(t, q) on the borders; point 1 is on the Mathieu function se1(t, q), point 5 is on the Mathieu function
ce2(t, q) and point 8 is on ce3(t, q). Points 2, 4, 7 are in unstable region with exponential growth. The

solutions at points 3, 6 in stable region are oscillatory though not regularly periodic.
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After an initial transient, the numerical solutions approach asymptotic states which are independent of initial
conditions. The data in table 1 are in the interval 10π ≤ t ≤ 100π. The data in unstable regions and on the
borders are reproduced well in table; this table shows a very high computation accuracy. The data in the stable
region in table 1 is not the same as in table 2; this means the oscillatory solutions are not regularly periodic,
the growth rate takes some small positive values and a negative value, but the amplitude of oscillation does not
grow in time.

Table 1. γ, b for point 1–8 in 10π ≤ t ≤ 100π.
point q p γ b t
1 (figure 3) 3.290E−01 6.580E−01 −4.265E−10 2.844E−08 10π ≤ t ≤ 100π
2 (figure 8) 6.094E−01 1.219E+00 0.2520 −0.6931 10π ≤ t ≤ 100π
3 (figure 6) 1.374E+00 2.748E+00 4.150E−04 −0.7527 10π ≤ t ≤ 100π
4 (figure 9) 2.449E+00 4.897E+00 0.2663 −0.6931 10π ≤ t ≤ 100π
5 (figure 4) 3.039E+00 6.078E+00 −2.891E−10 1.928E−08 10π ≤ t ≤ 100π
6 (figure 7) 4.000E+00 8.000E+00 2.894E−04 −0.7612 10π ≤ t ≤ 100π
7 (figure 10) 4.807E+00 9.614E+00 0.1687 −0.6931 10π ≤ t ≤ 100π
8 (figure 5) 6.426E+00 1.285E+01 −1.164E−10 7.759E−09 10π ≤ t ≤ 100π

Table 2. γ, b for point 1–8 in 100π ≤ t ≤ 1000π. The argument in exponential function used in the
computations should be less than 709.782 in double precision.

point q p γ b t
1 3.290E−01 6.580E−01 −4.265E−09 2.861E−06 100π ≤ t ≤ 1000π
2 6.094E−01 1.219E+00 0.2520 −0.6931 100π ≤ t ≤ 800π
3 (figure 6) 1.374E+00 2.748E+00 1.710E−06 −0.6987 100π ≤ t ≤ 1000π
4 2.449E+00 4.897E+00 0.2663 −0.6892 100π ≤ t ≤ 800π
5 3.039E+00 6.078E+00 −2.891E−09 1.939E−06 100π ≤ t ≤ 1000π
6 (figure 7) 4.000E+00 8.000E+00 −5.887E−06 −0.6821 100π ≤ t ≤ 1000π
7 4.807E+00 9.614E+00 0.1687 −0.6931 100π ≤ t ≤ 1000π
8 6.426E+00 1.285E+01 −1.164E−09 7.805E−07 100π ≤ t ≤ 1000π

3 Periodic solutions

The oscillation patterns for the periodic solutions for points 1, 5 and 8 in figure 2 are shown in figures 3, 4,
5. Values of the largest Fourier components > 10−4 are presented in tables 3, 4 and 5. The number of active
Fourier modes increases with q. The aim of these tables is to show the accuracy of our computations.

-1.5

-1

-0.5

0

0.5

1

1.5

90 92 94 96 98 100

’HARMONIC-001.dat’ using 1:2

Figure 3. f(t) versus t/π for q = 3.290E−01,
p = 6.580E−01 (point 1, periodic se1(t, q)),

90π ≤ t ≤ 100π.

Table 3. Spectrum for the stable point 1 in the
interval 30π < t ≤ 100π.

k Re (Ak) Im (Ak)
1 — −5.654e−01
3 — 2.231e−02
5 — −3.016e−04
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Figure 4. f(t) versus t/π for q = 3.039, p = 6.078
(point 5, periodic ce2(t, q)), 90π ≤ t ≤ 100π.

Table 4. Spectrum for point 5 in 30π < t ≤ 100π.
k Re (Ak) Im (Ak)
0 4.117e−01 —
2 4.117e−01 —
4 −1.302e−01 —
6 1.329e−02 —
8 −6.986e−04 —

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

90 92 94 96 98 100

’HARMONIC-008.dat’ using 1:2

Figure 5. f(t) versus t/π for q = 6.426,
p = 1.285E+01 (point 8, periodic ce3(t, q)),

90π ≤ t ≤ 100π.

Table 5. Spectrum for point 8 in 30π < t ≤ 100π.
k Re (Ak) Im (Ak)
1 3.492e−01 —
3 2.949e−01 —
5 −1.725e−01 —
7 3.118e−02 —
9 −2.957e−03 —
11 1.761e−04 —

4 Stable solutions

The stable solutions at point 3, 6 are displayed in figures 6, 7 and decomposed into the spectra A0-A20 in tables
6, 7; An for n > 20 has been cut off, though it still takes values of order 10−4. These provide the evidence that
the solutions are not periodic.
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Figure 6a. f(t) versus t/π for q = 1.374, p = 2.748
(point 3, stable), 90π ≤ t ≤ 100π.
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Figure 6b. f(t) versus t/π for q = 1.374, p = 2.748
(point 3, stable), 990π ≤ t ≤ 1000π.
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Table 6. Spectrum for point 3 in 990π ≤ t ≤ 1000π.
k Re (Ak) Im (Ak)
0 −1.076e−02 —
1 6.497e−02 −3.205e−03
2 −3.099e−02 4.007e−02
3 −2.251e−02 1.282e−02
4 −4.251e−04 3.696e−03
5 −6.614e−04 5.171e−03
6 −1.250e−03 4.688e−03
7 −7.977e−04 3.934e−03
8 −5.054e−04 3.438e−03
9 −3.285e−04 3.061e−03
10 −2.005e−04 2.756e−03
11 −1.043e−04 2.506e−03
12 — 2.297e−03
13 — 2.119e−03
14 — 1.966e−03
15 1.062e−04 1.837e−03
16 1.369e−04 1.719e−03
17 1.613e−04 1.621e−03
18 1.803e−04 1.529e−03
19 2.017e−04 1.447e−03
20 2.138e−04 1.375e−03
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Figure 7. f(t) versus t/π for q = 4.000, p = 8.000
(point 6, stable), 990π ≤ t ≤ 1000π.

Table 7. Spectrum for point 6 in 990π ≤ t ≤ 1000π.
k Re (Ak) Im (Ak)
0 −4.847e−03 —
1 1.618e−03 −3.183e−03
2 −3.832e−03 2.937e−04
3 3.258e−03 −1.043e−02
4 3.105e−03 −3.069e−03
5 −2.659e−04 7.484e−04
6 −1.056e−04 −8.807e−04
7 2.808e−04 −1.149e−03
8 2.115e−04 −8.487e−04
9 1.564e−04 −7.322e−04
10 1.394e−04 −6.691e−04
11 1.276e−04 −6.092e−04
12 1.154e−04 −5.584e−04
13 1.098e−04 −5.147e−04
14 1.029e−04 −4.785e−04
15 — −4.466e−04
16 — −4.185e−04
17 — −3.926e−04
18 — −3.744e−04
19 — −3.523e−04
20 — −3.355e−04

5 Unstable solutions

Unstable solutions are periodic with increasing amplitude; the oscillation patterns are exhibited in figures 8, 9,
10 and in tables 8, 9, 10.
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’HARMONIC-001.dat’ using 1:2 Figure 8. f(t) versus t/π for q = 6.094E−01,
p = 1.219 (point 2, unstable), 90π ≤ t ≤ 100π.

Table 8. Spectrum for point 2 in 30π < t ≤ 100π.
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k Re (Ak) Im (Ak)
1 2.724e−01 −1.490e−01
3 −2.298e−02 7.271e−03
5 6.046e−04 −1.227e−04
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Figure 9. f(t) versus t/π for q = 2.449, p = 4.897
(point 4, unstable), 90π ≤ t ≤ 100π.

Table 9. Spectrum for point 4 in 30π < t ≤ 100π.
k Re (Ak) Im (Ak)
0 1.952e−01 —
2 1.980e−01 −1.545e−01
4 −4.970e−02 2.504e−02
6 4.097e−03 −1.559e−03
8 −1.730e−04 —
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Figure 10. f(t) versus t/π for q = 4.807, p = 9.614
(point 7, unstable), 90π ≤ t ≤ 100π.

Table 10. Spectrum for point 7 in 30π < t ≤ 100π.
k Re (Ak) Im (Ak)
1 1.623e−01 −1.464e−01
3 1.398e−01 −3.982e−01
5 −5.981e−02 1.226e−01
7 8.255e−03 −1.460e−02
9 −5.978e−04 9.608e−04

6 Dissipation

In many applications, the oscillations associated with Mathieu’s equation are damped with a dissipative term
εẋ. The equation for x(t)

ẍ + εẋ + [p− 2q cos(2t)]x = 0 with x(0) = 1, ẋ(0) = 0, (6.1)

may be transformed, using

x = y exp
(
− ε

2
t
)

, (6.2)

to a Mathieu equation for y(t)

ÿ + [p′ − 2q cos(2t)] y = 0 with y(0) = 1, ẏ(0) =
ε

2
, (6.3)

where

p′ = p− ε2

4
. (6.4)

Another problem (Problem 2) may be given by replacing the initial conditions by

x(0) = 0, ẋ(0) = 1 → y(0) = 0, ẏ(0) = 1. (6.5)

For both positive and negative values of ε, p is shifted to p′ and the initial condition is the same in the
latter Problem 2. The type of solutions y(t) is determined by q and p′. In the former Problem 1, the initial
condition also includes ε. The problem is different for positive or negative value of ε.
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If a point (q, p) is given by the characteristic value p = p(q) corresponding to cen(t, q) (Problem 1 when
ε = 0), the shifted point (q, p′) is in unstable region. Thus we have the solution y(t) such as

ln |y| = γ′t + b′, (6.6)

where for γ′ > 0, f(t) = y(t)e−γ′t is periodic. Then x(t) = y(t) exp
(− ε

2 t
)

= f(t) exp
[(

γ′ − ε
2

)
t
]
.

If a point (q, p) is given by the characteristic value p = p(q) corresponding to sen(t, q) (Problem 2 when
ε = 0), the shifted point (q, p− ε2/4) is in stable region. Thus we have the solution y(t) such as

ln |y| = ıα′t + b′, (6.7)

by which y(t) looks like “beat” due to the tuning α′; a long period may arise against the fundamental period π
or 2π.

In table 11, we compare damped solutions with different damping constants ε = 0.01, 0.1, 0.3, 0.7 for points
1, 5. In figures 11, 12, the difference between Problems 1 and 2 and between positive and negative values of ε
can be found.

Table 11. Growth rate γ′ for Problem 1 evaluated in the interval 100π ≤ t ≤ 1000π. For ε = 0.01, the
interval is taken as 800π ≤ t ≤ 1000π to remove the initial transient.

point ε q p′ γ′

se1 0.1 3.290e−01 6.555e−01 —
se2 0.1 1.858e+00 3.714e+00 —
se3 0.1 4.627e+00 9.251e+00 —
ce1 0.1 8.898e−01 1.777e+00 2.732e−02
ce2 0.1 3.039e+00 6.076e+00 2.166e−02
ce3 0.1 6.426e+00 1.285e+01 1.863e−02
se1 0.3 3.290e−01 6.355e−01 —
se2 0.3 1.858e+00 3.694e+00 —
se3 0.3 4.627e+00 9.231e+00 —
ce1 0.3 8.898e−01 1.757e+00 8.173e−02
ce2 0.3 3.039e+00 6.056e+00 6.483e−02
ce3 0.3 6.426e+00 1.283e+01 5.578e−02
se1 0.7 3.290e−01 5.355e−01 —
se2 0.7 1.858e+00 3.594e+00 —
se3 0.7 4.627e+00 9.131e+00 —
ce1 0.7 8.898e−01 1.657e+00 1.879e−01
ce2 0.7 3.039e+00 5.956e+00 1.496e−01
ce3 0.7 6.426e+00 1.273e+01 1.290e−01
se1 0.01 3.290e−01 6.580e−01 —
se2 0.01 1.858e+00 3.716e+00 —
se3 0.01 4.627e+00 9.254e+00 —
ce1 0.01 8.898e−01 1.780e+00 2.734e−03
ce2 0.01 3.039e+00 6.078e+00 2.165e−03
ce3 0.01 6.426e+00 1.285e+01 1.865e−03
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Figure 11a. x(t) versus t/π for
(q, p′) = (0.3290, 0.6555) shifted from point 1 and

ε = 0.1 in damped case, in 0 ≤ t ≤ 30π.
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Figure 11b. y(t) versus t/π for
(q, p′) = (0.3290, 0.6555) shifted from point 1 and

ε = 0.1, in 0 ≤ t ≤ 100π.
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Figure 11c. y(t) versus t/π for (q, p′) = (0.3290, 0.6555) shifted from point 1, in 0 ≤ t ≤ 80π. Problem 1 with
ε = 0.1 (red), Problem 1 with ε = −0.1 (green), Problem 2 with ε = 0.1 (blue), Problem 2 with ε = −0.1

(magenta). Problem 2 is the same for ε = ±0.1.
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Figure 12a. x(t) versus t/π for
(q, p′) = (3.039, 6.076) shifted from point 5 and

ε = 0.1 in damped case, in 0 ≤ t ≤ 30π.
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Figure 12b. y(t) versus t/π for
(q, p′) = (3.039, 6.076) shifted from point 5 and

ε = 0.1, in 0 ≤ t ≤ 30π.
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Figure 12c. y(t) versus t/π for (q, p′) = (3.039, 6.076) shifted from point 5, in 0 ≤ t ≤ 30π. Problem 1 with
ε = 0.1 (red), Problem 1 with ε = −0.1 (green), Problem 2 with ε = 0.1 (blue), Problem 2 with ε = −0.1

(magenta). Problem 2 is the same for ε = ±0.1.

The Runge-Kutta technique developed in this paper is a very fast and accurate method for solving problems
governed by Mathieu’s equation. Our work here was motivated by the need to develop an efficient method for
developing a comprehensive study of irrotational Faraday waves on a viscous fluid.

This work was supported in part by the NSF under grants from Chemical Transport Systems.
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