Robust Analysis and Synthesis for Linear Parameter Varying Systems

Peter Seiler University of Minnesota

Research Areas

Jen Annoni Parul Singh Shu Wang <u>Wind Energy</u> Bin Hu Inchara Lakshminarayan Raghu Venkataraman <u>Safety Critical Systems</u>

Masanori Honda <u>Hard Disk Drives</u>

Robust Control Design and Analysis

Harald Pfifer

Daniel Ossmann

Marcio Lacerda

Research Areas: Aeroservoelasticity

Gary Balas (9/27/60 – 11/12/14)

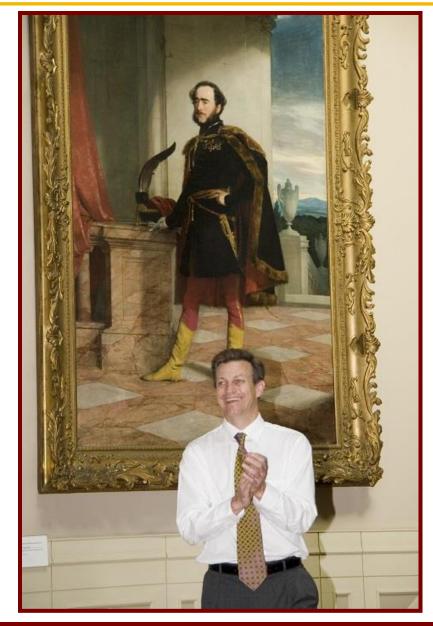
Abhineet Gupta Aditya Kotikalpudi Sally Ann Keyes Adrià Serra Moral

Brian Taylor (UAV Lab Director) Chris Regan Harald Pfifer Julian Theis

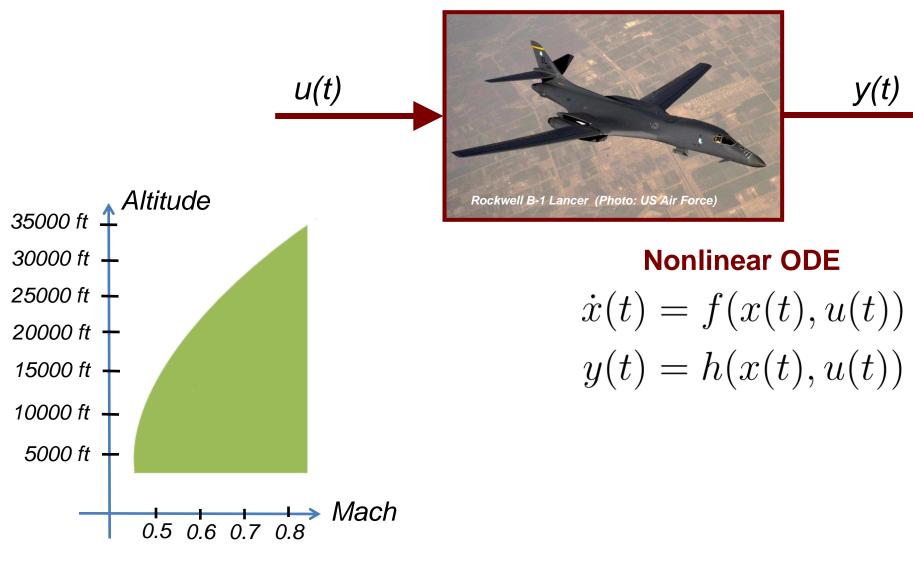
Outline

- Linear Parameter Varying (LPV) Systems
- Applications
 - Flexible Aircraft
 - Wind Farms
- Theory for LPV Systems
 - Robustness Analysis
 - Model Reduction

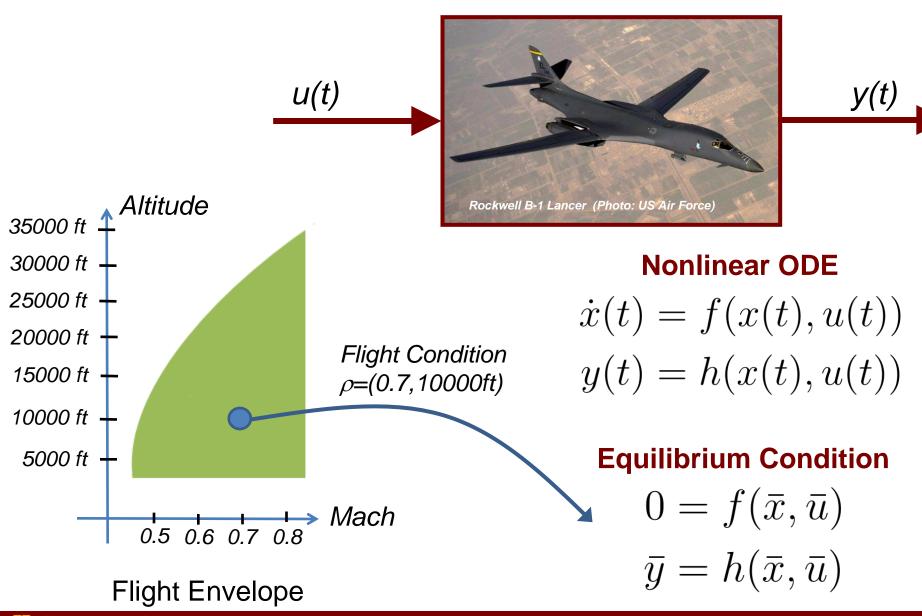
Outline

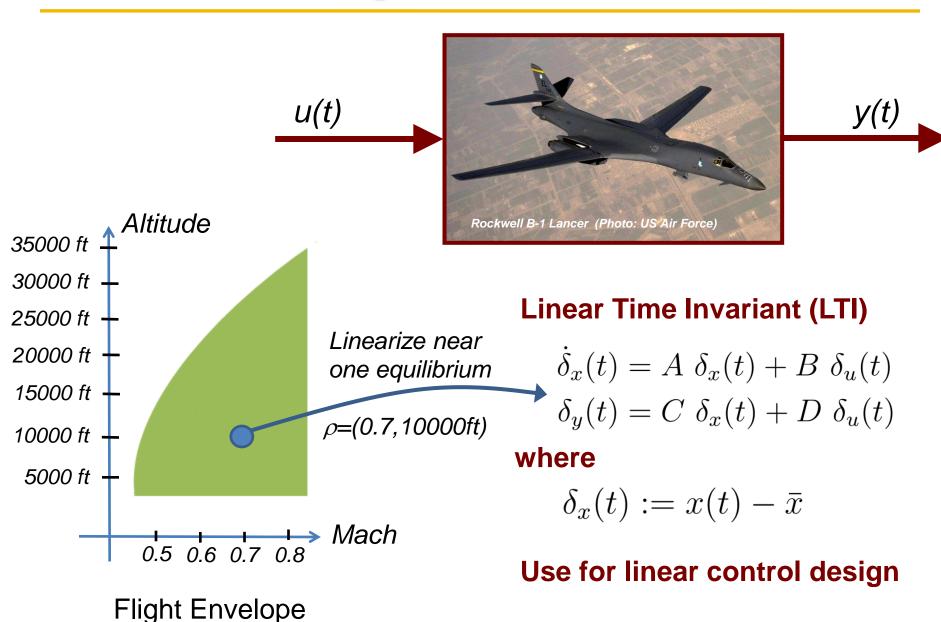


- Linear Parameter Varying (LPV) Systems
- Applications
 - Flexible Aircraft
 - Wind Farms
- Theory for LPV Systems
 - Robustness Analysis
 - Model Reduction

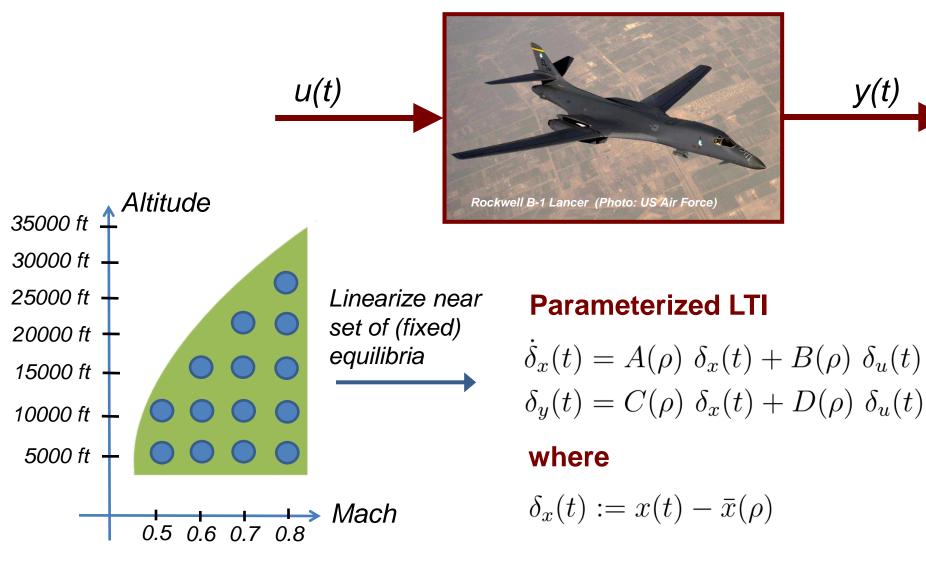


Flight Envelope

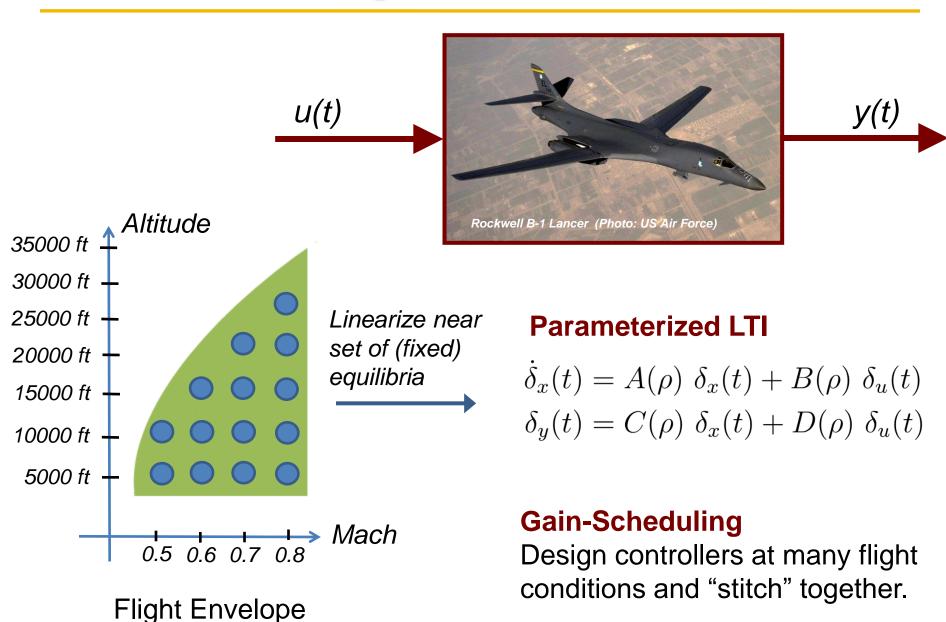


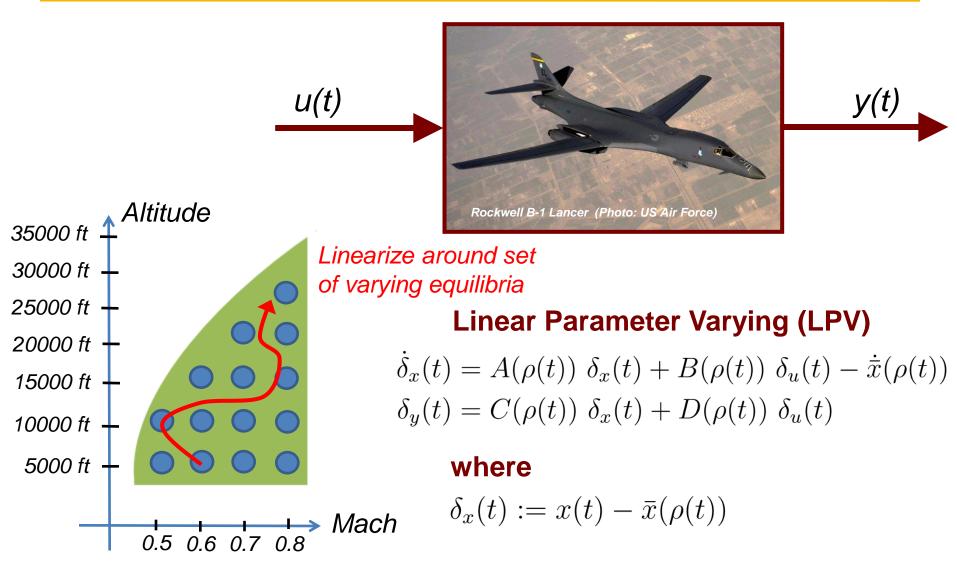


🔼 University of Minnesota



Flight Envelope





Flight Envelope

Outline

- Linear Parameter Varying (LPV) Systems
- Applications
 - Flexible Aircraft
 - Wind Farms
- Theory for LPV Systems
 - Robustness Analysis
 - Model Reduction

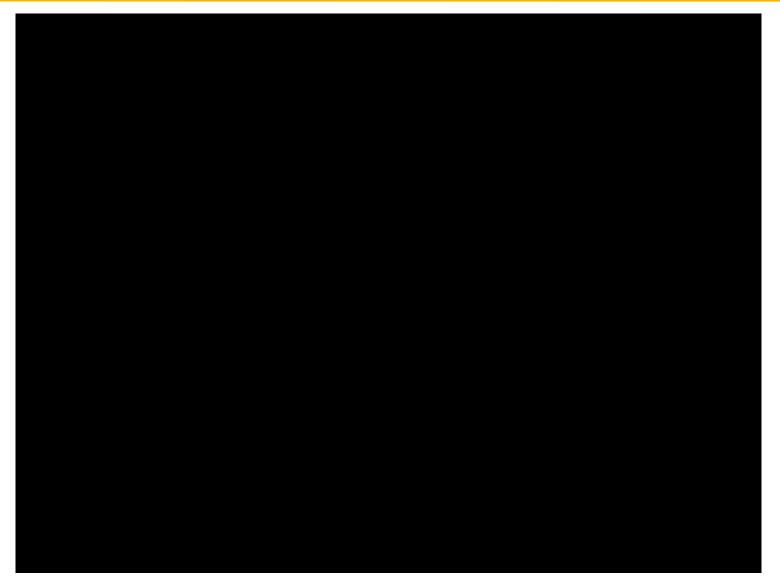
Aeroservoelasticity (ASE)

Efficient aircraft design

- Lightweight structures
- High aspect ratios

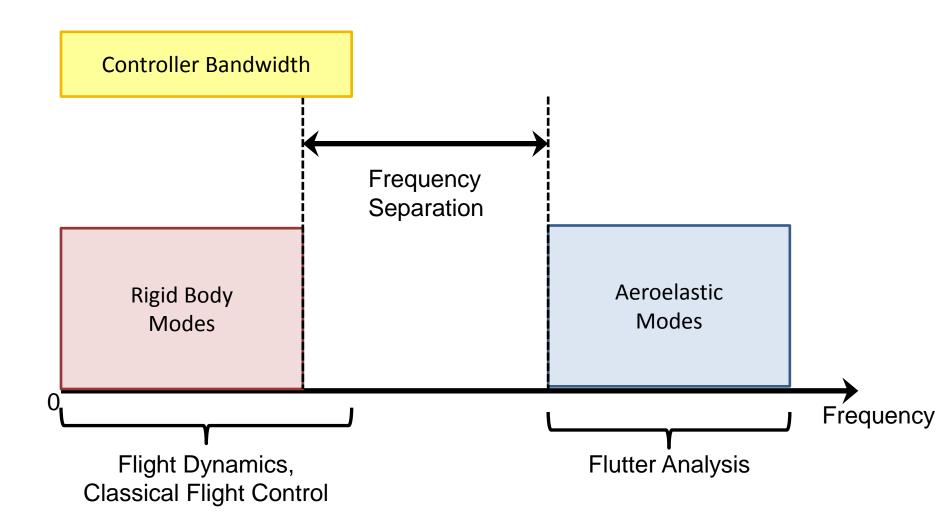
Source: www.flightglobal.com

Flutter

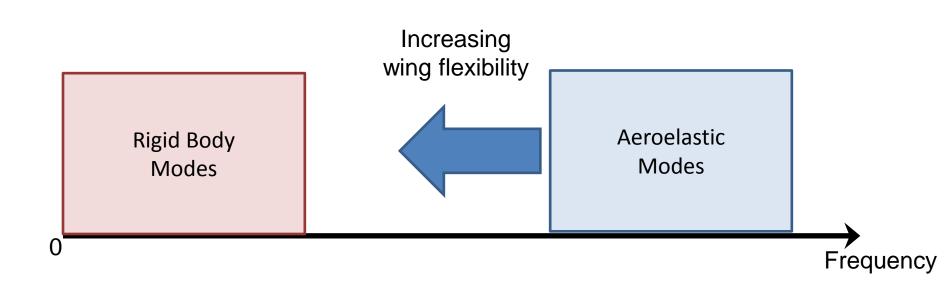


Source: NASA Dryden Flight Research

Classical Approach

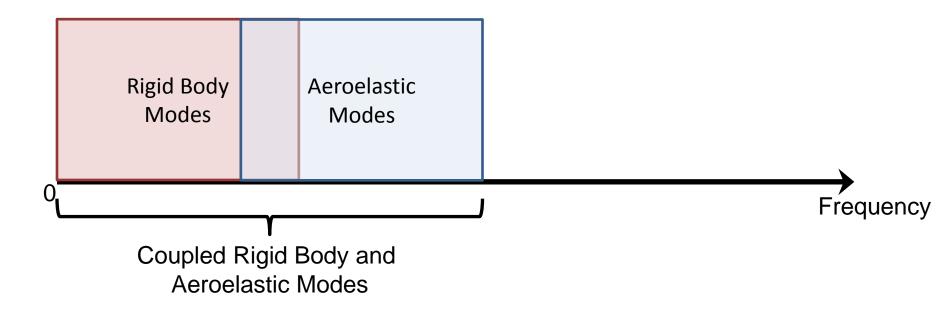


Flexible Aircraft Challenges

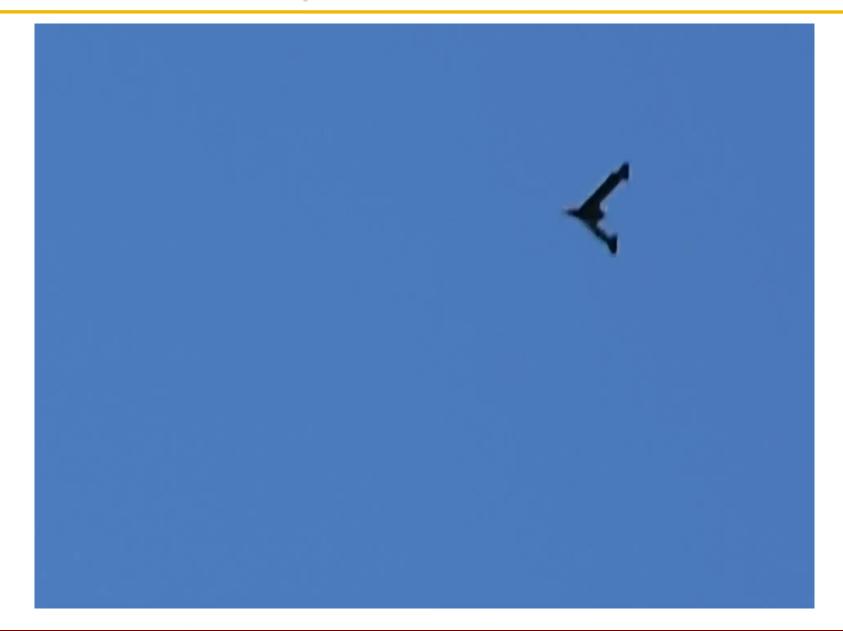


Flexible Aircraft Challenges

Integrated Control Design



Body Freedom Flutter



Performance Adaptive Aeroelastic Wing (PAAW)

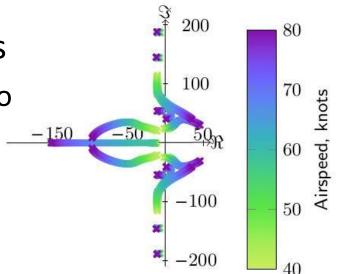
19

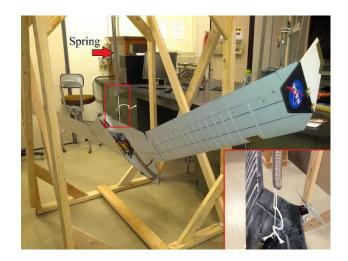
- Goal: Suppress flutter, control wing shape and alter shape to optimize performance
 - Funding: NASA NRA NNX14AL36A
 - Technical Monitor: Dr. John Bosworth
 - Two years of testing at UMN followed by two years of testing on NASA's X-56 Aircraft

Schmidt & Associates

Modeling and Control for Flex Aircraft

- **1**. Parameter Dependent Dynamics
 - Models depend on airspeed due to structural/aero interactions
 - LPV is a natural framework.
- 2. Model Reduction
 - High fidelity CFD/CSD models have many (millions) of states.
- 3. Model Uncertainty
 - Use of simplified low order models
 OR reduced high fidelity models
 - Unsteady aero, mass/inertia & structural parameters



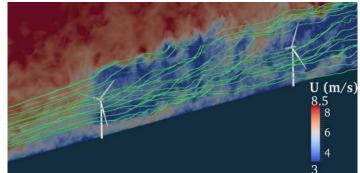


Modeling and Control for Wind Farms

- **1**. Parameter Dependent Dynamics
 - Models depend on windspeed due to structural/aero interactions
 - LPV is a natural framework.
- 2. Model Reduction
 - High fidelity CFD/CSD models have many (millions) of states.
- 3. Model Uncertainty
 - Use of simplified low order models
 OR reduced high fidelity models

Eolos: http://www.eolos.umn.edu/

Saint Anthony Falls: http://www.safl.umn.edu/



Simulator for Wind Farm Applications, Churchfield & Lee <u>http://wind.nrel.gov/designcodes/simulators/SOWFA</u>

Outline

- Linear Parameter Varying (LPV) Systems
- Applications
 - Flexible Aircraft
 - Wind Farms
- Theory for LPV Systems
 - Robustness Analysis
 - Model Reduction

LPV Analysis

$e \qquad G_{\rho} \leftarrow d$

$$\dot{x}(t) = A(\rho(t)) \ x(t) + B(\rho(t)) \ d(t)$$

$$e(t) = C(\rho(t)) \ x(t) + D(\rho(t)) \ d(t)$$

 $\rho \in \mathcal{A} :=$ Set of allowable trajectories

Induced L₂ Gain

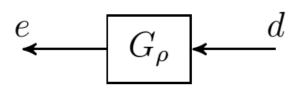
Gridded LPV System

$$\sup_{\rho \in \mathcal{A}} \|G_{\rho}\|_{2 \to 2} = \sup_{\rho \in \mathcal{A}} \sup_{0 \neq d \in L_2} \frac{\|e\|_2}{\|d\|_2}$$

(Standard) Dissipation Inequality Condition

Theorem

If there exists
$$V(x, \rho) \ge 0$$
 such that
 $\dot{V} + e^T e < \gamma^2 d^T d$



then $\sup_{\rho \in \mathcal{A}} \|G_{\rho}\|_{2 \to 2} \leq \gamma$.

Proof: Integrate the dissipation inequality

$$\underbrace{V(x(T))}_{\geq 0} + \underbrace{V(x(0))}_{=0} + \int_0^T e(t)^T e(t) dt \le \gamma^2 \int_0^T d(t)^T d(t) dt$$

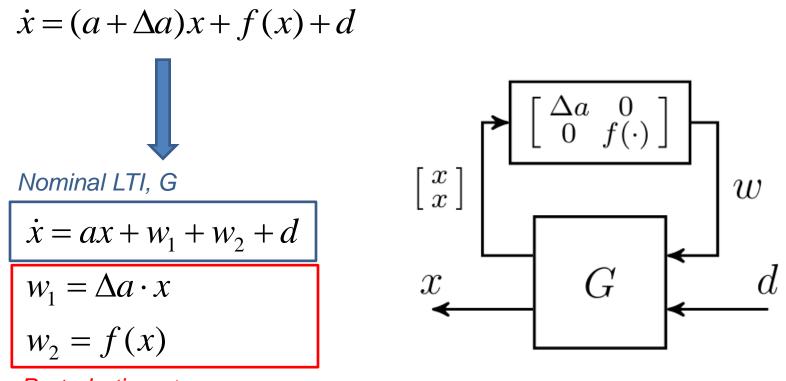
Comments

- Dissipation inequality can be expressed/solved using LMIs.
 - Finite dimensional LMIs for LFT/Polytopic LPV systems
 - Parameterized LMIs for Gridded LPV (requires basis functions, gridding, etc)

• Condition is IFF for LTI systems but only sufficient for LPV

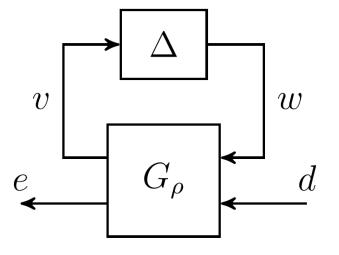
Uncertainty Modeling

- **Goal:** Assess the impact of model uncertainty/nonlinearities
- **Approach:** Separate nominal dynamics from perturbations
 - Pert. can be parametric, LTI dynamic, and/or nonlinearities (e.g. saturation).



Robustness Analysis for LPV Systems

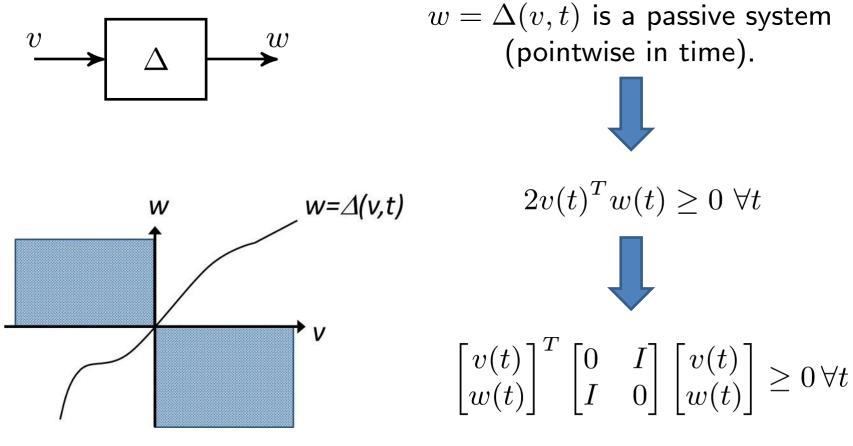
• Goal: Extend analysis tools to LPV



• Approach:

- Use Integral Quadratic Constraints to model input/output behavior (Megretski & Rantzer, TAC 1997).
- Extend dissipation inequality approach for robustness analysis
- Results for Gridded Nominal system
 - Parallels earlier results for LFT nominal system by Scherer, Veenman, Köse, Köroğlu.

IQC Example: Passive System



Pointwise Quadratic Constraint

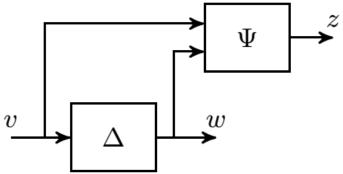
General (Time Domain) IQCs

General IQC Definition:

Let Ψ be a stable, LTI system and M a constant matrix. Δ satisfies IQC defined by Ψ and M if

 $\int_0^T z(t)^T M z(t) dt \ge 0$

 $\forall v \in L_2[0,\infty), w = \Delta(v), \text{ and } T \ge 0.$



Comments:

- Megretski & Rantzer ('97 TAC) has a library of IQCs for various components.
- IQCs can be equivalently specified in the freq. domain with a multiplier Π
- A non-unique factorization connects $\Pi = \Psi^* M \Psi$.
- Multiple IQCs can be used to specify behavior of Δ .

IQC Dissipation Inequality Condition

Theorem

If $\Delta \in IQC(\Psi, M)$ and there exists $V(x, \rho) \ge 0$ such that

$$\dot{V} + z^T M z + e^T e \leq \gamma^2 d^T d$$

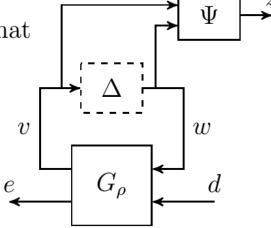
then $\sup_{\rho \in \mathcal{A}} \|G_{\rho}\|_{2 \to 2} \leq \gamma$.

Proof: Integrate the dissipation inequality

$$\underbrace{V(x(T))}_{\geq 0} + \underbrace{V(x(0))}_{=0} + \underbrace{\int_{0}^{T} z(t)^{T} M z(t) dt}_{\geq 0} + \int_{0}^{T} e(t)^{T} e(t) dt \leq \gamma^{2} \int_{0}^{T} d(t)^{T} d(t) dt$$

Comment

- Dissipation inequality can be expressed/solved as LMIs.
- Extends standard D/G scaling but requires selection of basis functions for IQC.



Less Conservative IQC Result

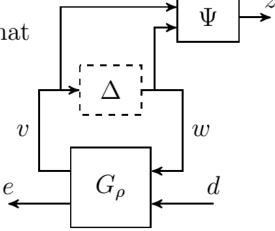
Theorem

If $\Delta \in IQC(\Psi, M)$ and there exists $V(x, \rho) \ge 0$ such that

 $\dot{V} + z^T M z + e^T e \leq \gamma^2 d^T d$

then $\sup_{\rho \in \mathcal{A}} \|G_{\rho}\|_{2 \to 2} \leq \gamma$.

Technical Result



- Positive semidefinite constraint on V and time domain IQC constraint can be dropped.
- These are replaced by a freq. domain requirement on $\Pi = \Psi^* M \Psi$.
- Some energy is "hidden" in the IQC.

Refs:

P. Seiler, Stability Analysis with Dissipation Inequalities and Integral Quadratic Constraints, IEEE TAC, 2015.

H. Pfifer & P. Seiler, Less Conservative Robustness Analysis of Linear Parameter Varying Systems Using Integral Quadratic Constraints, submitted to IJRNC, 2015.

Time-Domain Dissipation Inequality Analysis

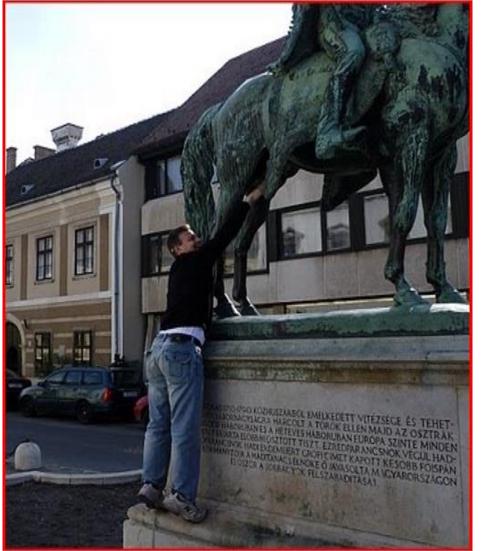
Summary: Under some technical conditions, the frequency-domain conditions in (M/R, '97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Applications:

- 1. LPV robustness analysis (Pfifer, Seiler, IJRNC)
- 2. General LPV robust synthesis (Wang, Pfifer, Seiler, submitted to Aut)
- 3. LPV robust filtering/feedforward (Venkataraman, Seiler, in prep)
 - Robust filtering typically uses a duality argument. Extensions to the time domain?
- 4. Exponential rates of convergence (Hu,Seiler, submitted to TAC)
 - Motivated by optimization analysis with *ρ*-hard IQCs (Lessard, Recht, & Packard)
- 5. Nonlinear analysis using SOS techniques

Item 1 has been implemented in LPVTools. Items 2 & 3 parallel results by (Scherer, Köse, and Veenman) for LFT-type LPV systems.

Outline



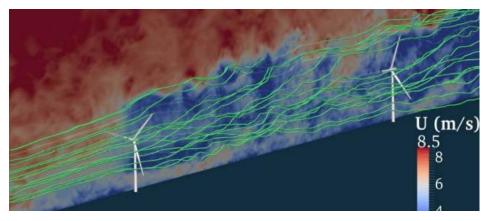
- Linear Parameter Varying (LPV) Systems
- Applications
 - Flexible Aircraft
 - Wind Farms
- Theory for LPV Systems
 - Robustness Analysis
 - Model Reduction

LPV Model Reduction

- Both flexible aircraft and wind farms can be modeled with high fidelity fluid/structural models.
- LPV models can be obtained via Jacobian linearization: $\dot{x}(t) = A(\rho(t)) x(t) + B(\rho(t)) d(t)$

 $e(t) = C(\rho(t)) \ x(t) + D(\rho(t)) \ d(t)$

- State dimension can be extremely large (>10⁶)
- LPV analysis and synthesis is restricted to ≈50 states.
- Model reduction is required.



High Order Model Reduction

Large literature with recent results for LPV and Param. LTI

 Antoulas, Amsallem, Carlberg, Gugercin, Farhat, Kutz, Loeve, Mezic, Poussot-Vassal, Rowley, Schmid, Willcox, ...

Two new results for LPV:

- 1. Input-Output Dynamic Mode Decomposition
 - Combine subspace ID with techniques from fluids (POD/DMD).
 - No need for adjoint models. Can reconstruct full-order state.
- 2. Parameter-Varying Oblique Projection
 - Petrov-Galerkin approximation with constant projection space and parameter-varying test space.
 - Constant projection maintains state consistency avoids rate dependence.

References

1A. Annoni & Seiler, A method to construct reduced-order parameter varying models, submitted to IJRNC, 2015.
1B. Annoni, Nichols, & Seiler, "Wind farm modeling and control using dynamic mode decomposition." AIAA, 2016.
1C. Singh & Seiler, Model Reduction using Frequency Domain Input-Output Dynamic Mode Decomposition, sub. to '16 ACC.
2. Theis, Seiler, & Werner, Model Order Reduction by Parameter-Varying Oblique Projection, submitted to 2016 ACC.

High Order Model Reduction

Large literature with recent results for LPV and Param. LTI

 Antoulas, Amsallem, Carlberg, Gugercin, Farhat, Kutz, Loeve, Mezic, Poussot-Vassal, Rowley, Schmid, Willcox, ...

Two new results for LPV:

1. Input-Output Dynamic Mode Decomposition

- Combine subspace ID with techniques from fluids (POD/DMD).
- No need for adjoint models. Can reconstruct full-order state.

2. Parameter-Varying Oblique Projection

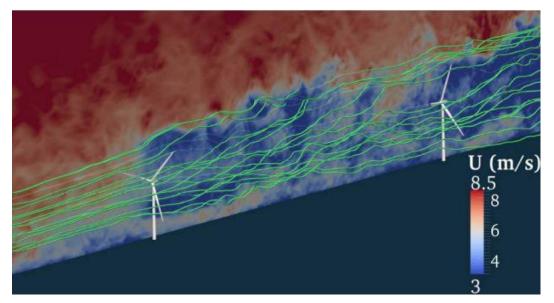
- Petrov-Galerkin approximation with constant projection space and parameter-varying test space.
- Constant projection maintains state consistency avoids rate dependence.

References

1A. Annoni & Seiler, A method to construct reduced-order parameter varying models, submitted to IJRNC, 2015.
1B. Annoni, Nichols, & Seiler, "Wind farm modeling and control using dynamic mode decomposition." AIAA, 2016.
1C. Singh & Seiler, Model Reduction using Frequency Domain Input-Output Dynamic Mode Decomposition, sub. to '16 ACC.
2. Theis, Seiler, & Werner, Model Order Reduction by Parameter-Varying Oblique Projection, submitted to 2016 ACC.

Higher-Fidelity – Large Eddy Simulation (LES)

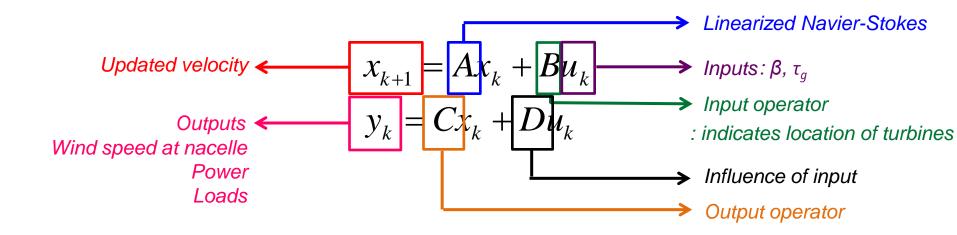
- Simulator for On/Offshore Wind Farm Applications
- 3D unsteady spatially filtered Navier-Stokes equations
- Simulation time (wall clock): 48 hours

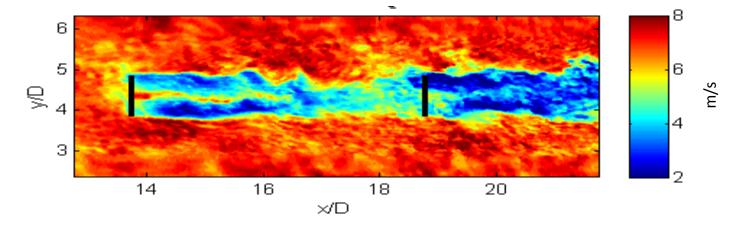


Churchfield, Lee https://nwtc.nrel.gov/SOWFA

Problem Setup

Linearized discrete-time Navier-Stokes

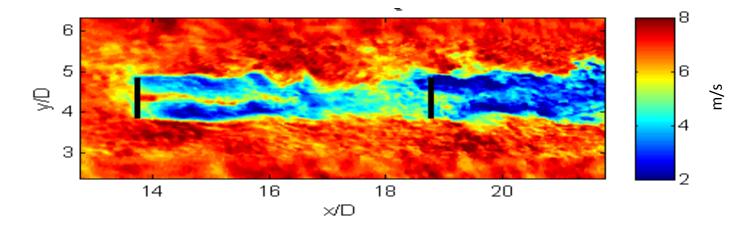




Problem Setup

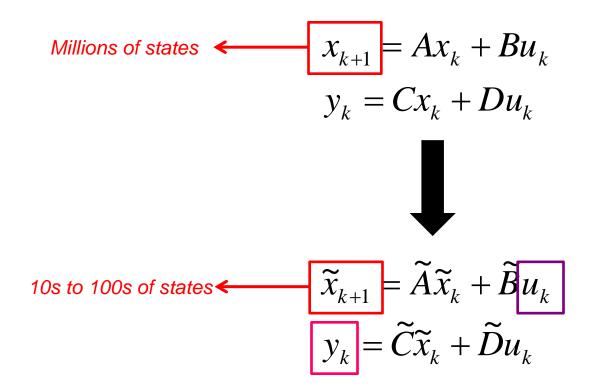
Linearized discrete-time Navier-Stokes

Millions of states
$$\leftarrow$$
 $x_{k+1} = Ax_k + Bu_k$
 $y_k = Cx_k + Du_k$



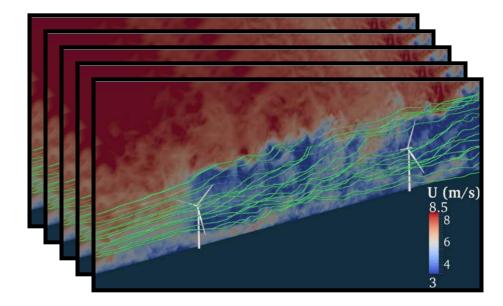
Problem Setup

Linearized discrete-time Navier-Stokes



Typical Approaches in Fluids

- Project onto the dominant modes of the system
 - Proper orthogonal decomposition (POD)
 - Lumley, et. al. 1967
 - Dynamic mode decomposition (DMD)
 - Schmid, Mezic, Rowley, Kutz, others



Churchfield et. al. "NWTC design codes-SOWFA"

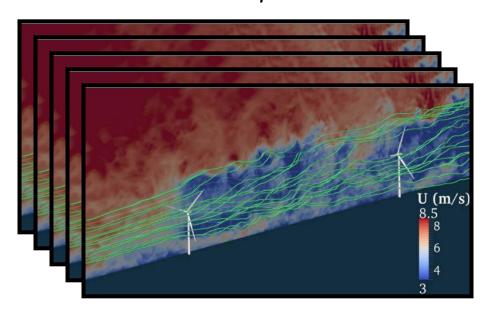
Dynamic Mode Decomposition

- Gather snapshots from simulation or experiments
- Fit a linear operator to the snapshots

$$X_{0} = [x_{1}, x_{2}, ..., x_{m}] \longrightarrow A = X_{1}X_{0}^{+}$$

$$X_{1} = [x_{2}, x_{3}, ..., x_{m+1}]$$

Gather
snapshots
Fit linear operator
to snapshots



Churchfield et. al. "NWTC design codes-SOWFA"

Dynamic Mode Decomposition

- Gather snapshots from simulation or experiments
- Fit a linear operator to the snapshots

$$X_{0} = [x_{1}, x_{2}, ..., x_{m}]$$

$$X_{1} = [x_{2}, x_{3}, ..., x_{m+1}] \rightarrow X_{0} = U\Sigma V^{T} \rightarrow U_{r}^{*}X_{1} \rightarrow \tilde{A} = U_{r}^{*}X_{1}(U_{r}^{*}X_{0})^{+}$$

$$Gather$$

$$Snapshots$$

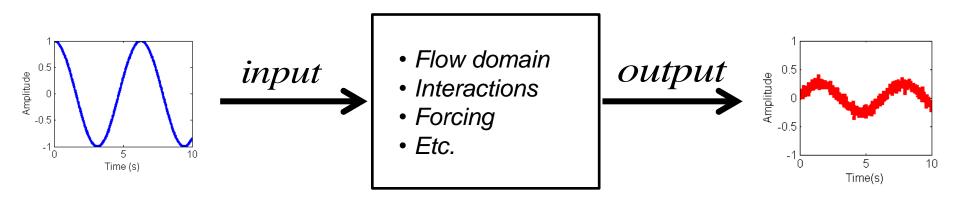
$$Churchfield et. al.$$
"NWTC design codes-
SOWFA"
$$U_{r}^{*}X_{0} \rightarrow \tilde{A} = U_{r}^{*}X_{1}(U_{r}^{*}X_{0})^{+}$$

$$Compute Project onto Reduced order model$$

$$I_{r}^{*}V_{r}X_{0} \rightarrow \tilde{A} = U_{r}^{*}X_{1}(U_{r}^{*}X_{0})^{+}$$

Typical Approaches in Controls

- Subspace identification
 - Fit low-order, "black-box" ODE to input/output data
 - Katayama, Larimore, Ljung, van Overschee, de Moor, Viberg, Verhaegen, others



Direct Subspace Identification (Viberg, '95)

- Gather snapshots from simulation or experiments
- Measurements of inputs and outputs
- Fit a linear operator to the snapshots

$$X_{0} = [x_{1}, x_{2}, ..., x_{m-1}]$$

$$X_{1} = [x_{2}, x_{3}, ..., x_{m}]$$

$$U_{0} = [u_{1}, u_{2}, ..., u_{m-1}]$$

$$Y_{0} = [y_{1}, y_{2}, ..., y_{m-1}]$$

$$Intractable for large systems$$

$$X_{1} = AX_{0} + BU_{0}$$

$$Y_{0} = CX_{0} + DU_{0}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} X_{1} \\ Y_{0} \end{bmatrix} \begin{bmatrix} X_{0} \\ U_{0} \end{bmatrix}^{+}$$

IODMD

• Project state data onto a subspace

$$\begin{bmatrix} \widetilde{A} & \widetilde{B} \\ \widetilde{C} & \widetilde{D} \end{bmatrix} = \begin{bmatrix} U_r^* X_1 \\ Y_0 \end{bmatrix} \begin{bmatrix} U_r^* X_0 \\ U_0 \end{bmatrix}$$

POD Modes
$$X_0 = U \Sigma V^T$$

Obtain a discrete reduced-order model of the system

$$\begin{bmatrix} \widetilde{x}_{k+1} \\ y_k \end{bmatrix} = \begin{bmatrix} \widetilde{A} & \widetilde{B} \\ \widetilde{C} & \widetilde{D} \end{bmatrix} \begin{bmatrix} \widetilde{x}_k \\ u_k \end{bmatrix}$$

- Blends direct subspace ID with POD/DMD
 - Handles inputs/outputs
 - Full state can be reconstructed from reduced state
 - Input forcing increases the signal to noise ratio
 - Parameter-varying version that maintains state consistency

Wind Turbine Array Setup

• Two turbine setup (NREL 5 MW turbines)

Mean Wind Speed at Hub Height 7 Crosswind distance (y/D) 6 6 5 5 **5D** m/s 4 4 3 З 2 14 16 18 20

Streamwise distance (x/D)

- D = turbine diameter (126 m)
- Neutral boundary layer
- 7 m/s with 6% turbulence

Wind Turbine Array Setup

• Two turbine setup (NREL 5 MW turbines)

Mean Wind Speed at Hub Height 7 Crosswind distance (y/D) 6 6 5 5 **5D** m/s 4 4 3 З 2 14 16 18 20 Streamwise distance (x/D)

- Control inputs: Blade pitch angle, generator torque
- Control outputs: Power at each turbine

Wind Turbine Array Setup

• Two turbine setup (NREL 5 MW turbines)

Mean Wind Speed at Hub Height 7 Crosswind distance (y/D) 6 6 5 5 **5D** m/s 4 4 3 З 2 14 16 18 20

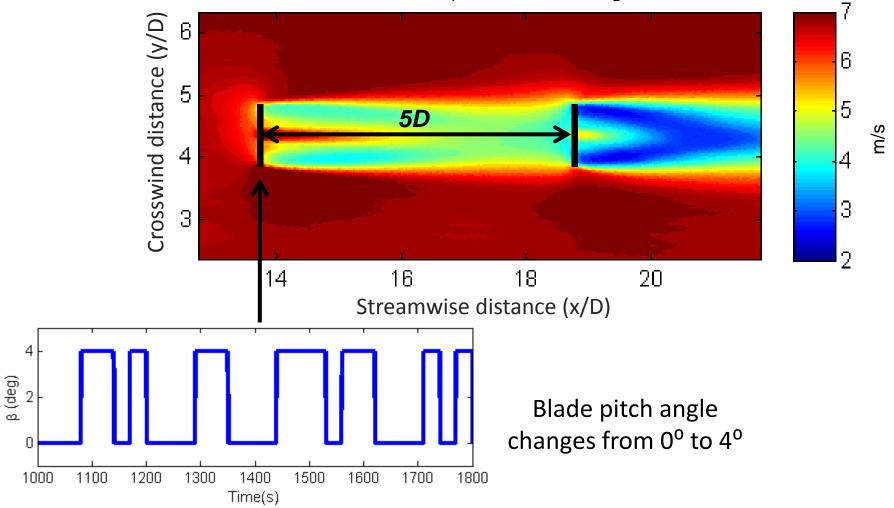
Streamwise distance (x/D)

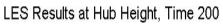
- Approximately 1.2 million grid points
 - 3 velocity components → 3.6 million states
 - Intractable for control design

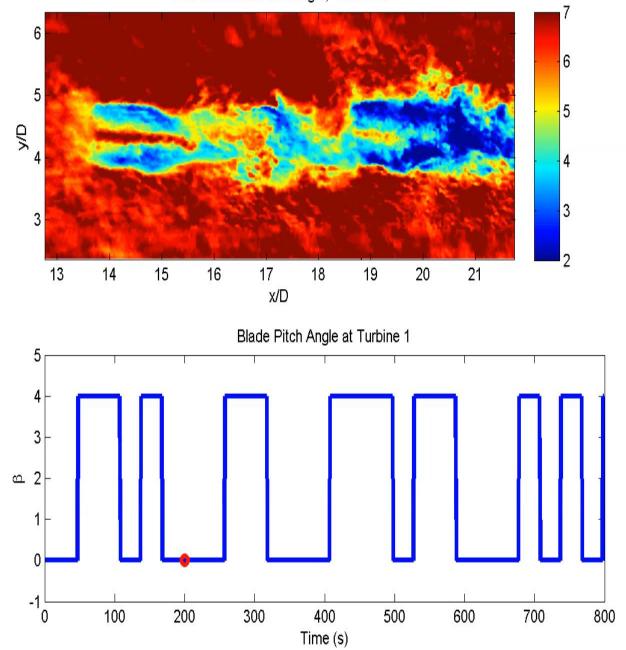
IODMD with SOWFA

• Forcing Input to first turbine

Mean Wind Speed at Hub Height

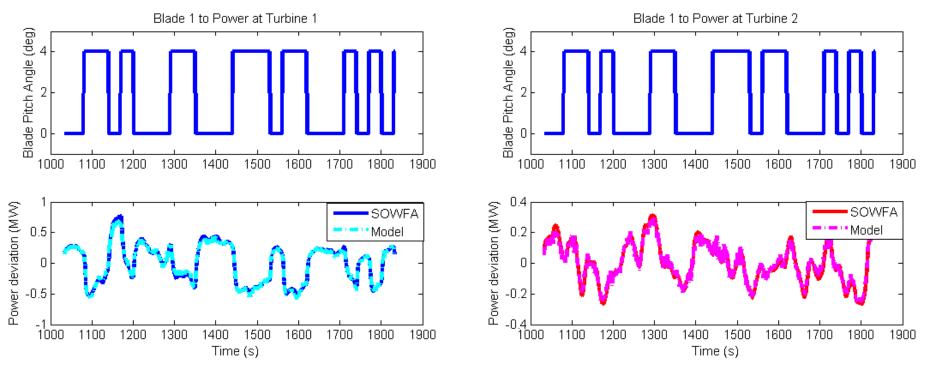






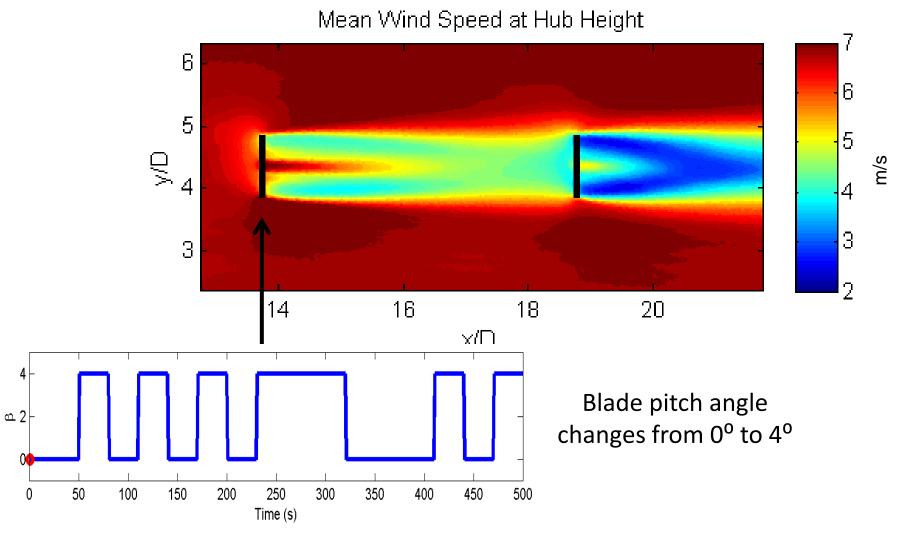
Reduced-order model

- Choose 20 modes to construct a reduced-order model
 - 3.6 million states projected onto 20 modes
 - Tall QR computations can be done on a laptop (hours)
 - Retain input-output behavior



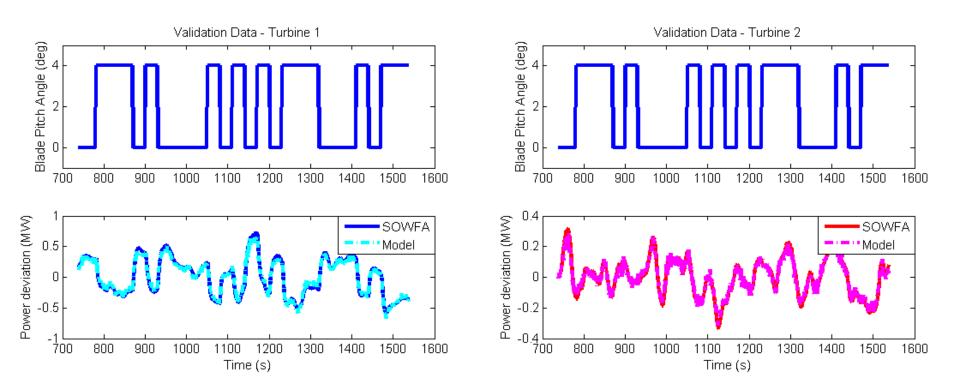
Model applied to Validation Data

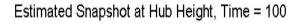
Validation case – same setup with a different input

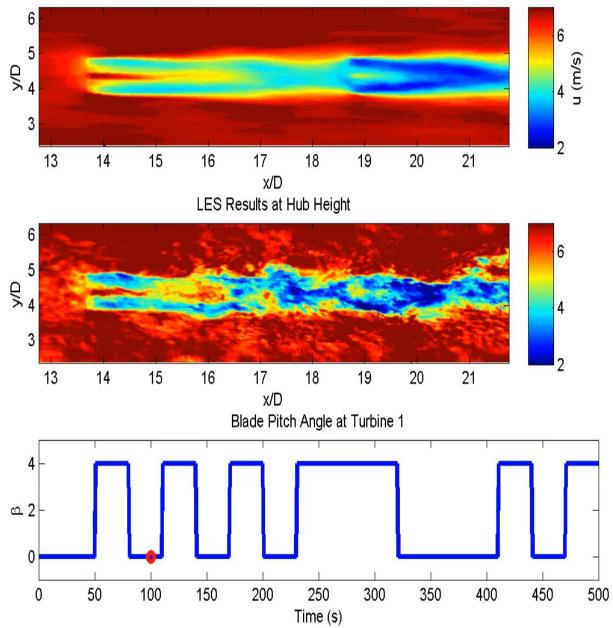


Model applied to Validation Data

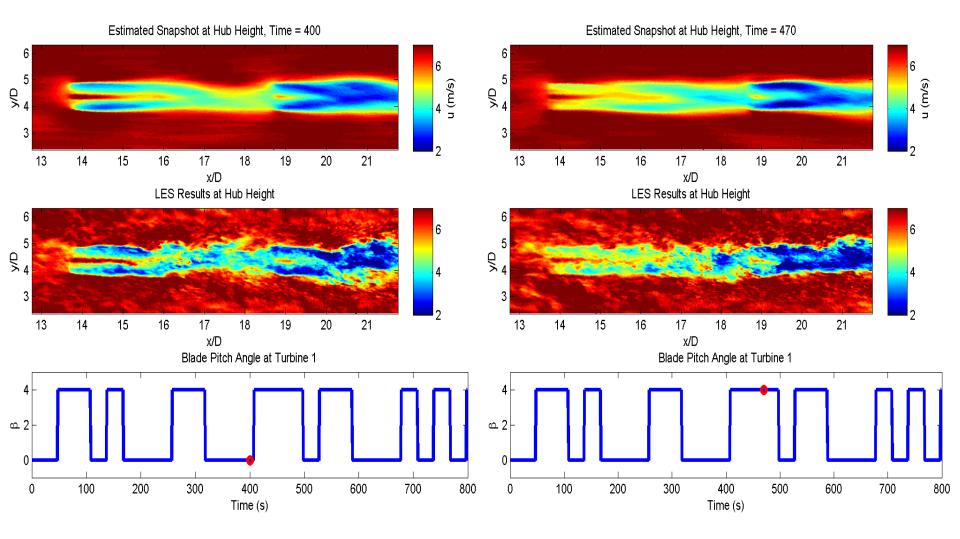
• Input-output behavior is retained on validation data







Compare Individual Snapshots



43

Acknowledgements

US National Science Foundation

- Grant No. NSF-CMMI-1254129: "CAREER: Probabilistic Tools for High Reliability Monitoring and Control of Wind Farms." Prog. Manager: J. Berg.
- Grant No. NSF/CNS-1329390: "CPS: Breakthrough: Collaborative Research: Managing Uncertainty in the Design of Safety-Critical Aviation Systems". Prog. Manager: D. Corman.

• NASA

- NRA NNX14AL36A: "Lightweight Adaptive Aeroelastic Wing for Enhanced Performance Across the Flight Envelope," Tech. Monitor: J. Bosworth.
- NRA NNX12AM55A: "Analytical Validation Tools for Safety Critical Systems Under Loss-of-Control Conditions." Tech. Monitor: C. Belcastro.
- SBIR contract #NNX12CA14C: "Adaptive Linear Parameter-Varying Control for Aeroservoelastic Suppression." Tech. Monitor. M. Brenner.

• Eolos Consortium and Saint Anthony Falls Laboratory

<u>http://www.eolos.umn.edu/</u> & <u>http://www.safl.umn.edu/</u>

Conclusions

Main Contributions in LPV Theory:

- Robustness analysis tools
- Model reduction methods

Applications to:

- Flexible and unmanned aircraft
- Wind energy
- Hard disk drives

http://www.aem.umn.edu/~SeilerControl/