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Abstract

We present convergence rate analysis for the approximate stochastic gradient method, where
individual gradient updates are corrupted by computation errors. We develop stochastic quadratic
constraints to formulate a small linear matrix inequality (LMI) whose feasible set characterizes
convergence properties of the approximate stochastic gradient. Based on this LMI condition, we
develop a sequential minimization approach to analyze the intricate trade-offs that couple step-
size selection, convergence rate, optimization accuracy, and robustness to gradient inaccuracy.
We also analytically solve this LMI condition and obtain theoretical formulas that quantify the
convergence properties of the approximate stochastic gradient under various assumptions on the
loss functions.

1 Introduction

Empirical risk minimization (ERM) is prevalent topic in machine learning research [7, 32]. Ridge
regression, ℓ2-regularized logistic regression, and support vector machines (SVM) can all be formu-
lated as the following standard ERM problem

min
x∈Rp

g(x) =
1

n

n
∑

i=1

fi(x), (1.1)

where g : Rp → R is the objective function. The stochastic gradient (SG) method [3, 5, 26] has
been widely used for ERM to exploit redundancy in the training data. The SG method applies the
update rule

xk+1 = xk − αkwk, (1.2)

where wk = ∇fik(xk) and the index ik is uniformly sampled from {1, 2, . . . , n} in an independent
and identically distributed (IID) manner. The convergence properties of the SG method are well
understood. SG with a diminishing stepsize converges sublinearly, while SG with a constant stepsize
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converges linearly to a ball around the optimal solution [13,21,23,24]. In the latter case, epochs can
be used to balance convergence rate and optimization accuracy. Some recently-developed stochastic
methods such as SAG [27,28], SAGA [10], Finito [11], SDCA [30], and SVRG [17] converge linearly
with low iteration cost when applied to (1.1), though SG is still popular because of its simple
iteration form and low memory footprint. SG is also commonly used as an initialization for other
algorithms [27,28].

In this paper, we present a general analysis for approximate SG. This is a version of SG where
the gradient updates ∇fik(xk) are corrupted by additive as well as multiplicative noise. In practice,
such errors can be introduced by sources such as: inaccurate numerical solvers, quantization, or
sparsification. The approximate SG update equation is given by

xk+1 = xk − αk(wk + ek). (1.3)

Here, wk = ∇fik(xk) is the individual gradient update and ek is an error term. We consider the
following error model, which unifies the error models in [2]:

‖ek‖2 ≤ δ2‖wk‖2 + c2, (1.4)

where δ ≥ 0 and c ≥ 0 bound the relative error and the absolute error in the oracle computation,
respectively. If δ = c = 0, then ek = 0 and we recover the standard SG setup. The model (1.4)
unifies the error models in [2] since:

1. If c = 0, then (1.4) reduces to a relative error model, i.e.

‖ek‖ ≤ δ‖wk‖ (1.5)

2. If δ = 0, then ek is a bounded absolute error, i.e.

‖ek‖ ≤ c (1.6)

We assume that both δ and c are known in advance. We make no assumptions about how ek is
generated, just that it satisfies (1.4). Thus, we will seek a worst-case bound that holds regardless
of whether ek is random, set in advance, or chosen adversarially.

Suppose the cost function g admits a unique minimizer x⋆. For standard SG (without compu-
tation error), wk is an unbiased estimator of ∇g(xk). Hence under many circumstances, one can
control the final optimization error ‖xk −x⋆‖ by decreasing the stepsize αk. Specifically, suppose g
is m-strongly convex. Under various assumptions on fi, one can prove the following typical bound
for standard SG with a constant stepsize α [4, 22,24]:

E‖xk − x⋆‖2 ≤ ρ2kE‖x0 − x⋆‖2 +H⋆ (1.7)

where ρ2 = 1− 2mα + O(α2) and H⋆ = O(α). By decreasing stepsize α, one can control the final
optimization errorH⋆ at the price of slowing down the convergence rate ρ. The convergence behavior
of the approximate SG method is different. Since the error term ek can be chosen adversarially, the
sum (wk+ek) may no longer be an unbiased estimator of ∇g(xk). The error term ek may introduce
a bias which cannot be overcome by decreasing stepsize α. Hence the final optimization error in
the approximate SG method heavily depends on the error model of ek. This paper quantifies the
convergence properties of the approximate SG iteration (1.3) with the error model (1.4).
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Main contribution. The main novelty of this paper is that we present a unified analysis approach
to simultaneously address the relative error and the absolute error in the gradient computation.
We formulate a linear matrix inequality (LMI) that characterizes the convergence properties of the
approximate SG method and couples the relationship between δ, c, αk and the assumptions on fi.
This convex program can be solved both numerically and analytically to obtain various convergence
bounds for the approximate SG method. Based on this LMI, we develop a sequential minimization
approach that can analyze the approximate SG method with an arbitrary time-varying stepsize. We
also obtain analytical rate bounds in the form of (1.7) for the approximate SG method with constant

stepsize. However, our bound requires ρ2 = 1 − m2−δ2M̃
m

α + O(α2) 1 and H⋆ = c2+2δ2G2

m2−δ2M̃
+ O(α)

where M̃ and G2 are some prescribed constants determined by the assumptions on fi. Based on
this result, there is no way to shrink H⋆ to 0. This is consistent with our intuition since the gradient
estimator as well as the final optimization result can be biased. We show that this “uncontrollable”
biased optimization error is c2+2δ2G2

m2−δ2M̃
. The resultant analytical rate bounds highlight the design

trade-offs for the approximate SG method.

The work in this paper complements the ongoing research on stochastic optimization methods,
which mainly focuses on the case where the oracle computation is exact. Notice there is typically
no need to optimize below the so-called estimation error for machine learning problems [3, 6] so
stepsize selection in approximate SG must also address the trade-offs between speed, accuracy, and
inexactness in the oracle computations. Our approach addresses such trade-offs and can be used
to provide guidelines for stepsize selection of approximate SG with inexact gradient computation.
It is also worth mentioning that the robustness of full gradient methods with respect to gradient
inexactness has been extensively studied [9, 12, 29]. The existing analysis for inexact full gradient
methods may be directly extended to handle the approximate SG with only bounded absolute error,
i.e. δ = 0 and c > 0. However, addressing a general error model that combines the absolute error
and the relative error is non-trivial. Our proposed approach complements the existing analysis
methods in [9, 12,29] by providing a unified treatment of the general error model (1.4).

The approach taken in this paper can be viewed as a stochastic generalization of the work
in [19,25] that analyzes deterministic optimization methods (gradient descent, Nesterov’s method,
ADMM, etc.) using a dynamical systems perspective and semidefinite programs. Our generalization
is non-trivial since the convergence properties of SG are significantly different from its deterministic
counterparts and new stochastic notions of quadratic constraints are required in the analysis. The
trade-offs involving ρ2 and H⋆ in (1.7) are unique to SG because H⋆ = 0 in the deterministic case.
In addition, the analysis for (deterministic) approximate gradient descent in [19] is numerical. In
this paper, we derive analytical formulas quantifying the convergence properties of the approximate
SG. Another related work [16] combines jump system theory with quadratic constraints to analyze
SAGA, Finito, and SDCA. The analysis in [16] also does not involve the trade-offs between the
convergence speed and the optimization error, and cannot be easily tailored to the SG method and
its approximate variant.

The rest of the paper is organized as follows. In Section 2, we develop a stochastic quadratic
constraint approach to formulate LMI testing conditions for convergence analysis of the approximate
SG method. The resultant LMIs are then solved sequentially, yielding recursive convergence bounds
for the approximate SG method. In Section 3, we simplify the analytical solutions of the resultant

1When δ = c = 0, this rate bound does not reduce to ρ2 = 1−2mα+O(α2). This is due to the inherent differences
between the analyses of the approximate SG and the standard SG. See Remark 4 for a detailed explanation.
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sequential LMIs and derive analytical rate bounds in the form of (1.7) for the approximate SG
method with a constant stepsize. Our results highlight various design trade-offs for the approximate
SG method. Finally, we show how existing results on standard SG (without gradient computation
error) can be recovered using our proposed LMI approach, and discuss how a time-varying stepsize
can potentially impact the convergence behaviors of the approximate SG method (Section 4).

1.1 Notation

The p × p identity matrix and the p × p zero matrix are denoted as Ip and 0p, respectively. The
subscript p is occasionally omitted when the dimensions are clear by the context. The Kronecker
product of two matrices A and B is denoted A⊗B. We will make use of the properties (A⊗B)T =
AT ⊗BT and (A⊗B)(C ⊗D) = (AC)⊗ (BD) when the matrices have the compatible dimensions.

Definition 1 (Smooth functions). A differentiable function f : Rp → R is L-smooth for some
L > 0 if the following inequality is satisfied:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ for all x, y ∈ R
p.

Definition 2 (Convex functions). Let F(m,L) for 0 ≤ m ≤ L ≤ ∞ denote the set of differentiable
functions f : Rp → R satisfying the following inequality:

[

x− y
∇f(x)−∇f(y)

]T [ −2mIp (1 + m
L
)Ip

(1 + m
L
)Ip − 2

L
Ip

] [

x− y
∇f(x)−∇f(y)

]

≥ 0 for all x, y ∈ R
p. (1.8)

Note that F(0,∞) is the set of all convex functions, F(0, L) is the set of all convex L-smooth
functions, F(m,∞) with m > 0 is the set of all m-strongly convex functions, and F(m,L) with
m > 0 is the set of all m-strongly convex and L-smooth functions. If f ∈ F(m,L) with m > 0,
then f has a unique global minimizer.

Definition 3. Let S(m,L) for 0 ≤ m ≤ L ≤ ∞ denote the set of differentiable functions g : Rp → R

having some global minimizer x⋆ ∈ R
p and satisfying the following inequality:

[

x− x⋆
∇g(x)

]T [ −2mIp (1 + m
L
)Ip

(1 + m
L
)Ip − 2

L
Ip

] [

x− x⋆
∇g(x)

]

≥ 0 for all x ∈ R
p. (1.9)

If g ∈ S(m,L) with m > 0, then x⋆ is also the unique stationary point of g. It is worth noting that
F(m,L) ⊂ S(m,L). In general, a function g ∈ S(m,L) may not be convex. If g ∈ S(m,∞), then
g may not be smooth. The condition (1.9) is similar to the notion of one-point convexity [1, 8, 31]
and star-convexity [18].

1.2 Assumptions

Referring to the problem setup (1.1), we will adopt the general assumption that g ∈ S(m,∞) with
m > 0. So in general, g may not be convex. We will analyze four different cases, characterized by
different assumptions on the individual fi:

I. Bounded shifted gradients: ‖∇fi(x)−mx‖ ≤ β for all x ∈ R
p.2

2This case is a variant of the common assumption 1

n

∑n

i=1
‖∇fi(x)‖

2 ≤ β. One can check that this case holds for
several ℓ2-regularized problems including SVM and logistic regression.
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II. fi is L-smooth.

III. fi ∈ F(0, L).

IV. fi ∈ F(m,L).

Assumption I is a natural assumption for SVM3 and logistic regression while Assumptions II, III,
or IV can be used for ridge regression, logistic regression, and smooth SVM. The m assumed in
cases I and IV is the same as the m used in the assumption on g ∈ S(m,∞).

2 Analysis framework

2.1 LMI conditions for the analysis of approximate SG

To analyze the convergence properties of approximate SG, we can formulate LMI testing conditions
using stochastic quadratic constraints. This is formalized by the next lemma.

Lemma 1. Consider the approximate SG iteration (1.3). Suppose a fixed x⋆ ∈ R
p and matrices

X(j) = (X(j))T ∈ R
3×3 and a scalar γ(j) ≥ 0 for j = 1, . . . , J are given such that the following

quadratic constraints hold for all k:

E











xk − x⋆
wk

ek





T

(X(j) ⊗ Ip)





xk − x⋆
wk

ek










≥ −γ(j), j = 1, . . . , J. (2.1)

If there exist non-negative scalars z
(j)
k ≥ 0 for j = 1, . . . , J and ρk ≥ 0 such that







1− ρ2k −αk −αk

−αk α2
k α2

k

−αk α2
k α2

k






+

J
∑

j=1

z
(j)
k X(j) ≤ 0, (2.2)

then the approximate SG iterates satisfy

E‖xk+1 − x⋆‖2 ≤ ρ2k E‖xk − x⋆‖2 +
J
∑

j=1

z
(j)
k γ(j). (2.3)

Proof. The proof relies on the following algebraic relation

‖xk+1 − x⋆‖2 − ρ2k‖xk − x⋆‖2

= ‖xk − x⋆ − αkwk − αkek‖2 − ρ2k‖xk − x⋆‖2

=





xk − x⋆
wk

ek





T






(1− ρ2k)Ip −αkIp −αkIp

−αkIp α2
kIp α2

kIp

−αkIp α2
kIp α2

kIp











xk − x⋆
wk

ek



 (2.4)

3The loss functions for SVM are non-smooth, and wk is actually updated using the subgradient information. For
simplicity, we abuse our notation and use ∇fi to denote the subgradient of fi for SVM problems.
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Since (2.2) holds, we have












1− ρ2k −αk −αk

−αk α2
k α2

k

−αk α2
k α2

k






+

J
∑

j=1

z
(j)
k X(j)






⊗ Ip ≤ 0

Left and right multiply the above inequality by
[

(xk − x⋆)
T wT

k eTk
]

and
[

(xk − x⋆)
T wT

k eTk
]T

respectively, take full expectation, and apply (2.4) to get

E‖xk+1 − x⋆‖2 − ρ2k E‖xk − x⋆‖2 +
J
∑

j=1

z
(j)
k E











xk − x⋆
wk

ek





T

(X(j) ⊗ Ip)





xk − x⋆
wk

ek










≤ 0

Applying the quadratic constraints (2.1) to the above inequality, we obtain (2.3), as required. �

When X(j) and αk are given, the matrix in (2.2) is linear in ρ2k and z
(j)
k , so (2.2) is a linear

matrix inequality (LMI) whose feasible set is convex and can be efficiently searched using interior
point methods. Since the goal is to obtain the best possible bound, it is desirable to make both ρ2k
and

∑J
j=1 z

(j)
k γ(j) small. These are competing objectives, and we can trade them off by minimizing

an objective of the form ρ2ktk +
∑J

j=1 z
(j)
k γ(j).

Remark 1. Notice (2.3) can be used to prove various types of convergence results. For example,
when a constant stepsize is used, i.e. αk = α for all k, a naive analysis can be performed by setting

tk = t for all k. Then, ρk = ρ and z
(j)
k = z(j) for all k and both (2.2) and (2.3) become independent

of k. We can rewrite (2.3) as

E‖xk+1 − x⋆‖2 ≤ ρ2 E‖xk − x⋆‖2 +
J
∑

j=1

z(j)γ(j). (2.5)

If ρ < 1, then we may recurse (2.5) to obtain the following convergence result:

E‖xk − x⋆‖2 ≤ ρ2k E‖x0 − x⋆‖2 +
(

k−1
∑

i=0

ρ2i

)(

J
∑

j=1

z(j)γ(j)

)

≤ ρ2k E‖x0 − x⋆‖2 +
∑J

j=1 z
(j)γ(j)

1− ρ2
. (2.6)

The inequality (2.6) is an error bound of the familiar form (1.7). Nevertheless, this bound may be
conservative even in the constant stepsize case. To minimize the right-hand side of (2.3), the best
choice for tk in the objective function is E‖xk − x⋆‖2, which changes with k. Consequently, setting
tk to be a constant may introduce conservatism even in the constant stepsize case. To overcome
this issue, we will later introduce a sequential minimization approach.

Lemma 1 presents a general connection between the quadratic constraints (2.1) and convergence
properties of approximate SG. The quadratic constraints (2.1) couple xk, wk, and ek. In the
following lemma, we will collect specific instances of such quadratic constraints. In particular, the
properties of g and fi imply a coupling between xk and wk, while the error model for ek implies a
coupling between wk and ek.
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Case Desired assumption on each fi Value of M Value of G

I (fi(x) − m
2 ‖x‖2) have bounded gra-

dients; ‖∇fi(x)−mx‖ ≤ β.
M =

[

−m2 m
m −1

]

G2 = β2 +m2 ‖x⋆‖2

II The fi are L-smooth, but are not
necessarily convex.

M =

[

2L2 0
0 −1

]

G2 = 1
n

∑n
i=1 ‖∇fi(x⋆)‖2

III The fi are convex and L-smooth;
fi ∈ F(0, L).

M =

[

0 L
L −1

]

G2 = 1
n

∑n
i=1 ‖∇fi(x⋆)‖2

IV The fi are m-strongly convex and
L-smooth; fi ∈ F(m,L)

M =

[

−2mL L+m
L+m −1

]

G2 = 1
n

∑n
i=1 ‖∇fi(x⋆)‖2

Table 1: Given that g ∈ S(m,∞), this table shows different possible assumptions about the
fi and their corresponding values of M and G such that (2.8) holds.

Lemma 2. Consider the approximate SG iteration (1.3) with g ∈ S(m,∞) for some m > 0, and
let x⋆ be the unique global minimizer of g.

1. The following inequality holds.

E

[

xk − x⋆
wk

]T([−2m 1
1 0

]

⊗ Ip

)[

xk − x⋆
wk

]

≥ 0. (2.7)

2. For each of the four conditions on fi and the corresponding M and G in Table 1, the following
inequality holds.

E

[

xk − x⋆
wk

]T

(M ⊗ Ip)

[

xk − x⋆
wk

]

≥ −2G2. (2.8)

3. If ‖ek‖2 ≤ δ2‖wk‖2 + c2 for every k, then

E

[

wk

ek

]T([

δ2 0
0 −1

]

⊗ Ip

)[

wk

ek

]

≥ −c2. (2.9)

Proof. See Appendix A. �

Statements 1 and 2 in Lemma 2 present quadratic constraints coupling (xk −x⋆) and wk, while
Statement 3 presents a quadratic constraint coupling wk and ek. All these quadratic constraints
can be trivially lifted into the general form (2.1). Specifically, we define

X(1) =





−2m 1 0
1 0 0
0 0 0



 ,

γ(1) = 0,

X(2) =





M11 M12 0
M21 M22 0
0 0 0



 ,

γ(2) = 2G2,

X(3) =





0 0 0
0 δ2 0
0 0 −1



 ,

γ(3) = c2.

(2.10)

Then j = 1, j = 2, and j = 3 correspond to (2.7), (2.8), and (2.9), respectively. Therefore, we have
quadratic constraints of the form (2.1) with (X(j), γ(j)) defined by (2.10). It is worth mentioning
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that our constraints (2.1) can be viewed as stochastic counterparts of the so-called biased local
quadratic constraints for deterministic dynamical systems [20]. Now we are ready to present a
small linear matrix inequality (LMI) whose feasible set characterizes the convergence properties of
the approximate SG (1.3) with the error model (1.4).

Theorem 1 (Main Theorem). Consider the approximate SG iteration (1.3) with g ∈ S(m,∞) for
some m > 0, and let x⋆ be the unique global minimizer of g. Given one of the four conditions on fi

and the corresponding M =
[

M11 M12

M21 M22

]

and G from Table 1, if the following holds for some choice

of nonnegative λk, νk, µk,ρk,








−ρ2k − 2νkm+ λkM11 νk + λkM12 −1 0
νk + λkM21 µkδ

2 + λkM22 αk 0
−1 αk −1 αk

0 0 αk −µk









≤ 0 (2.11)

where the inequality is taken in the semidefinite sense, then the approximate SG iterates satisfy

E‖xk+1 − x⋆‖2 ≤ ρ2k E‖xk − x⋆‖2 + (2λkG
2 + µkc

2) (2.12)

Proof. Let xk be generated by the approximate SG iteration (1.3) under the error model (1.4). By
Lemma 2, the quadratic constraints (2.1) hold with (X(j), γ(j)) defined by (2.10). Taking the Schur
complement of (2.11) with respect to the (3, 3) entry, (2.11) is equivalent to




1− ρ2k −αk −αk

−αk α2
k α2

k

−αk α2
k α2

k



+ νk





−2m 1 0
1 0 0
0 0 0



+ λk





M11 M12 0
M21 M22 0
0 0 0



+ µk





0 0 0
0 δ2 0
0 0 −1



 ≤ 0 (2.13)

which is exactly LMI (2.2) if we set z
(1)
k = νk, z

(2)
k = λk, and z

(3)
k = µk. Now the desired conclusion

follows as a consequence of Lemma 1. �

Applying Theorem 1. For a fixed δ, the matrix in (2.11) is linear in (ρ2k, νk, µk, λk, αk), so
potentially the LMI (2.11) can be used to adaptively select stepsizes. The feasibility of (2.11)
can be numerically checked using standard semidefinite program solvers. All simulations in this
paper were implemented using CVX, a package for specifying and solving convex programs [14,15].
One may also obtain analytical formulas for certain feasibility points of the LMI (2.11) due to its
relatively simple form. Our analytical bounds for approximate SG are based on the following result.

Corollary 1. Choose one of the four conditions on fi and the corresponding M =
[

M11 M12

M21 M22

]

and

G from Table 1. Also define M̃ = M11 + 2mM12. Consider the approximate SG iteration (1.3)
with g ∈ S(m,∞) for some m > 0, and let x⋆ be the unique global minimizer of g. Suppose the
stepsize satisfies 0 < M21αk ≤ 1. Then the approximate SG method (1.3) with the error model (1.4)
satisfies the bound (2.12) with the following nonnegative parameters

µk = α2
k(1 + ζ−1

k ) (2.14a)

λk = α2
k(1 + ζk)(1 + δ2ζ−1

k ) (2.14b)

ρ2k = (1 + ζk)(1 − 2mαk + M̃α2
k(1 + δ2ζ−1

k )) (2.14c)

where ζk is a parameter that satisfies ζk > 0 and ζk ≥ αkM21δ
2

1−αkM21
. Each choice of ζk yields a different

bound in (2.12).
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Proof. We further define

νk = αk(1 + ζk)(1− αkM21(1 + δ2ζ−1
k )) (2.15)

We will show that (2.14) and (2.15) are a feasible solution for (2.11). We begin with (2.11) and
take the Schur complement with respect to the (3, 3) entry of the matrix, leading to





1− ρ2k − 2νkm+ λkM11 νk + λkM12 − αk −αk

νk + λkM21 − αk µkδ
2 + λkM22 + α2

k α2
k

−αk α2
k α2

k − µk



 ≤ 0 (2.16)

Examining the (3, 3) entry, we deduce that µk > α2
k, for if we had equality instead, the rest of the

third row and column would be zero, forcing αk = 0. Substituting µk = α2
k(1+ζ−1

k ) for some ζk > 0
and taking the Schur complement with respect to the (3, 3) entry, we see (2.16) is equivalent to

[

1− ρ2k − 2νkm+ λkM11 + ζk νk + λkM12 − αk(1 + ζk)

νk + λkM21 − αk(1 + ζk) λkM22 + α2
k(1 + ζk)(1 + δ2ζ−1

k )

]

≤ 0 (2.17)

In (2.17), ζk > 0 is a parameter that we are free to choose, and each choice yields a different set
of feasible tuples (ρ2k, λk, µk, νk). One way to obtain a feasible tuple is to set the left side of (2.17)
equal to the zero matrix. This shows (2.11) is feasible with the following parameter choices.

µk = α2
k(1 + ζ−1

k ) (2.18a)

λk = −α2
k(1 + ζk)(1 + δ2ζ−1

k )M−1
22 (2.18b)

νk = αk(1 + ζk)− λkM21 (2.18c)

ρ2k = 1− 2νkm+ λkM11 + ζk (2.18d)

Since we always have M22 = −1 in Table 1, it is straightforward to verify that (2.18) is equivalent
to (2.14) and (2.15). Notice that we directly have µk ≥ 0 and λk ≥ 0 because ζk > 0. In order to
ensure ρ2k ≥ 0 and νk ≥ 0, we must have 1−2mαk+M̃α2

k(1+δ2ζ−1
k ) ≥ 0 and αkM21(1+δ2ζ−1

k ) ≤ 1,

respectively. The first inequality always holds because M̃ ≥ m2 and we have 1− 2mαk + M̃α2
k(1+

δ2ζ−1
k ) ≥ 1− 2mαk +m2α2

k ≥ (1 −mαk)
2 ≥ 0. Based on the conditions 0 ≤ αkM21 < 1 and ζk ≥

αkM21δ
2

1−αkM21
, we conclude that the second inequality always holds as well. Since we have constructed

a feasible solution to the LMI (2.11), the bound (2.12) follows from Theorem 1. �

Given αk, Corollary 1 provides a one-dimensional family of solutions to the LMI (2.11). These
solutions are given by (2.14) and (2.15) and are parameterized by the auxiliary variable ζk.

Remark 2. Depending on the case being considered, the condition αkM21 ≤ 1 imposes the following
strict upper bound on αk:

Case I II III IV

M21 m 0 L L+m

M̃ = M11 + 2mM12 m2 2L2 2mL 2m2

αk bound 1
m

∞ 1
L

1
L+m

Corollary 1 does not require ρk ≤ 1. Hence it actually does not impose any upper bound on αk

in Case II. Later we will impose refined upper bounds on αk such that the bound (2.12) can be
transformed into a useful bound in the form of (1.7).
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2.2 Sequential minimization approach for approximate SG

We will quantify the convergence behaviors of the approximate SG method by providing upper
bounds for E‖xk − x⋆‖2. To do so, we will recursively make use of the bound (2.12). Suppose δ, c,
and G are constant. Define Tk ⊆ R

4
+ to be the set of tuples (ρk, λk, µk, νk) that are feasible points

for the LMI (2.11). Also define the real number sequence {Uk}k≥0 via the recursion:

U0 ≥ E ‖x0 − x⋆‖2 and Uk+1 = ρ2kUk + 2λkG
2 + µkc

2 (2.19)

where (ρk, λk, µk, νk) ∈ Tk. By induction, we can show that Uk provides an upper bound for the
error at timestep k. Indeed, if E ‖xk − x⋆‖2 ≤ Uk, then by Theorem 1,

E ‖xk+1 − x⋆‖2 ≤ ρ2k E‖xk − x⋆‖2 + 2λkG
2 + µkc

2

≤ ρ2kUk + 2λkG
2 + µkc

2

= Uk+1

A key issue in computing a useful upper bound Uk is which tuple (ρk, λk, µk, νk) ∈ Tk to choose.
If the stepsize is constant (αk = α), then Tk is independent of k. Thus we may choose the same
particular solution (ρ, λ, µ, ν) for each k. Then, based on (2.6), if ρ < 1 we can obtain a bound of
the following form for the approximate SG method:

E‖xk − x⋆‖2 ≤ ρ2kU0 +
2λG2 + µc2

1− ρ2
. (2.20)

As discussed in Remark 1, the above bound may be unnecessarily conservative. Because of the
recursive definition (2.19), the bound Uk depends solely on U0 and the parameters {ρt, λt, µt}k−1

t=0 .
So we can seek the smallest possible upper bound by solving the optimization problem:

Uopt
k+1 = minimize

{ρt,λt,µt,νt}kt=0

Uk+1

subject to Ut+1 = ρ2tUt + 2λtG
2 + µtc

2 t = 0, . . . , k

(ρt, λt, µt, νt) ∈ Tt t = 0, . . . , k

This optimization problem is similar to a dynamic programming and a recursive solution reminiscent
of the Bellman equation can be derived for the optimal bound Uk.

Uopt
k+1 = minimize

(ρ,λ,µ,ν)∈Tk



























minimize
{ρt,λt,µt,νt}k−1

t=0

Uk+1

subject to Ut+1 = ρ2tUt + 2λtG
2 + µtc

2 t = 0, . . . , k

(ρt, λt, µt, νt) ∈ Tt t = 0, . . . , k − 1

(ρ, λ, µ, ν) = (ρk, λk, µk, νk)



























= minimize
(ρ,λ,µ,ν)∈Tk















minimize
{ρt,λt,µt,νt}k−1

t=0

ρ2Uk + 2λG2 + µc2

subject to Ut+1 = ρ2tUt + 2λtG
2 + µtc

2 t = 0, . . . , k − 1

(ρt, λt, µt, νt) ∈ Tt t = 0, . . . , k − 1















= minimize
(ρ,λ,µ,ν)∈Tk

ρ2Uopt
k + 2λG2 + µc2 (2.21)
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Where the final equality in (2.21) relies on the fact that ρ2 ≥ 0. Thus, a greedy approach where
Ut+1 is optimized in terms of Ut recursively for t = 0, . . . , k − 1 yields a bound Uk that is in fact
globally optimal over all possible choices of parameters {ρt, λt, µt, νt}kt=0.

Obtaining an explicit analytical formula for Uopt
k is not straightforward, since it involves solving

a sequence of semidefinite programs. However, we can make use of Corollary 1 to further upper-
bound Uopt

k . This works because Corollary 1 gives an analytical parameterization of a subset of Tk.
Denote this new upper bound by Ûk. By Corollary 1, we have:

Ûk+1 = minimize
ζ>0

ρ2Ûk + 2λG2 + µc2

subject to µ = α2
k(1 + ζ−1)

λ = α2
k(1 + ζ)(1 + δ2ζ−1)

ρ2 = (1 + ζ)(1− 2mαk + M̃α2
k(1 + δ2ζ−1))

ζ ≥ αkM21δ
2

1−αkM21

(2.22)

Note that Corollary 1 also places bounds on αk, which we assume are being satisfied here. The
optimization problem (2.22) is a single-variable smooth constrained problem. It is straightforward
to verify that µ, λ, and ρ2 are convex functions of ζ when ζ > 0. Moreover, the inequality constraint
on ζ is linear, so we deduce that (2.22) is a convex optimization problem.

Thus, we have reduced the problem of recursively solving semidefinite programs (finding Uopt
k )

to recursively solving single-variable convex optimization problems (finding Ûk). Ultimately, we
obtain an upper bound on the expected error of approximate SG that is easy to compute:

E ‖xk − x⋆‖2 ≤ Uopt
k ≤ Ûk (2.23)

Preliminary numerical simulations suggest that Ûk seems to be equal to Uopt
k under the four sets

of assumptions in this paper. However, we are unable to show Ûk = Uopt
k analytically. In the

subsequent sections, we will solve the recursion for Ûk analytically and thereby derive bounds on
the performance of approximate SG.

2.3 Analytical recursive bounds for approximate SG

We showed in the previous section that E‖xk − x⋆‖2 ≤ Ûk for the approximate SG method, where
Ûk is the solution to (2.22). We now derive an analytical recursive formula for Ûk. Let us simplify
the optimization problem (2.22). Eliminating ρ, λ, µ, we obtain

Ûk+1 = minimize
ζ>0

ak(1 + ζ−1) + bk(1 + ζ)

subject to ak = α2
k

(

c2 + 2δ2G2 + M̃δ2Ûk

)

bk =
(

1− 2mαk + M̃α2
k

)

Ûk + 2α2
kG

2

ζ ≥ αkM21δ
2

1−αkM21

(2.24)

The assumptions on αk from Corollary 1 also imply that ak ≥ 0 and bk ≥ 0. We may now solve
this problem explicitly and we summarize the solution to (2.24) in the following lemma.
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Lemma 3. Consider the approximate SG iteration (1.3) with g ∈ S(m,∞) for some m > 0, and let
x⋆ be the unique global minimizer of g. Given one of the four conditions on fi and the corresponding

M =
[

M11 M12

M21 M22

]

and G from Table 1, further assume αk is strictly positive and satisfies M21αk ≤ 1.

Then the error bound Ûk defined in (2.24) can be computed recursively as follows.

Ûk+1 =







(√
ak +

√
bk
)2

√

ak
bk

≥ αkM21δ
2

1−αkM21

ak + bk + ak
1−αkM21

αkM21δ2
+ bk

αkM21δ
2

1−αkM21
otherwise

(2.25)

where ak and bk are defined in (2.24). We may initialize the recursion at any Û0 ≥ E ‖x0 − x⋆‖2.
Proof. In Case II, we have M21 = 0 so the constraint on ζ is vacuously true. Therefore, the only
constraint on ζ in (2.24) ζ > 0 and we can solve the problem by setting the derivative of the

objective function with respect to ζ equal to zero. The result is ζk =
√

ak
bk
. In Cases I, III, and

IV, we have M21 > 0. By convexity, the optimal ζk is either the unconstrained optimum (if it is
feasible) or the boundary point (otherwise). Hence (2.25) holds as desired. Note that if δ = c = 0,
then ak = 0. This corresponds to the pathological case where the objective reduces to bk(1 + ζ).
Here, the optimum is achieved as ζ → 0, which corresponds to µ → ∞ in (2.22). This does not
cause a problem because c = 0 so µ does not appear in the objective function. The recursion (2.25)
then simplifies to Ûk+1 = bk. �

Remark 3. If M21 = 0 (Case II in Table 1) or if δ = 0 (no multiplicative noise), the optimization
problem (2.24) reduces to an unconstrained optimization problem whose solution is

Ûk+1 =
(√

ak +
√

bk

)2

=

(

αk

√

c2 + 2δ2G2 + M̃δ2Ûk +

√

(

1− 2mαk + M̃α2
k

)

Ûk + 2G2α2
k

)2

(2.26)

3 Analytical rate bounds for the constant stepsize case

In this section, we present non-recursive error bounds for approximate SG with constant stepsize.
Specifically, we assume αk = α for all k and we either apply Lemma 3 or carefully choose a constant
ζ in order to obtain a tractable bound for Ûk. The bounds derived in this section highlight the
trade-offs inherent in the design of the approximate SG method.

3.1 Linearization of the nonlinear recursion

This first result applies to the case where δ = 0 or M21 = 0 (Case II) and leverages Remark 3 to
obtain a bound for approximate SG.

Corollary 2. Consider the approximate SG iteration (1.3) with g ∈ S(m,∞) for some m > 0,
and let x⋆ be the unique global minimizer of g. Given one of the four conditions on fi and the

corresponding M =
[

M11 M12

M21 M22

]

and G from Table 1, further assume that αk = α > 0 (constant

stepsize), M21α ≤ 1, and either δ = 0 or M21 = 0. Define p, q, r, s ≥ 0 as follows.

p = M̃δ2α2, q = (c2 + 2G2δ2)α2, r = 1− 2mα+ M̃α2, s = 2G2α2. (3.1)
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Where M̃ = M11 + 2mM12. If
√
p+

√
r < 1 then we have the following iterate error bound:

E ‖xk − x⋆‖2 ≤
(

p
√

Û⋆√
pÛ⋆+q

+ r
√

Û⋆√
rÛ⋆+s

)k

E ‖x0 − x⋆‖2 + Û⋆, (3.2)

where the fixed point Û⋆ is given by

Û⋆ =
(p − r)(s− q) + q + s+ 2

√

ps2 + q2r + qs(1− p− r)

(p − r)2 − 2(p + r) + 1
. (3.3)

Proof. By Remark 3, we have the nonlinear recursion (2.26) for Ûk. This recursion is of the form

Ûk+1 =

(
√

pÛk + q +

√

rÛk + s

)2

, (3.4)

where p, q, r, s > 0 are given in (3.1). It is straightforward to verify that the right-hand side of (3.4)
is a monotonically increasing concave function of Ûk and its asymptote is a line of slope (

√
p+

√
r)2.

Thus, (3.4) will have a unique fixed point when
√
p +

√
r < 1. We will return to this condition

shortly. When a fixed point exists, it is found by setting Ûk = Ûk+1 = Û⋆ in (3.4) and yields U⋆

given by (3.3). The concavity property further guarantees that any first-order Taylor expansion of
the right-hand side of (3.4) yields an upper bound to Ûk+1. Expanding about Û⋆, we obtain:

Ûk+1 − Û⋆ ≤
(

p
√

Û⋆√
pÛ⋆+q

+ r
√

Û⋆√
rÛ⋆+s

)

(

Ûk − Û⋆

)

(3.5)

which leads to the following non-recursive bound for the approximate SG method.

E ‖xk − x⋆‖2 ≤ Ûk ≤
(

p
√

Û⋆√
pÛ⋆+q

+ r
√

Û⋆√
rÛ⋆+s

)k

(Û0 − Û⋆) + Û⋆

≤
(

p
√

Û⋆√
pÛ⋆+q

+ r
√

Û⋆√
rÛ⋆+s

)k

Û0 + Û⋆ (3.6)

Since this bound holds for any Û0 ≥ E ‖x0 − x⋆‖2, it holds in particular when we have equality,
and thus we obtain (3.2) as required. �

The condition that
√
p +

√
r < 1 from Corollary 2, which is necessary for the existence of a

fixed-point of (3.4), is equivalent to an upper bound on α. After manipulation, it amounts to:

α <
2(m− δ

√

M̃)

M̃(1− δ2)
(3.7)

Therefore, we can ensure that
√
p+

√
r < 1 when δ < m/

√

M̃ , and α is sufficiently small. If δ = 0,
the stepsize bound (3.7) is only relevant in Case II. For Cases I, III, and IV, the bound M21α ≤ 1
imposes a stronger restriction on α (see Remark 2). If δ 6= 0, we only consider Case II (M21 = 0)

and the resultant bound for α is m−
√
2Lδ

L2(1−δ2)
. The condition δ < m/

√

M̃ becomes δ < m/(
√
2L).
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To see the trade-offs in the design of the approximate SG method, we can take Taylor expansions
of several key quantities about α = 0 to see how changes in α affect convergence:

Û⋆ ≈
c2 + 2δ2G2

m2 − δ2M̃
+

m
(

c2(M̃ −m2) + 2
(

1− δ2
)

G2m2
)

(m2 − δ2M̃)2
α+O(α2) (3.8a)

(

p
√

Û⋆√
pÛ⋆+q

+ r
√

Û⋆√
rÛ⋆+s

)

≈ 1− (m2 − δ2M̃)

m
α+O(α2) (3.8b)

We conclude that when δ < m/
√

M̃ , the approximate SG method converges linearly to a ball
whose radius is roughly Û⋆ ≥ 0. One can decrease the stepsize α to control the final error Û⋆.
However, due to the errors in the individual gradient updates, one cannot guarantee the final error
E ‖xk − x⋆‖2 smaller than c2+2δ2G2

m2−δ2M̃
. This is consistent with our intuition; one could inject noise in

an adversarial manner to shift the optimum point away from x⋆ so there is no way to guarantee
that {xk} converges to x⋆ just by decreasing the stepsize α.

Remark 4. One can check that the left side of (3.8b) is not differentiable at (c, α) = (0, 0).
Consequently, taking a Taylor expansion with respect to α and then setting c = 0 does not yield
the same result as first setting c = 0 and then taking a Taylor expansion with respect to α of the
resulting expression. This explains why (3.8b) does not reduce to ρ2 = 1 − 2mα + O(α2) when
c = δ = 0. It is worth noting that the higher order term O(α2) in (3.8b) depends on c. Indeed,
it goes to infinity as c → 0. Therefore, the rate formula (3.8b) only describes the stepsize design
trade-off for a fixed positive c and sufficiently small α.

The non-recursive bound (3.2) relied on a linearization of the recursive formula (3.4), which
involved a time-varying ζk. It is emphasized that we assumed that either δ = 0 or M21 = 0. In the
other cases, namely δ > 0 andM21 > 0 (Case I, III, or IV), we cannot ignore the additional condition

ζk ≥ αM21δ
2

1−αM21
and we must use the hybrid recursive formula (2.25). This hybrid formulation is more

problematic to solve explicitly. However, if we are mostly interested in the regime where α is small,
we can obtain non-recursive bounds similar to (3.2) by carefully choosing a constant ζ for all k.
We will develop these bounds in the next section.

3.2 Non-recursive bounds via a fixed ζ parameter

When α is small, we can choose ζ = mα and we obtain the following result.

Corollary 3. Consider the approximate SG iteration (1.3) with g ∈ S(m,∞) for some m > 0,
and let x⋆ be the unique global minimizer of g. Given one of the four conditions on fi and the

corresponding M =
[

M11 M12

M21 M22

]

and G from Table 1, further assume that αk = α > 0 (constant

stepsize), and M21

(

α+ δ2

m

)

≤ 1.4 Finally, assume that

0 < ρ̃2 < 1 where ρ̃2 = 1− m2−M̃δ2

m
α+ (M̃ (1 + δ2)− 2m2)α2 + M̃mα3. (3.9)

4When M21 = 0, this condition always holds. When δ = 0, this condition is equivalent to M21α ≤ 1. Hence the

above corollary can be directly applied if M21 = 0 or δ = 0. If M21 > 0 and δ > 0, the condition M21

(

α+ δ2

m

)

≤ 1

can be rewritten as a condition on α in a case-by-case manner.
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Note (3.9) holds for α sufficiently small. Then, we have the following error bound for the iterates

E‖xk − x⋆‖2 ≤ ρ̃2k E ‖x0 − x⋆‖2 + Ũ⋆ (3.10)

where Ũ⋆ is given by

Ũ⋆ =
2δ2G2 + c2 +m(c2 + 2G2(1 + δ2))α+ 2m2G2α2

(m2 − M̃δ2)−m(M̃(1 + δ2)− 2m2)α− M̃m2α2
(3.11)

Proof. Set ζ = mα in the optimization problem (2.24). This defines a new recursion for a quan-
tity Ũk that upper-bounds Ûk since we are choosing a possibly sub-optimal ζ. Our assumption

M21

(

α+ δ2

m

)

≤ 1 guarantees that ζ ≥ αM21δ
2

1−αM21
when ζ = mα. Hence our choice of ζ is a feasible

choice for (2.24). This leads to:

Ũk+1 = ak(1 +
1

mα
) + bk(1 +mα)

= ρ̃2Ũk +
(

α2(c2 + 2δ2G2)(1 + 1
mα

) + 2α2G2(1 +mα)
)

This is a simple linear recursion that we can solve explicitly in a similar way to the recursion in
Remark 1. After simplifications, we obtain (3.10) and (3.11). �

The linear rate of convergence in (3.10) is of the same order as the one obtained in Corollary 2
and (3.8b). Namely,

ρ̃2 ≈ 1− (m2 − M̃δ2)

m
α+O(α2) (3.12)

Likewise, the limiting error Ũ⋆ from (3.11) can be expanded as a series in α and we obtain a result
that matches the small-α limit of Û⋆ from (3.8a) up to linear terms. Namely,

Ũ⋆ ≈
c2 + 2δ2G2

m2 − M̃δ2
+

m
(

c2(M̃ −m2) + 2
(

1− δ2
)

G2m2
)

(m2 − δ2M̃)2
α+O(α2) (3.13)

Therefore, (3.10) can give a reasonable non-recursive bound for the approximate SG method with
small α even for the cases where M21 > 0 and δ > 0.

Now we discuss the acceptable relative noise level under various assumptions on fi. Based on
(3.12), we need m2 − M̃δ2 > 0 to ensure ρ̃2 < 1 for sufficiently small α. The other constraint

M21

(

α+ δ2

m

)

≤ 1 enforces M21δ
2 < m. Depending on which case we are dealing with, the condi-

tions δ < m/
√

M̃ and M21δ
2 < m impose an upper bound on admissible values of δ. See Table 2.

Case I II III IV

M̃ = M11 + 2mM12 m2 2L2 2mL 2m2

δ bound 1 m√
2L

√

m
2L

√

m
L+m

Table 2: Upper bound on δ for the four different cases described in Table 1.

We can clearly see that for ℓ2-regularized logistic regression and support vector machines which
admit the assumption in Case I, the approximate SG method is robust to the relative noise. Given
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the condition δ < 1, the iterates of the approximate SG method will stay in some ball, although
the size of the ball could be quite large. Comparing the bound for Cases II, III, and IV, we can see
the allowable relative noise level increases as the assumptions on fi become stronger.

As previously mentioned, the bound of Corollary 3 requires a sufficiently small α. Specifically,

the stepsize α must satisfy M21

(

α+ δ2

m

)

≤ 1 and (3.9), which can be solved to obtain an explicit

upper bound on α. Details are omitted.

4 Further discussion

4.1 Connections to existing SG results

In this section, we relate the results of Theorem 1 and its corollaries to existing results on standard
SG. We also discuss the effect of replacing our error model (1.4) with IID noise.

If there is no noise at all, c = δ = 0 and none of the approximations of Section 3 are required
to obtain an analytical bound on the iteration error. Returning to Theorem 1 and Corollary 1, the
objective to be minimized no longer depends on µk. Examining (2.14), we conclude that optimality
occurs as ζ → 0 (µ → ∞). This leads directly to the bound

E ‖xk+1 − x⋆‖2 ≤ (1− 2mαk + M̃α2
k)E ‖xk − x⋆‖2 + 2G2α2

k, (4.1)

where αk is constrained such thatM21αk ≤ 1. The bound (4.1) directly leads to existing convergence
results for standard SG. For example, we can apply the argument in Remark 1 to obtain the
following bound for standard SG with a constant stepsize αk = α

E‖xk − x⋆‖2 ≤
(

1− 2mα+ M̃α2
)k

E‖x0 − x⋆‖2 +
2G2α

2m− M̃α
, (4.2)

where α is further required to satisfy 1− 2mα+ M̃α2 ≤ 1. For Cases I, III, and IV, the condition
M21α ≤ 1 dominates, and the valid values of α are documented in Remark 2. For Case II, the
condition α ≤ 2m/M̃ dominates and the upper bound on α is m/L2.

The bound recovers existing results that describe the design trade-off of standard (noiseless)
SG under a variety of conditions [21,23,24]. Case I is a slight variant of the well-known result [23,
Prop. 3.4]. The extra factor of 2 in the rate and errors terms are due to the fact that [23, Prop. 3.4]
poses slightly different conditions on g and fi. Cases II and III are also well-known [13,21,24].

Remark 5. If the error term ek is IID noise with zero mean and bounded variance, then a slight
modification to our analysis yields the bound

E ‖xk+1 − x⋆‖2 ≤ (1− 2mαk + M̃α2
k)E ‖xk − x⋆‖2 + (2G2 + σ2)α2

k, (4.3)

where σ2 ≥ E ‖ek‖2. To see this, first notice that ek is independent from wk and xk. We can modify
the proof of Lemma 2 to show

E

[

xk − x⋆
wk + ek

]T([−2m 1
1 0

]

⊗ Ip

)[

xk − x⋆
wk + ek

]

≥ 0,

E

[

xk − x⋆
wk + ek

]T

(M ⊗ Ip)

[

xk − x⋆
wk + ek

]

≥ −2G2 − σ2.

(4.4)
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Next, we notice that if there exist non-negative ρ2k, νk, and λk such that

[

1− ρ2k −αk

−αk α2
k

]

+ νk

[

−2m 1
1 0

]

+ λk

[

M11 M12

M21 M22

]

≤ 0, (4.5)

then (1.3) with an IID error ek satisfies E ‖xk+1 − x⋆‖2 ≤ ρ2k E ‖xk − x⋆‖2 + λk(2G
2 + σ2). This

can be proved using the argument in Lemma 1. Specifically, we can left and right multiply (4.5) by
[

(xk − x⋆)
T wT

k + eTk
]

and
[

(xk − x⋆)
T wT

k + eTk
]T

, take full expectation, and apply (4.4) to finish

the argument. Finally, we can choose λk = α2
k, νk = αk −M21α

2
k, and ρ2k = 1 − 2mαk + M̃α2

k to
show (4.3). We can recurse (4.3) to obtain a bound in the form of (1.7) with ρ2 = 1−2mα+O(α2)
and H⋆ = O(α). Therefore, the zero-mean noise does not introduce bias into the gradient estimator,
and the iterates behave similarly to standard SG.

4.2 Adaptive stepsize via sequential minimization

In Section 3, we fixed αk = α and derived bounds on the worst-case performance of approximate
SG. In this section, we discuss the potential impacts of adopting time-varying stepsizes. First, we
refine the bounds by optimizing over αk as well. What makes this approach tractable is that in
Theorem 1, the LMI (2.11) is also linear in αk. Therefore, we can easily include αk as one of our
optimization variables.

In fact, the development of Section 2.2 carries through if we augment the set Tk to be the set
of tuples (ρk, λk, µk, νk, αk) that makes the LMI (2.11) feasible. We then obtain a Bellman-like
equation analogous to (2.21) that holds when we also optimize over α at every step. The net result
is an optimization problem similar to (2.24) but that now includes α as a variable:

Vk+1 = minimize
α>0, ζ>0

ak(1 + ζ−1) + bk(1 + ζ)

subject to ak = α2
(

c2 + 2δ2G2 + M̃δ2Vk

)

bk =
(

1− 2mα+ M̃α2
)

Vk + 2α2G2

αM21(1 + δ2ζ−1) ≤ 1

(4.6)

As we did in Section 2.2, we can show that E ‖xk − x⋆‖2 ≤ Vk for any iterates of the approximate
SG method. We would like to learn two things from (4.6): how the optimal α changes as a function
of k in order to produce the fastest possible convergence rate, and whether this optimized rate is
different from the rate we obtained when assuming α was constant in Section 3.

To simplify the analysis, we will restrict our attention to Case II, where M21 = 0 and M̃ = 2L2.
In this case, the inequality constraint in (4.6) is satisfied for any α > 0 and ζ > 0, so it may be
removed. Observe that the objective in (4.6) is a quadratic function of α.

ak(1 + ζ−1) + bk(1 + ζ)

= (1 + ζ)Vk − 2m(1 + ζ)Vkα+ (1 + ζ−1)(c2 + 2G2δ2 + M̃Vkδ
2 + 2G2ζ + M̃Vkζ)α

2 (4.7)

This quadratic is always positive definite, and the optimal α is given by:

αopt
k =

mVkζ

(c2 + 2δ2G2 + δ2M̃Vk) + (2G2 + M̃Vk)ζ
(4.8)
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Substituting (4.8) into (4.6) to eliminate α, we obtain the optimization problem:

Vk+1 = minimize
ζ>0

(ζ + 1)Vk

(

c2 + (2G2 + M̃Vk)(δ
2 + ζ)−m2Vkζ

)

c2 +
(

2G2 + M̃Vk

)

(δ2 + ζ)
(4.9)

By taking the second derivative with respect to ζ of the objective function in (4.9), one can check
that we will have convexity as long as (2G2 + M̃Vk)(1 − δ2) ≥ c2. In other words, as long as the
noise parameters c and δ are not too large. If this bound holds for Vk = 0, then it will hold for any
Vk > 0. So it suffices to ensure that 2G2(1− δ2) ≥ c2.

Upon careful analysis of the objective function, we note that when ζ = 0, we obtain Vk+1 = Vk.
In order to obtain a decrease for some ζ > 0, we require a negative derivative at ζ = 0. This
amounts to the condition: c2 + (2G2 + M̃Vk)δ

2 < m2Vk. As Vk gets smaller, this condition will
eventually be violated. Specifically, the condition holds whenever m2 − M̃δ2 > 0 and

Vk >
c2 + 2δ2G2

m2 − M̃δ2

Note that this is the same limit as was observed in the constant-α limits Û⋆ and Ũ⋆ when α → 0
in (3.8a) and (3.13), respectively. This is to be expected; choosing a time-varying stepsize cannot
outperform a constant stepsize in terms of final optimization error. Notice that we have not ruled
out the possibility that Vk suddenly jumps below c2+2δ2G2

m2−M̃δ2
at some k and then stays unchanged after

that. We will make a formal argument to rule out this possibility in the next lemma. Moreover,
the question remains as to whether this minimal error can be achieved faster by varying αk in an
optimal manner. We describe the final nonlinear recursion in the next lemma.

Lemma 4. Consider the approximate SG iteration (1.3) with g ∈ S(m,∞) for some m > 0, and
let x⋆ be the unique global minimizer of g. Suppose Case II holds and (M,G) are the associated

values from Table 1. Further assume 2G2(1− δ2) ≥ c2 and V0 >
c2+2δ2G2

m2−M̃δ2
= V⋆.

1. The sequential optimization problem (4.9) can be solved using the following nonlinear recursion

Vk+1 =
Vk

(2G2 + M̃Vk)2

(

√

(2G2 + (M̃ −m2)Vk)
(

(2G2 + M̃Vk)(1− δ2)− c2
)

+

√

m2Vk(c2 + δ2(2G2 + M̃Vk))

)2

(4.10)

and Vk satisfies Vk > V⋆ for all k.

2. Suppose Û0 = V0 ≥ E ‖x0 − x⋆‖2 (all recurrences are initialized the same way), then {Vk}k≥0

provides an upper bound to the iterate error satisfying E ‖xk − x⋆‖2 ≤ Vk ≤ Ûk.

3. The sequence {Vk}k≥0 converges to V⋆:

lim
k→∞

Vk = V⋆ =
c2 + 2δ2G2

m2 − M̃δ2

Proof. See Appendix B. �
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To learn more about the rate of convergence, we can once again use a Taylor series approxima-
tion. Specializing to Case II (where M̃ > 0), we can consider two cases. When Vk is large, perform
a Taylor expansion of (4.10) about Vk = ∞ and obtain:

Vk+1 ≈
(

mδ+
√

(M̃−m2)(1−δ2)

M̃

)

Vk +O(1)

In other words, we obtain linear convergence. When Vk is close to V⋆, the behavior changes. To
see this, perform a Taylor expansion of (4.10) about Vk = V⋆ and obtain:

Vk+1 ≈ Vk −
(m2 − M̃δ2)3

4m2
(

c2(M̃ −m2) + 2G2m2(1− δ2)
) (Vk − V⋆)

2 +O((Vk − V⋆)
3) (4.11)

We will ignore the higher-order terms, and apply the next lemma to show that the above
recursion roughly converges at a O(1/k) rate.

Lemma 5. Consider the recurrence relation

vk+1 = vk − ηv2k for k = 0, 1, . . . (4.12)

where v0 > 0 and 0 < η < v−1
0 . Then the iterates satisfy the following bound for all k ≥ 0.

vk ≤ 1

ηk + v−1
0

(4.13)

Proof. The recurrence (4.12) is equivalent to ηvk+1 = ηvk − (ηvk)
2 with 0 < ηv0 < 1. Clearly, the

sequence {ηvk}k≥0 is monotonically decreasing to zero. To bound the iterates, invert the recurrence:

1

ηvk+1
=

1

ηvk − (ηvk)2
=

1

ηvk
+

1

1− ηvk
≥ 1

ηvk
+ 1

Recursing the above inequality, we obtain: 1
ηvk

≥ 1
ηv0

+ k. Inverting this inequality yields (4.13),
as required. �

Applying Lemma 5 to the sequence vk = Vk − V⋆ defined in (4.11), we deduce that when Vk is
close to its optimal value of V⋆, we have:

Vk ∼ V⋆ +
1

ηk + (V0 − V⋆)−1
with: η =

(m2 − M̃δ2)3

4m2
(

c2(M̃ −m2) + 2G2m2(1− δ2)
) (4.14)

We can also examine how αk changes in this optimal recursive scheme by taking (4.8) and sub-
stituting the optimal ζ found in the optimization of Lemma 4. The result is messy, but a Taylor
expansion about Vk = V⋆ reveals that

αopt
k ≈ (m2 − M̃δ2)2

2m
(

c2(M̃ −m2) + 2G2m2(1− δ2)
)(Vk − V⋆) +O((Vk − V⋆)

2).

So when Vk is close to V⋆, we should be decreasing αk to zero at a rate of O(1/k) so that it mirrors
the rate at which Vk − V⋆ goes to zero in (4.14).

In summary, adopting an optimized time-varying stepsize still roughly yields a rate of O(1/k),
which is consistent with the sublinear convergence rate of standard SG with diminishing stepsize.
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Appendix

A Proof of Lemma 2

To prove (2.7), first notice that since ik is uniformly distributed on {1, . . . , n} and xk and ik are
independent, we have:

E
(

wk

∣

∣xk
)

= E
(

∇fik(xk)
∣

∣ xk
)

=
1

n

n
∑

i=1

∇fi(xk) = ∇g(xk)

Consequently, we have:

E

(

[

xk − x⋆
wk

]T[−2mIp Ip
Ip 0p

] [

xk − x⋆
wk

]

∣

∣

∣

∣

∣

xk

)

=

[

xk − x⋆
∇g(xk)

]T[−2mIp Ip
Ip 0p

] [

xk − x⋆
∇g(xk)

]

≥ 0 (A.1)

where the inequality in (A.1) follows from the definition of g ∈ S(m,∞). Taking the expectation
of both sides of (A.1) and applying the law of total expectation, we arrive at (2.7).

To prove (2.8), let’s start with Case I, the boundedness constraint ‖∇fi(xk)‖ ≤ β implies that
‖wk‖ ≤ β for all k. Rewrite as a quadratic form to obtain:

[

xk − x⋆
wk

]T [

0p 0p
0p −Ip

] [

xk − x⋆
wk

]

≥ −β2 (A.2)

Taking the expectation of both sides, we obtain the first row of Table 1, as required. We prove
Case II in a similar fashion. The boundedness constraint ‖∇fi(xk)−mxk‖ ≤ β implies that:

‖wk −m(xk − x⋆)‖2 ≤ ‖(wk −mxk) +mx⋆‖2 + ‖(wk −mxk)−mx⋆‖2

= 2 ‖wk −mxk‖2 + 2m2 ‖x⋆‖2

≤ 2β2 + 2m2 ‖x⋆‖2

As in the proof of Case I, rewrite the above inequality as a quadratic form and we obtain the second
row of Table 1.

To prove the three remaining cases, we begin by showing that an inequality of the following
form holds for each fi:

[

xk − x⋆
∇fi(xk)−∇fi(x⋆)

]T [

M11Ip M12Ip
M21Ip −2Ip

] [

xk − x⋆
∇fi(xk)−∇fi(x⋆)

]

≥ 0 (A.3)

The verification for (A.3) follows directly from the definitions of L-smoothness and convexity. In
the smooth case (Definition 1), for example, ‖∇fi(xk)−∇fi(x⋆)‖ ≤ L‖xk−x⋆‖. So (A.3) holds with
M11 = 2L2, M12 = M21 = 0. The cases for F(0, L) and F(m,L) follow directly from Definition 2.
In Table 1, we always have M22 = −1. Therefore,

E

(

[

xk − x⋆
wk

]T [

M11Ip M12Ip
M21Ip M22Ip

] [

xk − x⋆
wk

]

∣

∣

∣

∣

∣

xk

)

=
1

n

n
∑

i=1

[

xk − x⋆
∇fi(xk)

]T [

M11Ip M12Ip
M21Ip 0p

] [

xk − x⋆
∇fi(xk)

]

− 1

n

n
∑

i=1

‖∇fi(xk)‖2 (A.4)
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Since 1
n

∑n
i=1 ∇fi(x⋆) = ∇g(x⋆) = 0, the first term on the right side of (A.4) is equal to

1

n

n
∑

i=1

[

xk − x⋆
∇fi(xk)−∇fi(x⋆)

] [

M11Ip M12Ip
M21Ip 0p

] [

xk − x⋆
∇fi(xk)−∇fi(x⋆)

]

Based on the constraint condition (A.3), we know that the above term is greater than or equal to
2
n

∑n
i=1 ‖∇fi(xk)−∇fi(x⋆)‖2. Substituting this fact back into (A.4) leads to the inequality:

E

(

[

xk − x⋆
wk

]T [

M11Ip M12Ip
M21Ip M22Ip

] [

xk − x⋆
wk

]

∣

∣

∣

∣

∣

xk

)

≥ 1

n

n
∑

i=1

(

2‖∇fi(xk)−∇fi(x⋆)‖2 − ‖∇fi(xk)‖2
)

=
1

n

n
∑

i=1

(

‖∇fi(xk)− 2∇fi(x⋆)‖2 − 2‖∇fi(x⋆)‖2
)

≥ − 2

n

n
∑

i=1

‖∇fi(x⋆)‖2 (A.5)

Taking the expectation of both sides, we arrive at (2.8), as desired.
Finally, to prove (2.9), we express the error model ‖ek‖2 − δ2‖wk‖2 ≤ c2 as a quadratic form,

and take the expectation to directly obtain (2.9). �

B Proof of Lemma 4

We use an induction argument to prove Item 1. For simplicity, we denote (4.9) as Vk+1 = h(Vk).
Suppose we have Vk = h(Vk−1) and Vk−1 > V⋆. We are going to show Vk+1 = h(Vk) and Vk > V⋆.
We can rewrite (4.9) as

Vk+1 = minimize
ζ>0

Ak(1 + Z−1
k ) +Bk(1 + Zk) (B.1)

where Ak, Bk, and Zk are defined as

Ak =
m2V 2

k

(

c2 + (2G2 + M̃Vk)δ
2
)

(2G2 + M̃Vk)2

Bk =
(2G2Vk + (M̃ −m2)V 2

k )((2G
2 + M̃Vk)(1− δ2)− c2)

(2G2 + M̃Vk)2

Zk =

(

2G2 + M̃Vk

)

(δ2 + ζk) + c2

(2G2 + M̃Vk)(1 − δ2)− c2

Note that Ak ≥ 0 and Bk ≥ 0 due to the condition 2G2(1 − δ2) ≥ c2. The objective in (B.1)
therefore has a form very similar to the objective in (2.24). Applying Lemma 3, we deduce that

Vk+1 = (
√
Ak +

√
Bk)

2, which is the same as (4.10). The associated Zopt
k is

√

Ak

Bk
. To ensure

this is a feasible choice, it remains to check that the associated ζoptk > 0 as well. Via algebraic
manipulations, one can show that ζk > 0 is equivalent to Vk > V⋆. We can also verify Ak is a
monotonically increasing function of Vk, and Bk is a monotonically nondecreasing function of Vk.
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Hence h is a monotonically increasing function. Also notice V⋆ is a fixed point of (4.10). Therefore,
if we assume Vk = h(Vk−1) and Vk−1 > V⋆, we have Vk = h(Vk−1) > h(V⋆) = V⋆. Hence we
guarantee ζk > 0 and Vk+1 = h(Vk). By similar arguments, one can verify V1 = h(V0). And it is
assumed that V0 > V⋆. This completes the induction argument.

Item 2 follows from a similar argument to the one used in Section 2.2. Finally, Item 3 can be
proven by choosing a sufficiently small constant stepsize α to make Ûk arbitrarily close to V⋆. Since
V⋆ ≤ Vk ≤ Ûk, we conclude that limk→∞ Vk = V⋆, as required. �
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