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Performance Adaptive Aeroelastic Wing 

NASA NRA NNX14AL36A: “Lightweight Adaptive Aeroelastic Wing for Enhanced 
Performance Across the Flight Envelope”.  Technical Monitor: Dr. Jeffrey Ouellette 
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Current PAAW Aircraft 
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mAEWing1 

10 foot wingspan 

~14 pounds 

Laser-scan replica of BFF 

4 aircraft, >50 flights 

mAEWing2 

14 foot wingspan 

~42 pounds 

Half-scale X-56 

Currently ground testing 
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mAEWing1 and 2 
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Open-Loop Flutter 
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Animated Mode Shape 

The BFF mode (genesis at SWB1) at a velocity near the flutter point.  

The coupling of SWB1 and short period is apparent 
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In Flight Mode Shape 
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Analysis Objective 

Goal: Assess the robustness of linear time-varying (LTV) 
systems on finite horizons. 
 

Approach: Classical Gain/Phase Margins focus on (infinite 
horizon) stability and frequency domain concepts.  

 

 

11 

Instead focus on: 

• Finite horizon metrics, e.g. 
induced gains and reachable sets. 

• Effect of disturbances and model 
uncertainty (D-scales, IQCs, etc). 

• Time-domain analysis conditions. 
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Two-Link Robot Arm 
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Nonlinear dynamics [MZS]: 
𝜂 = 𝑓(𝜂, 𝜏, 𝑑) 

where 

𝜂 = 𝜃1, 𝜃 1, 𝜃2, 𝜃 2
𝑇 

𝜏 = 𝜏1,  𝜏2 
𝑇 

𝑑 = 𝑑1,  𝑑2 
𝑇 

t and d are control torques and 
disturbances at the link joints. 

[MZS] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robot Manipulation, 1994. 
 

Two-Link Diagram [MZS] 
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Nominal Trajectory (Cartesian Coords.) 
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Effect of Disturbances / Uncertainty 

14 

Cartesian Coords. 

 

Joint Angles 
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Overview of Analysis Approach 
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Nonlinear dynamics: 
𝜂 = 𝑓(𝜂, 𝜏, 𝑑) 

Linearize along a (finite –horizon) trajectory 𝜂 , 𝜏 , 𝑑 = 0  

𝑥 = 𝐴 𝑡 𝑥 + 𝐵 𝑡 𝑢 + 𝐵 𝑡 𝑑 

Compute bounds on the terminal state x(T) or other quantity 
e(T) = C x(T) accounting for disturbances and uncertainty. 

Comments: 

• The analysis can be for 
open or closed-loop. 

• LTV analysis complements 
the use of Monte Carlo 
simulations. 
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Finite-Horizon LTV Performance 
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Finite-Horizon LTV System G defined on [0,T] 

Induced L2 Gain 

L2-to-Euclidean Gain 

The L2-to-Euclidean gain requires D(T)=0 to be well-posed.  

The definition can be generalized to estimate ellipsoidal bounds on 
the reachable set of states at T. 
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General (Q,S,R,F) Cost 

Cost function J defined by (Q,S,R,F) 

 

 

 

 

Example: Induced L2 Gain 
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Subject to: LTV Dynamics with x(0)=0 

Select (Q,S,R,F) as: 

Cost Function J is: 
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General (Q,S,R,F) Cost 

Cost function J defined by (Q,S,R,F) 

 

 

 

 

Example: L2-to-Euclidean Gain 
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Subject to: LTV Dynamics with x(0)=0 

Select (Q,S,R,F) as: 

Cost Function J is: 
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Strict Bounded Real Lemma 
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This is a generalization of results contained in: 
*Tadmor, Worst-case design in the time domain. MCSS, 1990 . 

*Ravi, Nagpal, and Khargonekar. H∞ control of linear time-varying systems. SIAM JCO, 1991. 

*Green and Limebeer. Linear Robust Control, 1995.  

*Chen and Tu. The strict bounded real lemma for linear time-varying systems. JMAA, 2000. 
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Proof: 31 

By Schur complements, the RDI is equivalent to: 
 

 

This is an LMI in P.  It is also equivalent to a dissipation 
inequality with the storage function 𝑉 𝑥, 𝑡 ≔ 𝑥𝑇𝑃 𝑡 𝑥. 
 

 

Integrate from t=0 to t=T: 
 

 

Apply x(0)=0 and P(T)≥F: 
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Strict Bounded Real Lemma 
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Comments: 

*For nominal analysis, the RDE can be integrated. If the solution exists 
on [0,T] then nominal performance is achieved. This typically involves 
bisection, e.g. over g, to find the best bound on a gain. 

*For robustness analysis, both the RDI and RDE will be used to 
construct an efficient numerical algorithm.  
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Uncertainty Model 

• Standard LFT Model, Fu(G,D), where G is LTV: 

 

 

 

D is block structured and used to model parametric / 
dynamic uncertainty and nonlinear perturbations. 
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Integral Quadratic Constraints (IQCs) 
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Integral Quadratic Constraints (IQCs) 
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Comments: 

*A library of IQC for various uncertainties / nonlinearities is given in  

  [MR].  Many of these are given as frequency domain inequalities. 

*Time-domain IQCs that hold over finite horizons are called hard. 

*This generalizes D and D/G scales for LTI and parametric uncertainty.     

   It can be used to model the I/O behavior of nonlinear elements. 

[MR] Megretski and Rantzer. System analysis via integral quadratic constraints, TAC, 1997. 
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Robustness Analysis 

The robustness analysis is performed on the extended 
(LTV) system of (G,Y) using the constraint on z. 
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Robustness Analysis: Induced L2 Gain 
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Proof: 

The Differential LMI (DLMI) is equivalent to a dissipation ineq. with 
storage function 𝑉 𝑥, 𝑡 ≔ 𝑥𝑇𝑃 𝑡 𝑥. 

 

 

Integrate and apply the IQC + boundary conditions to conclude that the 
induced L2 gain is ≤g. 

 

Robustness Analysis: Induced L2 Gain 
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Comments: 

*A similar result exists for L2-to-Euclidean or, more generally (Q,S,R,F) 
cost functions. 

*The DLMI can be expressed as a Riccati Differential Ineq. (RDI) by 
Schur Complements. 

*The RDI is equivalent to a related Riccati Differential Eq. (RDE) 
condition by the strict Bounded Real Lemma. 

 

Robustness Analysis: Induced L2 Gain 
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Comments: 

*The DLMI is convex in the IQC matrix M but requires gridding on time t 
and parameterization of P. 

*The RDE form directly solves for P by integration (no time gridding) but 
the IQC matrix M enters in a non-convex fashion. 

 

Robustness Analysis: Induced L2 Gain 
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Numerical Implementation 

An efficient numerical algorithm is obtained by mixing the 
LMI and RDE conditions. 

 

Sketch of algorithm: 

1. Initialize: Select a time grid and basis functions for P(t). 

2. Solve DLMI: Obtain finite-dimensional optim. by enforcing 
DLMI on the time grid and using basis functions.  

3. Solve RDE: Use IQC matrix M from step 2 and solve RDE. 
This gives the optimal storage P for this matrix M. 

4. Terminate: Stop if the costs from Steps 2 and 3 are similar. 
Otherwise return to Step 2 using optimal storage P as a 
basis function. 
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Example 1: LTI Plant 

• Compute the induced L2 gain of Fu(G,D) where D is LTI 
with Δ ≤ 1 and G is: 

 

 

 

 

• By (standard) mu analysis, the worst-case (infinite 
horizon) L2 gain is 1.49. 

• This example is used to assess the finite-horizon 
robustness results. 
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Example 1: Finite Horizon Results 

Total comp. time is 466 sec to compute worst-case gains 
on nine finite horizons.  
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Example 2: Two-Link Robot Arm 

• Assess the worst-case L2-to-Euclidean gain from 
disturbances at the arm joints to the joint angles. 

• LTI uncertainty with Δ ≤ 0.8 injected at 2nd joint. 

• Analysis performed along nominal trajectory in with 
LQR state feedback. 
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Example 2: Results 

Bound on worst-case L2-to-Euclidean gain  = 0.0592. 

Computation took 102 seconds. 
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Cartesian Coords. 

 

Joint Angles 
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Conclusions 

• Main Result:  Bounds on finite-horizon robust performance 
can be computed using differential equations or inequalities. 

• These results complement the use of nonlinear Monte Carlo 
simulations.   

• It would be useful to construct worst-case inputs / uncertainties 
analogous to m lower bounds. 

• An LTVTools toolbox is in development with b-code of the 
proposed methods. 

• References 

• Moore, Finite Horizon Robustness Analysis Using Integral 
Quadratic Constraints, MS Thesis, 2015. 

• Moore, Seiler, Meissen, Arcak, Packard, Finite Horizon 
Robustness Analysis of LTV Systems Using Integral Quadratic 
Constraints, draft in preparation. 
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Future Work 

• LTV Analysis 

• Handle LTV systems with rational dependence on time 

• Compute lower bounds and worst-case D 

• Study systems for which end time T varies 

• Develop software (LTVTools) 

• Use to study robustness of feedback linearization methods 

• Aeroservoelasticity 

• Sensor/Actuator Selection 

• Modeling & Control 

• Reinforcement Learning 

• Investigate opportunities to apply existing control techniques 
for design and analysis of data-driven methods. 
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