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Pillars of Robust Control

1. Multivariable Optimal Control 

• H2, H∞, DK-synthesis

2. Fundamental Limitations of Control

• Bode sensitivity integral, complementary sensitivity 
integrals, constraints due to right-half plane poles and zeros.

3. Uncertainty Modeling and Robustness Analysis

• Linear Fractional Transformations (LFTs), Structured Singular 
Value (m), Integral Quadratic Constraints (IQCs)
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Many design objectives: Stability, disturbance rejection, 
reference tracking, noise rejection, moderate actuator 
commands, adequate robustness margins.

Basic Limitation: S+T=1

Typically require |S| ≪ 1 at low frequencies for reference 
tracking and disturbance rejection.

Basic Feedback Loop
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Plant Uncertainty
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A simplified model P is used for control design.

• Actual dynamics are complex and have part-to-part variation.

• We lose model fidelity as we go to higher frequencies.

Experimental frequency 

responses (blue) and 

simplified model (black).

Voice Coil Motor
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Stability Margins: Safety Factors for Control

Consider simple plant uncertainty types:

• Gain: aP where a varies from its nominal anom=1

• Phase: ejq where q varies from its nominal qnom=0

Classical Margins: Largest gain/phase variations that can 
be tolerated before closed-loop instability occurs.

• Nyquist stability criterion is ideal for studying these margins

• Easily computed in SISO case, e.g. from frequency responses.

Disk Margin: If |S(jw)| is large then a small (combined) 
gain/phase variation can cause instability. 
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Typical Sensitivity Objectives

• Performance: “Small” |S| up to 0 dB bandwidth WS

• Robustness: |S|≤ 2 (=6dB) at all frequencies (No Peaks) 
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Typical sensitivity 

response (red) 

and design 

objectives (black)
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Suppose P is stable so that C = 0 is a stabilizing controller.  

Conservation of Sensitivity
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Suppose P is stable so that C = 0 is a stabilizing controller.  

Conservation of Sensitivity
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AND

Improving sensitivity at 
some frequencies leads to 
degradations at others.

This follows from the Bode 
Sensitivity Integral.

Blue: Sensitivity with C=0

Red: Sensitivity for another 

stabilizing controller
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[1] Bode, Network Analysis and Feedback Amplifier Design, 1945.

[2] Freudenberg and Looze, Frequency Domain Properties of Scalar and Multivariable Feedback 

Systems, Springer-Verlag, 1988.

Assume PC has relative degree 2 

and S(s) is stable.  Then:

where pk are the unstable (RHP) poles of PC.

(Note:                                 )

Bode Integral Theorem [1,2]
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[1] Bode, Network Analysis and Feedback Amplifier Design, 1945.

[2] Freudenberg and Looze, Frequency Domain Properties of Scalar and Multivariable Feedback 

Systems, Springer-Verlag, 1988.

[3] Stein, Respect the Unstable, Bode Lecture, 1989 (and IEEE CSM, 2003)

Assume PC has relative degree 2 

and S(s) is stable.  Then:

where pk are the unstable (RHP) poles of PC.

(Note:                                 )

Bode Integral Theorem [1,2]
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This a key conserved quantity in feedback design. 

Improving performance (e.g. increased bandwidth) comes 

at the expense of reduced robustness (peak in |S|) [3].
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Advanced Robustness Analysis

Move beyond classical SISO stability (gain/phase) margins

1. Multi-loop (MIMO) systems with multiple uncertainties

2. More detailed uncertainty descriptions including 

• Parametric, 

• Non-parametric (dynamic)

• Nonlinearities, e.g.  saturation

3. Consider both robust stability and robust performance

Developments go back to the Lur’e problem (40’s) with key 
contributions in the 80’s and 90’s:

• m: Safonov, Stein, Doyle, Packard, …

• IQCs:  Yakubovich, Megretski, Rantzer, …
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Non-parametric (Dynamic) Uncertainty

Model nominal behavior with LTI system 𝐺0.

Uncertainty modeled by LTI systems ෨𝐺 close to 𝐺0 in 
frequency response, e.g. small additive error.
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Error 

Bound
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Uncertainty Modeling

• Unstable plant with uncertain 
pole and input gain:

• First-order actuator with 
additive dynamic uncertainty

• Proportional-Integral control

15

Consider SISO feedback system:
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Uncertainty Modeling

Separate known from the uncertain

16

Uncertainty is 

typically very 

structured
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Uncertainty Modeling

Re-center and re-scale to normalize the uncertainties

17

where:

1. D=0 gives nominal behavior

2. Range of  modeled uncertainty is

Uncertainty set is structured:
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Robustness Metrics

Stability Margin:

Worst-case Gain:

Comments:

• System is robustly stable if and only if km >1.

• Both metrics can be converted to a (freq. domain) m test. 

• Algorithms compute bounds that provide guarantees on 
performance and bad instances of uncertainties.

• IQCs extend the framework to include nonlinearities.
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Numerical Algorithms and Software

19

% Unstable plant with parametric uncertainty

a = ureal('a',1, 'Range', [0.8  1.1]);

b = ureal('b',2, 'Range', [1.7  2.6]);

P = tf(b, [1 -a]);

% Actuator with non-parametric (dynamic) unc.

nomAct = tf(10, [1 10]);

DeltaE = ultidyn(‘DeltaE',[1 1]);

A = nomAct + 0.1*DeltaE;

% Uncertain closed-loop (d->e) with PI control

C = tf([3 4.5],[1 0]);

R = feedback(-P, A*C);

% Robust stability and worst-case gain 

[StabMargin, DestabilizingUncert] = robstab(R);

[wcGain, OffendingUncertainty] = wcgain(R);

Reliable software to create uncertainty models & perform analyses.

• Matlab’s Robust Control Toolbox (Safonov & Chiang), (Balas, Doyle, Glover, 
Packard, & Smith), (Gahinet, Nemirovski, Laub, & Chilali)

• ONERA’s Systems Modeling, Analysis and Control Toolbox (Biannic, 
Burlion, Demourant, Ferreres, Hardier, Loquen, & Roos)

Example Matlab code to 

assess robustness of 

simple feedback loop.
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Numerical Algorithms and Software
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Reliable software to create uncertainty models & perform analyses.

• Matlab’s Robust Control Toolbox (Safonov & Chiang), (Balas, Doyle, Glover, 
Packard, & Smith), (Gahinet, Nemirovski, Laub, & Chilali)

• ONERA’s Systems Modeling, Analysis and Control Toolbox (Biannic, 
Burlion, Demourant, Ferreres, Hardier, Loquen, & Roos)

Numerical algorithms continue to be developed, e.g. in Matlab:

• Structured 𝐻∞(R2010b) and systune (R2014a): Based on work by 
(Gahinet, Apkarian, Noll)

• m without frequency gridding (R2016b): Based on work by (Gahinet, Balas, 
Packard, Seiler) and (Biannic, Ferreres, Roos)

• Automatic regularization for H2 (R2017b) and 𝐻∞ synthesis (R2018b): 
Based on work by (Gahinet, Packard, Seiler)
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(My Recent) Applications of Robust Control

• Wind farm modeling and control (Annoni ‘16, Singh, Hoyt)

• Individual turbine control (Wang ‘16, Ossmann, Theis)

• UAV control with a single aerodynamic surface 
(Venkataraman ’18)

• Flexible aircraft (Kotikalpudi ’17, Theis ’18, Gupta, Pfifer)

• Dual stage hard disk drives with Seagate (Honda ‘16)
(Years refer to Ph.D. theses.)
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Outline

• Brief Overview of Robust Control 

• Robustness of Time-Varying Systems

• Joint work with M. Arcak, A. Packard, M. Moore, and C. 
Meissen at UC, Berkeley.

• Funded by ONR BRC with B. Holm-Hansen at Tech. Monitor

• Future Directions

• Conclusions
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Time-Varying Systems

23

Wind Turbine

Periodic /

Parameter-Varying

Flexible Aircraft

Parameter-Varying

Vega Launcher

Time-Varying

(Source: ESA)

Robotics

Time-Varying

(Source: ReWalk)

Issue: Few numerically reliable methods to assess 

the robustness of time-varying systems.
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Finite Horizon Analysis

Goal: Assess the robustness of linear time-varying (LTV) 
systems on finite horizons.

Issue: Classical Gain/Phase Margins focus on (infinite 
horizon) stability and frequency domain concepts. 

24

Instead focus on:

• Finite horizon metrics, e.g. 
induced gains and reachable sets.

• Effect of disturbances and 
(parametric, non-parametric and 
nonlinear) uncertainties.

• Time-domain analysis conditions.
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(Nominal) Finite Horizon Analysis

25

Nominal LTV System

Analysis Objective
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Nominal Analysis with Dissipation Inequalities
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Theorem [1,2]

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Willems, Dissipative Dynamical Systems: Parts i and ii, 1972.

Proof
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Nominal Analysis with Dissipation Inequalities
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Theorem [1,2]

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Willems, Dissipative Dynamical Systems: Parts i and ii, 1972.
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Nominal Analysis with Dissipation Inequalities
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Theorem [1,2]

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Willems, Dissipative Dynamical Systems: Parts i and ii, 1972.

[3] Green & Limebeer, Linear Robust Control, 1995.

[4] Iannelli, Seiler, Marcos, “Construction of worst-case disturbances for LTV systems…”, 2019.

Comments
• The dissipation inequality is equivalent to Riccati conditions [3] but 
enables extensions to robustness analysis.

• Numerically reliable algorithm to construct worst-case disturbance [4]. 
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(Robust) Finite-Horizon Analysis
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Uncertain LTV System

Analysis Objective
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Integral Quadratic Constraints (IQCs) [1,2]

30

[1] Yakubovich, S-procedure in nonlinear control theory, 1971.

[2] Megretski and Rantzer, System Analysis via Integral Quadratic Constraints, TAC, 1997.

Definition

Notationally we consider only a single block. If D has block 

structure then we can specify different IQCs for each block. 
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Example: Sector-bounded Nonlinearity 

31
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Example: Sector-bounded Nonlinearity 
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Example: Non-parametric (Dynamic) Uncertainty 
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Example: Non-parametric (Dynamic) Uncertainty 
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Frequency-

Domain IQC

Spectral

Factorization
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Example: Non-parametric (Dynamic) Uncertainty 
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Frequency-

Domain IQC

[1] Balakrishnan, Lyapunov Functionals in Complex m Analysis, TAC, 2002.

(Invoke Causality)
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Additional IQC Details

• Most IQCs are related to previous robust stability results

• IQC for sector nonlinearities related to the circle criterion

• IQC for LTI uncertainties related to D-scales in m analysis

• A dictionary of additional IQC for various uncertainties / 
nonlinearities is given in [1].

• IQCs for passive operators, static memoryless nonlinearities 
(Popov, Zames-Falb), time-delays, real parameters, etc.

• Many IQCs are specified in the frequency domain

• A technical J-spectral factorization result can be used to 
convert freq. domain IQCs into time-domain IQCs [2,3].

36

[1] Megretski & Rantzer, System analysis via IQCs, TAC, 1997. [IQCs derived based on much prior literature]

[2] Seiler, Stability Analysis with Dissipation Inequalities and Integral Quadratic Constraints, TAC, 2015.

[3] Hu, Lacerda, Seiler, Robustness Analysis of Uncertain Discrete-Time System with … IQCs, IJRNC, 2016.
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Robustness Analysis
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Robust Finite Horizon Analysis
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Theorem [1,2]

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using

IQCs, arXiv 2018 and Automatica 2019.

Proof
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Robust Finite Horizon Analysis
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Theorem [1,2]

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using

IQCs, arXiv 2018 and Automatica 2019.
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Numerical Algorithms and Software

• Robustness Algorithms

• Differential LMI can be “solved” via convex optimization using 
basis functions for 𝑃 ∙ and gridding on time [1].

• A more efficient algorithm mixes the differential LMI and a 
related Riccati Differential Equation condition [2].

• Similar methods developed for LPV [4,5] and periodic systems [6].

• LTVTools Software [3]

• Time-varying state space system objects, e.g. obtained from 
Simulink snapshot linearizations.

• Includes functions for nominal and robustness analyses.
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[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using IQCs,

arXiv 2018 and Automatica 2019.

[3] https://z.umn.edu/LTVTools

[4] Pfifer & Seiler, Less Conservative Robustness Analysis of LPV Systems Using IQCs, IJRNC, 2016.

[5] Hjartarson, Packard, Seiler, LPVTools: A Toolbox for Modeling, Analysis, & Synthesis of LPV Systems, 2015.

[6] Fry, Farhood, Seiler, IQC-based robustness analysis of discrete-time LTV systems, IJRNC 2017.

https://z.umn.edul/LTVTools
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Two-Link Robot Arm
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Nonlinear dynamics [MZS]:
ሶ𝜂 = 𝑓(𝜂, 𝜏, 𝑑)

where

𝜂 = 𝜃1, ሶ𝜃1, 𝜃2, ሶ𝜃2
𝑇

𝜏 = 𝜏1, 𝜏2
𝑇

𝑑 = 𝑑1, 𝑑2
𝑇

t and d are control torques and 
disturbances at the link joints.

[1] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robot Manipulation, 1994.

Two-Link Diagram [1]
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Nominal Trajectory in Cartesian Coordinates
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Analysis

43

Nonlinear dynamics:
ሶ𝜂 = 𝑓(𝜂, 𝜏, 𝑑)

Linearize along the finite –horizon trajectory ҧ𝜂, ҧ𝜏, 𝑑 = 0
ሶ𝑥 = 𝐴 𝑡 𝑥 + 𝐵 𝑡 𝑢 + 𝐵 𝑡 𝑑

Design finite-horizon state-feedback LQR gain.

Goal: Compute bound on 
the final position accounting 
for disturbances and LTI 
uncertainty D at 2nd joint.
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Monte-Carlo Simulations
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LTV simulations with randomly sampled disturbances and 
uncertainties (overlaid on nominal trajectory).
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Robustness Bound

45

Cyan disk is bound computed in 102 sec using IQC/DI method

Bound accounts for disturbances ‖d‖≤5 and ‖Δ‖≤0.8 
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Worst-Case Uncertainty / Disturbance

46

Randomly sample D to find “bad” perturbation and compute corresponding worst-case 
disturbance using method in [1]

[1] Iannelli, Seiler, Marcos, Construction of worst-case disturbances for LTV systems…, 2019.
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Closed-Loop Robust L2-to-Euclidean Gain

Two Controllers:

• Finite-Horizon LQR 
with state feedback

• Output Feedback 
using high pass filter 
𝝉s/(𝝉s+1) to estimate 
angular rates

47

Finite horizon robustness is degraded by 
output feedback with rate estimates.
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Finite horizon robustness is degraded by 
output feedback with rate estimates.

0.1
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Closed-Loop Robust L2-to-Euclidean Gain

Two Controllers:

• Finite-Horizon LQR 
with state feedback

• Output Feedback 
using high pass filter 
𝝉s/(𝝉s+1) to estimate 
angular rates
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Finite horizon robustness is degraded by 
output feedback with rate estimates.
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Impact of Using High Pass Rate Estimator
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• Conclusions

51



AEROSPACE ENGINEERING AND MECHANICS

“Model-Free” Reinforcement Learning

• Goal: Train a control policy from data 
to maximize a cumulative reward 

• Training data obtained from a 
simulator or the real system

• Often assume state feedback

• Many algorithms (Q-learning, value 
iteration, policy iteration, policy 
search) [1,2,3]

• Algorithms have close connections 
to dynamic programming and 
optimal control.

52

[1] D.P. Bertsekas, “Reinforcement Learning and Optimal Control,” 2019.

[2] R.S. Sutton and A.G. Barto, “Reinforcement Learning: An Introduction,” 2018.

[3] C. Szepesvári, “Algorithms for Reinforcement Learning,” 2010.
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Is Robustness an Issue in RL?

Training via simulation

53

Training on real system
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Is Robustness an Issue in RL?

Training via simulation

• Training can exploit flaws in the 
simulator [1].

• Loss of performance transitioning 
from simulator to real system.

54

Robotic Walking in MuJoCo

[1] B. Recht, “A Tour of Reinforcement Learning,” arXiv, 2018.

Training on real system
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Is Robustness an Issue in RL?

Training via simulation

• Training can exploit flaws in the 
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• Loss of performance transitioning 
from simulator to real system.
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Robotic Walking in MuJoCo

[1] B. Recht, “A Tour of Reinforcement Learning,” arXiv, 2018.

Training on real system

• Part to part variation (train on one 
system and implement on many)

• Changes in system dynamics over 
time (temperature dependence, 
environmental effects, etc….)
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Summary: Recovering Robustness in RL 

• Robustness issues can arise in output-feedback 
controllers trained by RL [2]

• Linear Quadratic Gaussian (LQG) Control can be solved via RL

• A well-known counterexample by Doyle [1] demonstrates that 
LQG controllers can have arbitrarily small margins.

56

[1] J. Doyle. Guaranteed margins for LQG regulators, IEEE TAC, 1978.

[2] Venkataraman & Seiler, Recovering Robustness in Model-Free Reinforcement 
Learning, ’18 arXiv and ‘19 ACC submission.
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Summary: Recovering Robustness in RL 

• Robustness issues can arise in output-feedback 
controllers trained by RL [2]

• Linear Quadratic Gaussian (LQG) Control can be solved via RL

• A well-known counterexample by Doyle [1] demonstrates that 
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[1] J. Doyle. Guaranteed margins for LQG regulators, IEEE TAC, 1978.

[2] Venkataraman & Seiler, Recovering Robustness in Model-Free Reinforcement 
Learning, ’18 arXiv and ‘19 ACC submission.

• Robustness can be recovered 
by introducing (synthetic) input 
perturbations during the RL 
training [2].
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Linear Quadratic Gaussian (LQG)

Minimize

Subject To:

The optimal controller has an observer/state-feedback form

Gains (K,L) computed by solving two Riccati equations.

This solution is model-based, i.e. it uses data A,B,C, etc

58
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Reinforcement Learning

• Partially Observable Markov Decision Processes (POMDPs)

• Set of states, S

• Set of actions, A

• Reward function, r: S x A → ℝ

• State transition probability, T

• Set of observations and observation probability, O

• Many methods to synthesize a control policy from 
input/output data to maximize the cumulative reward 

• The LQG problem is a special case of this RL formulation

59
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Doyle’s Example (‘78 TAC)

• LQR state-feedback regulators have provably good margins.

• Doyle’s example shows that LQG regulators can have 
arbitrarily small input margins.

60
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Doyle’s Example (‘78 TAC)

• LQR state-feedback regulators have provably good margins.

• Doyle’s example shows that LQG regulators can have 
arbitrarily small input margins.

• Doyle’s example can also be solved within RL framework 
using direct policy search:

• RL will converge to the optimal LQG control with infinite 
data collection. Thus RL can also have poor margins.

61
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Recovering Robustness

• Increase process noise during training?

• This causes margins to decrease on Doyle’s example

• Process noise is not model uncertainty

62
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Recovering Robustness

• Increase process noise during training?

• Modify reward to increase state penalty or decrease 
control penalty?

• Again, this causes margins to decrease on Doyle’s example

• Trading performance vs. robustness via the reward function 
can be difficult or counter-intuitive

63
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Recovering Robustness

• Increase process noise during training?

• Modify reward to increase state penalty or decrease 
control penalty?

• Inject synthetic gain/phase variations at the plant input 
(and output?) during the training phase.

D=1+d where

d is U[-b,b]

64



AEROSPACE ENGINEERING AND MECHANICS

Results On Doyle’s Example

65



AEROSPACE ENGINEERING AND MECHANICS

Results on Simplified Flexible System

• Model has 4-states (Rigid body and lightly damped modes)

• RL applied to 3-state controller parameterization
• LQG controller is not in the control policy parameterization 

• Still converges to policy with small margins

• Robustness recovered with synthetic perturbations during training

66
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Next Steps

• How should synthetic perturbations be introduced 
during training?

• Can we make any rigorous claims about the 
proposed method? Performance certification?

• Impact of fundamental performance limits on RL 
policies?

67
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First-order optimization algorithms as robust control

Assumptions on 𝑓 (uncertain plant)
• Strongly convex (𝑚)
• Lipschitz gradients (𝐿)

Algorithm (controller)
• Finite-dim, strictly proper, linear system
• input: gradient at iterate
• output: next iterate

Automated Analysis with IQC/SDP
• characterize ∇𝑓 with IQCs 
• certify convergence-rate of interconnection

Extensions
• Gradient noise
• Constrained optimization
• Algorithm design
• Stochastic Gradient Descent

69

Lessard, Hu, Recht, 

Seiler, Rantzer, Packard
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Conclusions

• Robust control has a long history with many successes

1. Multivariable Optimal Control 

2. Fundamental Limitations of Control

3. Uncertainty Modeling and Robustness Analysis

• Robust control techniques can solve emerging problems 

1. Robustness in controls designed via data-driven (RL) methods

2. Design and analysis of optimization algorithms

• Acknowledgements:
• Funding: NSF, AFOSR, ONR, NASA, Seagate, MSI, Xcel RDF, MnDrive

• Past PhDs & Visitors: Annoni, Hu, Honda, Kotikalpudi, Lacerda, 
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Typical S+T=1 Tradeoff
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Large loop gain |PC|:

Good reference tracking

Poor noise rejection

Small loop gain |PC|:

Poor reference tracking

Good noise rejection
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Typical S+T=1 Tradeoff
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Large loop gain |PC|:

Good reference tracking

Poor noise rejection

Small loop gain |PC|:

Poor reference tracking

Good noise rejection

Crossover Region:

Poor reference tracking

AND Poor noise rejection
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Bode Integral Theorem and “Peaking”

A procedure to avoid peaking could be:

• Obtain significant Sensitivity reduction over [0, WS]. 

This incurs a large negative integral which must be balanced.

• Maintain |S(jω)| slightly larger than 1 over  a wide interval. 

This incurs a positive integral balancing the negative integral.

• Make |PC| approach 0 quickly at higher frequencies so that 
|S| quickly approaches 1.
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Accumulate a large area by having |S| just 

exceed 1 over a large frequency range.

0
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Available Bandwidth

The Bode Integral theorem may appear to be a minor 
constraint, e.g. spreading area over a large frequency band.

Stein (‘89 Bode Lecture, ’03 CSM):

a key fact about physical systems is that they do not exhibit good 
frequency response fidelity beyond a certain bandwidth. … Let us call 
that bandwidth the “available bandwidth,” Wa
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Accumulate a large area by having |S| just 

exceed 1 over a large frequency range.

0
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Available Bandwidth

The Bode Integral theorem may appear to be a minor 
constraint, e.g. spreading area over a large frequency band.

Stein (‘89 Bode Lecture, ’03 CSM):

a key fact about physical systems is that they do not exhibit good 
frequency response fidelity beyond a certain bandwidth. … Let us call 
that bandwidth the “available bandwidth,” Wa
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The available bandwidth due to physical (hardware) constraints 
requires positive area be accumulated over a finite frequency band. 

Consequence:  Improving performance (e.g. increased bandwidth) 
comes at the expense of reduced robustness (peak in |S|).
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Consequence of Available Bandwidth

|PC| must roll-off quickly above Wa
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0

roughly

Performance is constrained by the Bode integral 

and robustness requirements.
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Partial Dictionary of IQCs [1]

Uncertainty

1. Passive

2. Norm-bounded LTI

3. Constant Real Parameter

4. Varying Real Parameter

5. Unit Saturation
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[1] Megretski & Rantzer, System analysis via IQCs, TAC, 1997. [IQCs derived based on much prior literature]

IQC Multiplier
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LTV Toolchain
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Simulink Model of 

Robotic Arm

% Matlab snapshot linearizations

% along nominal trajectory
io(1) = linio('TwoLinkRobotOL/Input Torque',1,'input');

io(2) = linio('TwoLinkRobotOL/Two Link Robot Arm',1,'output');

sys = linearize('TwoLinkRobotOL',io,Tgrid);

% Construction of LTV Model
G = tvss(sys,Tgrid);


