#### **Design and Analysis of Safety Critical Systems**

Peter Seiler University of Minnesota



MTA Sztaki December 5, 2017



# **University of Minnesota**



- Campuses in Twin Cities, Duluth, Morris and Crookston.
- Twin Cities campus has 52,557 students (~7,200 in CSE).

# Dept. of Aerospace Engineering & Mechanics



1933 First Class of Seniors Taking Flying Lessons



- First aeronautical engineering courses offered in 1926. Department founded in fall 1929 with 3 faculty members.
- Aeronautical Engineering merged with the Department of Mechanics and Materials in 1958 to form current department
- 17 regular faculty (6 systems, 6 fluids, 5 solids)
- 328 undergraduates, 17 MS, and 73 PhD students

#### **Aerospace Systems**



**Demoz Gebre-Egziabher:** Sensor fusion; design of multisensor systems for navigation



**Peter Seiler:** Robust control with applications to aerospace systems and wind energy



William Garrard: Dynamics and control of aerospace vehicles; parachute dynamics.



**Yohannes Ketema:** *Dynamics; dynamics of active materials; stability of formations; orbital mechanics* 

#### **Aerospace Systems**



**Richard Linares:** Orbital debris tracking, uncertainly quantification



**Derya Aksaray:** Control theory, formal methods, and machine learning with applications to autonomous systems.



Maziar Hemati: Control and optimization, primarily of fluid mechanical systems



**Ryan Caverly:** Robust control with applications to aerospace, mechanical and marine systems.

### **Research Summary**

Jordan Hoyt Parul Singh Sanjana Vijayshankar <u>Wind Energy</u>



Raghu Venkataraman Harish Venkataraman <u>Small UAVs</u>



Abhineet Gupta <u>Aeroelasticity</u>



# **Robust Control Design and Analysis**

Chris Regan Brian Taylor Curt Olson

# Fault Tolerance for Small UAVs

#### With: Raghu Venkataraman





#### Funding:

(NSF) CPS: Managing Uncertainty in the Design of Safety-Critical Aviation Systems

(MnDrive) Precision Agriculture: Robotics and Sensor Development for Revolutionary Improvements in the Global Food Supply and Reduced Environmental Impact in the Agriculture Industry.



### **Growth in Small UAVs**





#### **Sentera Vireo**

- Donated to UMN in 2014
- Remote sensing applications, e.g. precision agriculture
- Mahon et al. "Research Flight Test Vehicle: Small Two Surface UAV," UMN Technical Report, 2016.

#### **Precision Agriculture**



### **Precision Agriculture**



### Flight Data From Aborted Mission



## Fault Tolerance: Commercial Aircraft

#### Boeing 787-8 Dreamliner

- 210-250 seats
- Length=56.7m, Wingspan=60.0m
- Range < 15200km, Speed < M0.89
- First Composite Airliner
- Honeywell Flight Control Electronics





#### Boeing 777-200

- 301-440 seats
- Length=63.7m, Wingspan=60.9m
- Range < 17370km, Speed < M0.89
- Boeing's 1<sup>st</sup> Fly-by-Wire Aircraft
- Ref: Y.C. Yeh, "Triple-triple redundant 777 primary flight computer," 1996.

## Fault Tolerance: Commercial Aircraft

#### Boeing 787-8 Dreamliner

- 210-250 seats
- Length=56.7m, Wingspan=60.0m
- Range < 15200km, Speed < M0.89
- First Composite Airliner
- Honeywell Flight Control Electronics





#### Boeing 777-200

- 301-440 seats
- Length=63.7m, Wingspan=60.9m
- Range < 17370km, Speed < M0.89
- Boeing's 1<sup>st</sup> Fly-by-Wire Aircraft
- Ref: Y.C. Yeh, "Triple-triple redundant 777 primary flight computer," 1996.

## 777 Triple-Triple Architecture [Yeh, 96]



## 777 Triple-Triple Architecture [Yeh, 96]



# **Reliability Comparison**

#### Boeing 777



#### Reliability

- < 10<sup>-9</sup> catastrophic failures per hour
- No single point of failure
- Protect against random & common failures

#### Design

- Hardware Redundancy
- Dissimilar hardware and software
- Limited use of analytical redundancy [1]
  - Fault Trees, etc to certify

#### **References**

[1] Goupil, "Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy," Control Engineering Practice, 2010.

# **Reliability Comparison**

Design

|                | <ul> <li>&lt; 10<sup>-9</sup> catastrophic<br/>failures per hour</li> <li>No single point of failure</li> <li>Protect against random<br/>&amp; common failures</li> </ul> | <ul> <li>Hardware Redundancy</li> <li>Dissimilar hardware and<br/>software</li> <li>Limited use of analytical<br/>redundancy [1]</li> <li>Fault Trees, etc to certify</li> </ul> |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ultrastick 120 | <ul> <li>Reliability</li> <li>~0.8 failures/100 hrs [2]</li> </ul>                                                                                                        | <ul><li><b>Design</b></li><li>Limited by size, weight,</li></ul>                                                                                                                 |

**Reliability** 



Boeing 777

- Single points of failure
- size, weight, power, and cost (SWAPC) constraints

etc to certify

#### References

[1] Goupil, "Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy," Control Engineering Practice, 2010.

[2] Amos et al., "UAV for Reliability Build," Technical Report, University of Minnesota, 2014.

# **Key Questions**

#### Boeing 777



**Ultrastick 120** 



# 1. What is an appropriate level of reliability for small UAS?

- FAA Modernization and Reform Act (1/12)
- FAA 14 CFR Part 107 (8/16)

# 2. Can analytical redundancy be used to increase the reliability of small UAS?

- Flight with a single aero surface [1]
- Fault detection of actuator failures [2,3,4]

#### 3. How can analytical methods be certified?

 Probabilistic analysis methods and extended fault trees [5,6]

[1] Venkataraman & Seiler, Safe Flight Using One Aerodynamic Control Surface, AIAA, 2016.

[2] Venkataraman & Seiler, Model-Based Detection and Isolation of Rudder Faults for a Small UAS, AIAA, 2015.

[3] Lakshminarayan, et al, "Designing Reliability Into Small UAS Avionics", Inside Unmanned Systems, 2016.

[4] Bauer, et al, "Fault Detection and Basic In-Flight Reconfiguration of a Small UAV...", SafeProcess, 2018.

[5] Venkataraman, et al, Reliability Assessment of Actuator Architectures for Unmanned Aircraft, AIAA, 2016.

[6] Hu & Seiler, Pivotal decomposition for reliability analysis of fault tolerant control systems on UAVs, RESS, 2015.

# **Key Questions**

#### Boeing 777



#### **Ultrastick 120**



# 1. What is an appropriate level of reliability for small UAS?

- FAA Modernization and Reform Act (1/12)
- FAA 14 CFR Part 107 (8/16)

# 2. Can analytical redundancy be used to increase the reliability of small UAS?

- Flight with a single aero surface [1]
- Fault detection of actuator failures [2,3,4]

#### 3. How can analytical methods be certified?

Probabilistic analysis methods and extended fault trees [5,6]

[1] Venkataraman & Seiler, Safe Flight Using One Aerodynamic Control Surface, AIAA, 2016.

[2] Venkataraman & Seiler, Model-Based Detection and Isolation of Rudder Faults for a Small UAS, AIAA, 2015.

[3] Lakshminarayan, et al, "Designing Reliability Into Small UAS Avionics", Inside Unmanned Systems, 2016.

[4] Bauer, et al, "Fault Detection and Basic In-Flight Reconfiguration of a Small UAV...", SafeProcess, 2018.

[5] Venkataraman, et al, Reliability Assessment of Actuator Architectures for Unmanned Aircraft, AIAA, 2016.

[6] Hu & Seiler, Pivotal decomposition for reliability analysis of fault tolerant control systems on UAVs, RESS, 2015.

### **Final Goal**



# Flight With One Aero Surface

#### 1. Ultrastick 120 [1]

Demonstrated closed-loop steady, level flight (2015).

#### 2. Senior Design [2]

Team designed and built flying wing. Demonstrated ability to land by human pilot (2016).

#### 3. Sentera Vireo

Built avionics and performed first flights for sys id (2016). Plan to demonstrate closedloop landing (2017).

#### <u>References</u>

[1] Venkataraman & Seiler, AIAA 2016.[2] Condron, et al, UMN Report, 2016.



- Control input simultaneously excites longitudinal and lateral-directional motion
- No direct yaw control

# System Identification

- Chirp excitations on elevator and aileron
- Identified frequency response from:
  - Elevator to pitch rate
  - Aileron to roll rate
- Grey-box modeling
  - Aero. Coeff. Initialized with using vortex-lattice method
  - Updated using flight data
- Plot shows aileron to roll rate
  - Dutch roll mode visible



# Single Surface Flight

- Right elevon stuck at
  5 deg trailing edge up
- Flight divided into circle (set by user) and land phases
- The red plus sign is the target touchdown point



#### **Glideslope Tracking**



## **Fault Detection and Reconfiguration**



**Reference:** Bauer, et al, "Fault Detection and Basic In-Flight Reconfiguration of a Small UAV Equipped with Elevons", SafeProcess, 2018.

### **Fault Detection and Reconfiguration**



**Reference:** Bauer, et al, "Fault Detection and Basic In-Flight Reconfiguration of a Small UAV Equipped with Elevons", SafeProcess, 2018.

🔼 University of Minnesota

#### From Aerospace to Automotive....

Similar reliability concerns are now common in automotive applications due to rise of autonomous driving.











# Performance Adaptive Aeroelastic Wing (PAAW)

28

- Goal: Suppress flutter, control wing shape and alter shape to optimize performance
  - Funding: NASA NRA NNX14AL36A
  - Technical Monitor: Dr. Jeffrey Ouellette
  - Two years of testing at UMN followed by two years of testing on NASA's X-56 Aircraft









Schmidt & Associates



AEROSPACE ENGINEERING AND MECHANICS

### Aeroservoelasticity (ASE)

#### Efficient aircraft design

- Lightweight structures
- High aspect ratios

#### Source: www.flightglobal.com

#### Flutter



#### Source: NASA Dryden Flight Research

### **Classical Approach**



#### **Flexible Aircraft Challenges**



#### **Flexible Aircraft Challenges**

Integrated Control Design



# Modeling and Control for Flex Aircraft

- **1**. Parameter Dependent Dynamics
  - Models depend on airspeed due to structural/aero interactions
  - LPV is a natural framework.
- 2. Model Reduction
  - High fidelity CFD/CSD models have many (millions) of states.
- 3. Model Uncertainty
  - Use of simplified low order models
     OR reduced high fidelity models
  - Unsteady aero, mass/inertia & structural parameters





#### **Current PAAW Aircraft**





<u>mAEWing1</u> 10 foot wingspan ~14 pounds Laser-scan replica of BFF 4 aircraft, >50 flights <u>mAEWing2</u> 14 foot wingspan ~42 pounds Half-scale X-56 Currently ground testing

#### mAEWing1 and 2



# **Open-Loop Flutter**



## **Body Freedom Flutter**

38





## **Pole Map for H-Inf Controller**

Map of Poles and Zeros 0.07 0.22 0.14 -0.07 -0.14 35 60 2nd AE Mode 30 55 50 25 0.36 Imaginary 21.9 m/s 45 -0.195 20 25.8 m/s 40 25.8 m/s 28.4 m/s 1st AE 15 28.4 m/s Mode (OL) 35 0.49 30.9 m/s 10 30 1st AE Mode (CL) 0.56 25 5 -15 -10 -5 10 15 0 5 Real

Comparison of BFF mode variation with airspeed I.D.'d from flight test data with theoretical predictions for Open Loop and H $\infty$  controller; Marker descriptions – (X): theoretical poles, ( $\Diamond$ ): sys. I.D.'d open/closed loop poles.

### **Flight Test Summary**



## Finite Horizon Robustness Analysis of LTV Systems Using Integral Quadratic Constraints

#### Peter Seiler University of Minnesota



M. Moore, C. Meissen, M. Arcak, and A. Packard University of California, Berkeley



MTA Sztaki October 5, 2017

### **Time-Varying Systems**



Wind Turbine Periodic / Parameter-Varying

Flexible Aircraft Parameter-Varying

Vega Launcher Time-Varying (Source: ESA) Robotics Time-Varying

(Source: ReWalk)

**Issue:** Few numerically reliable methods to assess the robustness of time-varying systems.

## **Analysis Objective**

Goal: Assess the robustness of linear time-varying (LTV) systems on finite horizons.

Approach: Classical Gain/Phase Margins focus on (infinite horizon) stability and frequency domain concepts.

Instead focus on:

- Finite horizon metrics, e.g. induced gains and reachable sets.
- Effect of disturbances and model uncertainty (D-scales, IQCs, etc).
- Time-domain analysis conditions.



#### **Two-Link Robot Arm**



Two-Link Diagram [MZS]

Nonlinear dynamics [MZS]:  $\dot{\eta} = f(\eta, \tau, d)$ 

where

$$\eta = \begin{bmatrix} \theta_1, \dot{\theta}_1, \theta_2, \dot{\theta}_2 \end{bmatrix}^T$$
$$\tau = \begin{bmatrix} \tau_1, \tau_2 \end{bmatrix}^T$$
$$d = \begin{bmatrix} d_1, d_2 \end{bmatrix}^T$$

 $\tau$  and d are control torques and disturbances at the link joints.

[MZS] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robot Manipulation, 1994.

# Nominal Trajectory (Cartesian Coords.)



45

### Effect of Disturbances / Uncertainty



**Cartesian Coords.** 

**Joint Angles** 

### **Overview of Analysis Approach**

Nonlinear dynamics:

 $\dot{\eta} = f(\eta, \tau, d)$ 

Linearize along a (finite –horizon) trajectory  $(\bar{\eta}, \bar{\tau}, d = 0)$  $\dot{x} = A(t)x + B(t)u + B(t)d$ 

Compute bounds on the terminal state x(T) or other quantity e(T) = C x(T) accounting for disturbances and uncertainty.

Comments:

- The analysis can be for open or closed-loop.
- LTV analysis complements the use of Monte Carlo simulations.



## Conclusions

- Fault tolerance for small UAVs
  - Commercial aircraft achieve high reliability with redundancy.
  - Model-based fault detection methods are an alternative that enables size, weight, power, and cost to be reduced.
  - Develop methods for analytical fault tolerance on small UAS and tools to certify the probabilistic performance.
- Modeling and control of flexible aircraft

• Robustness analysis of time-varying systems

http://www.aem.umn.edu/~SeilerControl/

# Acknowledgements

#### US National Science Foundation

- Grant No. NSF-CMMI-1254129: "CAREER: Probabilistic Tools for High Reliability Monitoring and Control of Wind Farms." Prog. Manager: J. Berg.
- Grant No. NSF/CNS-1329390: "CPS: Breakthrough: Collaborative Research: Managing Uncertainty in the Design of Safety-Critical Aviation Systems".
   Prog. Manager: D. Corman.

#### • NASA

- NRA NNX14AL36A: "Lightweight Adaptive Aeroelastic Wing for Enhanced Performance Across the Flight Envelope," Tech. Monitor: J. Ouelette.
- NRA NNX12AM55A: "Analytical Validation Tools for Safety Critical Systems Under Loss-of-Control Conditions." Tech. Monitor: C. Belcastro.
- SBIR contract #NNX12CA14C: "Adaptive Linear Parameter-Varying Control for Aeroservoelastic Suppression." Tech. Monitor. M. Brenner.

#### • Eolos Consortium and Saint Anthony Falls Laboratory

<u>http://www.eolos.umn.edu/</u> & <u>http://www.safl.umn.edu/</u>

## Backup



# **Modeling and Control for Wind Energy**

#### Jen Annoni, Shu Wang, Daniel Ossmann, Parul Singh, Jordan Hoyt, Sanjana Vijayshankar (with support from SAFL/EOLOS)









**Clipper Liberty, 2012**: Modern utility-scale turbine.

- •Rosemount, MN.
- •Diameter: 96m
- •Power: 2.5MW
- •Eolos Consortium:

http://www.eolos.umn.edu/

•Saint Anthony Falls Lab: http://www.safl.umn.edu/

### **Individual Blade Pitch Control**

#### Goals:

- Reducing structural loads on the turbine to
- increase life time of turbine and components while
- keeping power production constant by
- adding an individual blade pitch controller



Controller architecture

C96 Liberty research turbine

#### Ref: Ossmann, Theis, Seiler, '16 ASME DSCC, Best Energy Paper Award

# Modeling and Control for Wind Farms

- **1**. Parameter Dependent Dynamics
  - Models depend on windspeed due to structural/aero interactions
  - LPV is a natural framework.
- 2. Model Reduction
  - High fidelity CFD/CSD models have many (millions) of states.
- 3. Model Uncertainty
  - Use of simplified low order models
     OR reduced high fidelity models



Eolos: http://www.eolos.umn.edu/



Saint Anthony Falls: http://www.safl.umn.edu/



Simulator for Wind Farm Applications, Churchfield & Lee <u>http://wind.nrel.gov/designcodes/simulators/SOWFA</u>

## Minneapolis and St. Paul, Minnesota



- Twin Cities Population ~3.5Million
- Average daily low/high in January is -15.4°C / -5.6°C
- Strong outdoor culture with many lakes and bike trails

#### **Department History**



#### Akerman Tailless Aircraft

Jean and Jeanette Piccard performed pioneering research in high altitude ballooning (1930's)

John D. Akerman was first Department Head 1929 - 1957

- Born in Latvia late 1890's
- Studied with Niklolai Joukowsky
- Acquainted with Igor Sikorsky



1930's Cellophane Stratosphere Balloon Ascent in Memorial Stadium