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Analysis Objective

Goal: Assess the robustness of linear time-varying (LTV) 
systems on finite horizons.

Approach: Classical Gain/Phase Margins focus on (infinite 
horizon) stability and frequency domain concepts. 
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Instead focus on:

• Finite horizon metrics, e.g. 
induced gains and reachable sets.

• Effect of disturbances and model 
uncertainty (D-scales, IQCs, etc).

• Time-domain analysis conditions.
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Two-Link Robot Arm
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Nonlinear dynamics [MZS]:
ሶ𝜂 = 𝑓(𝜂, 𝜏, 𝑑)

where

𝜂 = 𝜃1, ሶ𝜃1, 𝜃2, ሶ𝜃2
𝑇

𝜏 = 𝜏1, 𝜏2
𝑇

𝑑 = 𝑑1, 𝑑2
𝑇

t and d are control torques and 
disturbances at the link joints.

[MZS] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robot Manipulation, 1994.

Two-Link Diagram [MZS]
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Nominal Trajectory (Cartesian Coords.)
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Effect of Disturbances / Uncertainty
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Cartesian Coords. Joint Angles
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Overview of Analysis Approach
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Nonlinear dynamics:
ሶ𝜂 = 𝑓(𝜂, 𝜏, 𝑑)

Linearize along a (finite –horizon) trajectory ҧ𝜂, ҧ𝜏, 𝑑 = 0
ሶ𝑥 = 𝐴 𝑡 𝑥 + 𝐵 𝑡 𝑢 + 𝐵 𝑡 𝑑

Compute bounds on the terminal state x(T) or other quantity 
e(T) = C x(T) accounting for disturbances and uncertainty.

Comments:

• The analysis can be for 
open or closed-loop.

• LTV analysis complements 
the use of Monte Carlo 
simulations.
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Outline

• Nominal LTV Performance

• Robust LTV Performance

• Examples

• Conclusions
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Finite-Horizon LTV Performance
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Finite-Horizon LTV System G defined on [0,T]

Induced L2 Gain

L2-to-Euclidean Gain

The L2-to-Euclidean gain requires D(T)=0 to be well-posed. 

The definition can be generalized to estimate ellipsoidal bounds on 
the reachable set of states at T.
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General (Q,S,R,F) Cost

Cost function J defined by (Q,S,R,F)

Example: Induced L2 Gain
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Subject to: LTV Dynamics with x(0)=0

Select (Q,S,R,F) as:

Cost Function J is:
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Subject to: LTV Dynamics with x(0)=0
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Strict Bounded Real Lemma
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This is a generalization of results contained in:
*Tadmor, Worst-case design in the time domain. MCSS, 1990 .

*Ravi, Nagpal, and Khargonekar. H∞ control of linear time-varying systems. SIAM JCO, 1991.

*Green and Limebeer. Linear Robust Control, 1995.

*Chen and Tu. The strict bounded real lemma for linear time-varying systems. JMAA, 2000.
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Proof: 31

By Schur complements, the RDI is equivalent to:

This is an LMI in P.  It is also equivalent to a dissipation 
inequality with the storage function 𝑉 𝑥, 𝑡 ≔ 𝑥𝑇𝑃 𝑡 𝑥.

Integrate from t=0 to t=T:

Apply x(0)=0 and P(T)≥F:
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Strict Bounded Real Lemma
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Comments:

*For nominal analysis, the RDE can be integrated. If the solution exists 
on [0,T] then nominal performance is achieved. This typically involves 
bisection, e.g. over g, to find the best bound on a gain.

*For robustness analysis, both the RDI and RDE will be used to 
construct an efficient numerical algorithm. 
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Outline
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Uncertainty Model

• Standard LFT Model, Fu(G,D), where G is LTV:

D is block structured and used to model parametric / 
dynamic uncertainty and nonlinear perturbations.
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Integral Quadratic Constraints (IQCs)
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Integral Quadratic Constraints (IQCs)
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Comments:

*A library of IQC for various uncertainties / nonlinearities is given in 

[MR].  Many of these are given as frequency domain inequalities.

*Time-domain IQCs that hold over finite horizons are called hard.

*This generalizes D and D/G scales for LTI and parametric uncertainty.    

It can be used to model the I/O behavior of nonlinear elements.

[MR] Megretski and Rantzer. System analysis via integral quadratic constraints, TAC, 1997.
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Robustness Analysis

The robustness analysis is performed on the extended 
(LTV) system of (G,Y) using the constraint on z.
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Robustness Analysis: Induced L2 Gain
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Proof:

The Differential LMI (DLMI) is equivalent to a dissipation ineq. with 
storage function 𝑉 𝑥, 𝑡 ≔ 𝑥𝑇𝑃 𝑡 𝑥.

Integrate and apply the IQC + boundary conditions to conclude that the 
induced L2 gain is ≤g.

Robustness Analysis: Induced L2 Gain
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Comments:

*A similar result exists for L2-to-Euclidean or, more generally (Q,S,R,F) 
cost functions.

*The DLMI can be expressed as a Riccati Differential Ineq. (RDI) by 
Schur Complements.

*The RDI is equivalent to a related Riccati Differential Eq. (RDE) 
condition by the strict Bounded Real Lemma.

Robustness Analysis: Induced L2 Gain
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Comments:

*The DLMI is convex in the IQC matrix M but requires gridding on time t
and parameterization of P.

*The RDE form directly solves for P by integration (no time gridding) but 
the IQC matrix M enters in a non-convex fashion.

Robustness Analysis: Induced L2 Gain
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Numerical Implementation

An efficient numerical algorithm is obtained by mixing the 
LMI and RDE conditions.

Sketch of algorithm:

1. Initialize: Select a time grid and basis functions for P(t).

2. Solve DLMI: Obtain finite-dimensional optim. by enforcing 
DLMI on the time grid and using basis functions. 

3. Solve RDE: Use IQC matrix M from step 2 and solve RDE. 
This gives the optimal storage P for this matrix M.

4. Terminate: Stop if the costs from Steps 2 and 3 are similar. 
Otherwise return to Step 2 using optimal storage P as a 
basis function.
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Example 1: LTI Plant

• Compute the induced L2 gain of Fu(G,D) where D is LTI 
with Δ ≤ 1 and G is:

• By (standard) mu analysis, the worst-case (infinite 
horizon) L2 gain is 1.49.

• This example is used to assess the finite-horizon 
robustness results.
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Example 1: Finite Horizon Results

Total comp. time is 466 sec to compute worst-case gains 
on nine finite horizons. 
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Example 2: Two-Link Robot Arm

• Assess the worst-case L2-to-Euclidean gain from 
disturbances at the arm joints to the joint angles.

• LTI uncertainty with Δ ≤ 0.8 injected at 2nd joint.

• Analysis performed along nominal trajectory in with 
LQR state feedback.
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Example 2: Results

Bound on worst-case L2-to-Euclidean gain  = 0.0592.

Computation took 102 seconds.
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Cartesian Coords. Joint Angles
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Conclusions

• Main Result: Bounds on finite-horizon robust performance 
can be computed using differential equations or inequalities.

• These results complement the use of nonlinear Monte Carlo 
simulations.  

• It would be useful to construct worst-case inputs / uncertainties 
analogous to m lower bounds.

• An LTVTools toolbox is in development with b-code of the 
proposed methods.
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