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Abstract The present article considers the application of robdstfilters for non-
linear aircraft models in cruise flight conditions. The astaid performance of vari-
ous design scenarios are first compared with the best adiedesver bound, calcu-
lated using frequency-gridding method. The synthesislprolis than validated on
the linear uncertain aircraft model, later on the nonlinkh-fidelity aircraft simu-
lator. The fault isolation and separation properties aregared of different designs
based on various model abstraction levels on several catedialult scenarios.

1 Introduction

Modern fly-by-wire aircraft flight control systems are beéogmore complex with
many actuators controlling several aerodynamic surfabiéde performance goals,
like aerodynamic drag minimization and structural loadmepsion are becoming
more and more important the safety of flight has to be impragedell. In parallel,
there is a clear trend towards the All-Electric Aircraft.deatly, Airbus introduced
on the A380 a new hydraulics layout, where the three Hydeauircuitry is re-
placed by a two Hydraulics plus two Electric layout, whichiesaone ton mass for
the aircraft. Each primary surface has a single h¥drad&1¢mwered actuator and
electrically powered back-up with the exception of the oatkeron, which uses the
two hydraulic systems together. Consequent{y, the tref\derqr_)lexny and more-
electric architectures raise the importance of availgbiteliability and operating
safety. For safety critical systems, like aircrafts, thessguence of faults in the
control system hardware and software can be extremelyuseinoterms of human
mortality and economical impact. Therefore, there is a gngweed for on-line
supervision and fault diagnosis to increase the relighilitsuch safety critical sys-
tems. The traditional approach to fault diagnosis in theewiapplication context
is based on hardware redundancy methods which use muleplsoss, actuators
computers and software to measure and control a particafébte. The interest
is in methods which do not require additional hardware reldmey, and only rely
on the ever increasing level of computational power onbt@dircraft. In analyt-
ical redundancy schemes, the resulting difference gesabfadm the consistency
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checking of different variables is called as a residual sigBased on the mathe-
matical model of the plant, analytical relation betweeriedént sensor outputs can
be used to generate residual signals. The basis for regiénatation is analytical
redundancy, which according to Chow [7] takes two forms:idgal redundancy-the
relationship among instantaneous outputs of sensors; Jatenporal redundancy-
the relationship among the histories of sensor outputs etvdtor inputs. Itis based
on these relationships that outputs of (dissimilar) sen&atrdifferent times) can be
compared. The residuals resulting from these compariserthan measures of the
discrepancy between the behavior of observed sensor suipdtthe behavior that
should result under normal conditions. The residual shbaldero when the system
is normal, and should diverge from zero when a fault occurthénsystem. This
zero and non-zero property of the residual is used to determhether or not faults
have occurred. Analytical redundancy makes use of a matieahenodel and the
goal is the determination of faults of a system from the conispa of available sys-
tem measurements with a priori information reﬁresentedbmathemancal model,
through generation of residual quantities and their amalyarious approaches have
been applied to the residual generation problem, the pspiiye approach IL7 , the
multiple model method [5], detection filter design using imetric approach [18],
frequency domain conc_eptséllblunknown input observecep'n[G%, and dynamic
inversion based detection [9]. Most of these design apl;})mace er to LTI sys-
tems. The geometric concept is further generalized to LP3tesys in [3], while
input affine nonlinear s?/stems are considered in [8]. Théchamncepts underly-
ing observer-based FDI schemes are the generation of edsidad the use of an
optimal or adaptive threshold function to differentiatalta from disturbances, see
[10, 12, 19]. Generally, the residuals, also known as diagosignals, are 1gen-
erated by the FDI filter from the available input and outpuswements of the
monitored system. The threshold function is used to rofyusie detection of the
fault by minimizing the effects from false faults, disturtz@s and commands on the
residuals. For fault isolation, the generated residuatd@sclude enough informa-
tion to differentiate said fault from another, usually tigsaccomplished through
structured residuals or directional vectors. Robustné#iseoFDI algorithm is de-
termined by its capability to de-sensitize the filters froistutbances, errors, and
unmodelled dynamics. Estimation is important for both algiocessing and feed-
back control and it is the most common approach used in fatdation. The well-
known Kalman Filter [15, 14] provides an optimal minimundeace estimator for
linear systems subject to Gaussian noise. The rise of ramnstol techniques in
the 1980s led to an interest in alternative filters, e.g. #ifilter (a generalization

of the Kalman filter) and the#, filter gZZ]). These methods assume the signals are
generated by a known dynamic model and robustness witheespmodel uncer-
tainty is an important consideration. Numerous papers bogtfilter design have
appeared [2, 16, 1, 20]. This paper considers the FDI probkerobust#, filter-

ing problem for uncertain, continuous-time systems withihcertainties described
by LTI dynamics. The D-K iteration yields sub-optimal satuts but is a standard
method to handle the nonconvexity that arises in robustrobsynthesis. In robust
filter design problem, the filter enters the design intereation in an open loop
(rather than a feedback? configuration and this structunebeaexploited. In [20],
the filter synthesis problem is converted into a semi-defipiogram (SDP? usin

a special [QC factorization to enforce nominal stabilithelset of allowable 1Q
multipliers is, in general, infinite dimensional. The apgeb in [20] obtains a finite
dimensional optimization by restricting the multipliesslie combinations of cho-
sen basis functions. Our aim is to extend the IQC based dsalysd filter design
developed in [21] to the aircraft example detailed in thespre article. The impor-
tance of this paper is on the application (simulation) ofRK iteration based LTI
FDI technique to a nonlinear high-fidelity aircraft, whesstes of model uncer-
tainty, realistic disturbances and robustness have to ¢euated for in the design
stage. Three FDI filters are developed based on the linear aircraft model
with the main design goal of detecting, isolating, and idgimg faults in the six
degrees of freedom motion of the aircraft during closedight: aileron and ele-
vator actuator faults. These three filters are designedimasthree different aircraft



models, using similar interconnection and weights spetificiesigned for one trim

point. The remainder of the paper has the following struct@ection 2 formulates
the robust fault detection filter design problem and dessribe proposed solution
method. The application example of a civil wide-body aiftimdescribed in Sec-

tion 3. The method is applied to the high fidelity aircraft ewde that demonstrates
the |05roposed approach is given in Section 4. Finally, thepeconcluded in Sec-
tion 5.

2 Robust Fault Diagnosis Problem

This section presents a brief introduction to the main dédins and goals of#, / u
fault detection and isolation filters. Figure 2 illustrathe /7, / L robust fault diag-
nosis problemP is a nominal LTI plant, an& is the desired stable filter. The vectors
f,d,u correspond to the fault, disturbance and control inputseaetsvely. The esti-
mation error, to be minimized, is given leyand is the difference between the fault
and the residual vectares. The output from the plant is given by vectgrandw,z
denote the fictitious input and output of the uncertain mofiel

Fig. 1 .7,/ filter problem with uncertain model

The state space representation of the linearized planténdiy:
X(t) = AX(t) + Bu(t) + B f (t) + Byd(t) + Bsz(t) 1)
y(t) = Cx(t) + Du(t) + D¢ f(t) + Dgd(t) + Dz(t) (2

The corresponding diagnostic filter, residual and erranaigjin case of actuator
fault detection are given by:

X (t) = Arxe () + BLru(t) + B2ry(t) (3)
res(t) = Crx (t) + D1yu(t) + D2yy(t) (4)
e(t) =Mf(t) —Ires(t) (5)



~where all matrices are of appropriate dimensions. The ion outputy, in
Figure 1, can be considered as a special type of disturb bine the distur-
bance, and the perturbation output, into a generalizedritiance vector, [6], the

modified problem can be stated as a stand#idformulation, Figure 2.
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Fig. 2 %,/ interconnection for robust performance assessment

The objective of thes#, /u filter synthesis is to find a stable filter that min-
imizes the transfer function from the disturbances to thersr(i.e min|[TF||

while maximizing the faults effect on the errors (i.e. maxF::||) whered = [du]

is the generalized disturbance, see [19], while considdtie effects of structured
uncertainty. The present problem formulation uses inpaéeuainty to describe the
discrepancy between the nominal model and the behavioreohtimlinear model
around the trim point. Since the flight control surfaces, la@wce the control inputs,
are structured into several groups, the uncertainty desani has similar structure
as well. It is also assumed that only LTI uncertainties aesent, then the filtering

problem reduces to the synthesis problem.

3 Aircraft Model
3.1 General Aircraft Characteristics

The aircraft model used in this paper is a wide-body airdrafn Airbus. The air-
craft has two engines and a nominal weight of 200 tons. Soniis performance
at cruise condition are cruising speed of 240 knots altitod80000 ft. The air-
craft has 19 control inputs, and measurement of 6-DOF matiitim load factor
(ny,ny,nz), body rate p,q,r), velocity (/r), aerodynamic anglesx(f3), position
(X,Y,2Z) and attitude ¢, 6, ) outputs. The inputs argil left andpi2 right engine;
AF (airbrake), which is disabled at cruise flight conditidg,_ Aileron internal
Left; d41r Aileron internal Right;d, gL Ail external Left; 6, gr Ail external Right;
Osp,1L Spoiler 1 Left; Spoiler 1R; Spoiler 23L; Spoiler 23R; SpoisL; Spoiler



45R; Spoiler 6L; Spoiler 6R) . Elevator Left;0er Elevator Right;r Rudder; and

&n Trimmable Horizontal Stabilizer which is used for trimmipgrposes. o

The aerodynamic data is high-fidelity and propriety of ABI®LA.S. The rigid
body aircraft equations of motion are augmented with aotuatd sensor charac-
teristics, detailed in [13]. The nonlinear body-axes rigadly dynamics includes 13
states using quaternion formalisip.q,r body ratesu,v,w velocities all in body
axes o, 01, 02,03 c%uater_mons, representing the rotation between the bodlynen-
tial axes, anK, Y, Z positions in the North-East-Down coordinate frame, assgmi
Flat Earth for simplicity.

3.2 Linearized Aircraft Model

In the present article one design point, cruise flight coonjis considered. The LTI
model of the aircraft is obtained at level flight, with=q=r = 0 rad/syx = 194.36
m/s,vy = 0m/s, v, = 15.13 m/s, at 9144 m altitude. Since the original aircraft model
uses quaternions, which impose additional constraintdherstate equations, the
model used for trim and linearization is rewritten using\eemtional Euler angles
[23]. The model used for trim is an open-loop model withowet dontrol loop and,
since the actuators and sensors are assumed to have unih@nddow-pass char-
acteristics, their dynamics is omitted. Trim is obtainethvziero aileron, rudder and
elevator deflection, left and right engines are providirg shme amount of thrust
to balance the yawing motion. Pitch axis trim is obtainedwlite Trimmable Hori-
zontal Stabilizer, while the aircraft hasch degrees Angle-of-attack. The resulting
12 state linear model is unstable. The airbrake, which ezl at high Mach num-
bers, is removed from the control inputs since it has no efiache aircraft.

3.3 Model Reduction for FDI

The open loop aircraft model is slightly unstable aroundytae angle (), and
has two modesX,Y) which are integrators. Since the FDI problem is invariant
of X,Y positions and yaw angle these states are removed from tremdgs. The
resulting model with nine states, as shown on Figure 3, alpedectly matches
the original 12 states model in the behavior of the remaisitages, and outputs.
The resulting system with nine states is stable which is ssarg to linear estimator
based FDI techniques. The resulting LTI model is augmeni#ufikst order sensor
and actuator dynamics, to account for their effect on therait behavior. Hence,
the filters designed based on the reduced model are most tikéle applicable to
the original model and to the nonlinear aircraft dynamics.

4 FDI Filter Design for the Aircraft

First, the formulation of the filtering problem and d_esig%;htne weights are pre-
sented. Detailed simulations on the high-fidelity aircrattdel with aileron and
elevator faults injected follows.
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Fig. 3 Aileron, elevator and rudder to p,q, and r Bode diagram dfefotl reduced LTI model

4.1 Filter Design Steps

The main idea behind the filter design formulation in thiscéetis that of model
matching with tracking [17], which results in detection aselation on the FDI fil-
ter output. As seen on Figure 4, the objective is to r_mnmhzseelrror(a') between the
fictitious fault input ) and the residualkés), which is the output of the FDI filter.
The filter must be able to detect and isolate aileron and &legatuator faults (sim-
ilar to a decoupled tracking problem from a control point @w) while rejecting
disturbances and noise and being robust to model uncéesiBince the FDI design
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Fig. 4 FDl filter design weighted interconnection

results in a rather large filter, with 30 inputst{as 12 measurements and the 18 con-
trol inputs are also fed to it) and two outputeg,resqe,), an alternate approach
is also investigated with decoupled aileron and elevatolt @detection, using re-
duced models. The blocks in the filter design interconnaa@respond to weight-



ing functions, design specifications and system componklatdel mismatches are
accounted for as weighted unmodeled LTI dynamigsjs diagonal, wher&\, =
diag < wy, Wy, W3, Ws, W3, W3, Wa, Wa, Wp, W2, Wp, Wa, W, Wa, W3, W3, Wa, W3 > COITE-
sponds to different levels of uncertainty on engimgsailerons, elevators, rudder
w3, spoilerswp, and trimmable horizontal stabilizer,. Each of the have approxi-
mately 10% uncertainty at low frequency and higher than 180btgh frequencies,
the difference between them is their frequency charatiesisEngines and THS
have slower dynamics, after their bandwidth their uncetyagrows to 100% after
slightly after their cutoff frequency. Similarly the othactuators of aerodynamic
surfaces have high uncertainty after their bandwidth, mdestheir time constants
are lower their uncertainty grows below 100% at higher fesgpies. The structured
input uncertainty blocld, is grouped according to the actuator functional groups:

1 2x2 4x4 8x8 3x3 1x1 H
Dy = dlag < Aengine? Aajleron’AspoilewAIongitudinaJ 7Arudder >. Disturbances are mod-

eled as exogenous signals, since all signals are normafziw .77, framework
Wy weight is used to scale the noise level on sensors, whichsisnzd to have,

depending the dimension of the signalsdeg, 0.5deg/s,0.01m/s, 0.1m/s? 0.03m
magnitude noise on all channels. The ideal fault respoasebkis a low-pass filtered
version off. Two different choices are investigated in the article, mn@ith 1 sec

time constantT} = o5 the other with 0L sectime constantT3 = g— to

understand the tradeoffs between detection time, falsmakite and missed detec-
tions in the presence of uncertainties. The error betweittal fault response and

the filter residual is weighted with, = 22015, , which requires good fault detec-

tion performance in the low frequency range untéd/sand weights less the higher
frequency content, while the diagonal structure enforlcesslation property of the
filter. The weights used in the system interconnection (feigt) are derived from
the design objectives. Finally, the system model is comghosactuator dynamics:
Act = di_ag < aClenginel2x2, aCtaileronlax4; 8Ctspoiler 188, ACtelevator 1252, ACtrudder , aCttHs >,S€NSOr
dynamicsSens =< sensiatel 3«3, SeNSanglel 22, SENSyel oty SENSg , SENS, SENSaccl3x3, SENSZ >, and
rigid body dynamics, denoted Asrcraft. The corresponding values are Airbus pro-
priety, hence they are not discusses here.

As mentioned earlier, two design choices are made whentsglabe aircraft
model. One detailed on Figure 4 considers the full 6-DORaitclynamics, which
results in a rather large filter. The other, a with a slighifjedent interconnection,
considers the aileron and the elevator fault detection [prob separately. In the
aileron FDI problem the aircraft has only 15 inputs, sinoe ¢fevators and THS
does not affect the lateral dynamics, where the ailerorseaatinas influence. More-
over, measurementgfa,V, 0, ax, a;,Z has no influence on the aileron FDI problem
and with the remaining inputs and outputs the aircraft dyinarman be simplified
from nine to four states. Similar can be done with the elevai problem, where
aileron and rudder inputs argr, 3, ¢, ay outputs are unnecessary and the longitu-
dinal model only has 5 states.

The FDiI filter synthesis is based on the D-K iteration, whialike the standard
% synthesis takes into account the structure of the uncéytaliock A;. Moreover
state-of-art software packages exist [4] for the solutisragart of MaTLAB. In
parallel with the D-K iteration basga-synthesis results, for each filter design setup,
the %, solution is also calculated, which usually results betterditioned filters
with lower state numbers.

4.2 Analysis and Results

A lower bound on the optimal performance was computed us@mb_nc¥—gridding
method described in [21]. The frequency grid consisted dbgarithmically spaced



points between @1 and 108ad/sec. Figure 5 shows the lower bounds versus fre-

uency. The Ia(rjgest_ value across frequencylg 0f the ideal olgtimal case?s syn-
thesis achieved.&4 in the lower frequency range, while the D-K synthesis el
peek gain value of 84 which corresponds to higher performance.

Performance Lower Bound vs. Frequency
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Fig. 5 Theoretical lower bound and achieved lower bounds of thegfbiblem formulation

The filters are applied to the nonlinear aircraft model até&ing the trim val-
ues into consideration, on both control input and sensquuilgignals. Since the
simulation is implemented undenMBULINK with 0.01sec fixed step size, the cor-
responding filters are also discretized with the same sag“ljuhne_usmg bilinear
transformation. It is also worth mentioning, that the siatian is in closed-loop
with the flight control system set to altitude and headinglhmbde and moderate
atmospheric windgust disturbances are perturbing thesdirftight. )

The first fault scenario is left inboard aileron liquid janmgias seen on Figure
6, this means that a bias occurs on the rod sensor and thdacshéts from it
nominal 15deg deflection to—0.75deg deflection and it remains-2.25deg apart
from it commanded position. .

Figure 6 also shows the abrupt change in roll rate aed®hen the fault oc-
curs, otherwise slight deflection can be seen on the ruddesiévator and THS is
unaffected, mainly the right aileron compensates the edfeihe failure. .

First theu filter with 1sec time constant on the ideal fault response is applied to
the problem, as shown on Figure 7 the coupled and the deabﬁ?tﬂae also detects
the tault and reaches an approximate steady state valud ésee, although the bias
on the actuator is-2.25deg the estimate is between0.1rad to —0.175ad which
is at least 57deg. The isolation property of both coupled and de-coupled§iltan
be seen, as the elevator fault signal is nearly identicaéto.z

The following scenario is the filter with 0.1sec time constant, which provides
also excellent detection and isolation properties. As swerfrigure 8 the filters
reach steady state aftebgec which is not significantly faster than with the previous
design with Xec time constant. It is found during the filter synthesis thattHar
decreasing the ideal response time constant does not iegneperformance and
only performance degradation occurs with further incregne response speed.

To show the efficiency of the D-K iteration based desigygza filter with with
0.1sec time constant is also synthesized. As shown on Figure 9 tbewupded filter
achieves significantly lower steady state value, makingdittection thresholding
difficult, while the coupled design does not satisfy theasioh property, since large
signals can be seen on the otherwise healthy elevator actuat =

The second scenario is elevator runaway. Aget@he elevator drifts away from

its current position with deg/s rate. According to the specification runaway has
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Fig. 9 Aileron liquid jamming scenario7Z, filter with 0.1sec time constant

to be detected before3tleg, meaning there is.Bsec for detection in this case. As
shown on Figure 10 the elevator runaway results |n|t|a[I)sm1all(§q|tch rate. But
later, around 2&ec, as the aircraft drifts away from the trim condition, the toh
system starts to counteract radically using high elevatonrmands which causes
large pitch rate and oscillatory motion. The THS is also dédle to counteract the
elevator deflection, but roll rate and rudder command resaiaffected.
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Fig. 10 Elevator runaway scenario, fault occurs as #0th 1deg/s rate

The u filter with 1sec time constant on the ideal fault response is applied to
the second scenario, as shown on Figure 11. The coupleddgtects the run-
away and indicates the fault after few seconds given thesliold is around @,
which provides safe false alarm protection in other fautesa On the other hand
the de-coupled filter does not indicate the fault and remairedfected, indicating
the necessity of coupled synthesis. _ ) )

The p filter with 0.1sec time constant on the ideal fault response is applied next
to the second scenario, as shown on Figure 12. The de-coiilpgedtill does not
work as expected. The coupled filter provides similar respda the previous sce-
nario, the difference in time constant cannot be seen, diletcharacteristics of the
fault and the fact that only little margin is left to increabe speed of response of
the detection filter with the current approach, with giverighés. It is worth men-
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tioning here, that due to the cruise flight condition, whéitkelelevator excitation
is expected, the case when the elevator is stuck is diffiouletect.
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Fig. 12 Elevator runawayyu filter with 0.1sec time constant

5 Conclusions

This paper considered the design of roheit /i filters and their application to a
high fidelity aircraft model, and shows the advantages ohaded methods, those
are candidates for future industrial implementation. Aifeand elevator faults are
successfully detected and when designed properly isofedet each other in rea-
sonable time. Performance of different designs with faatet slower ideal fault
detection response are compared and the article shows itfoempance bounds on
detection speed, given the present model and methodsl$biskown that elevator
fault detection is only possible with coupled design takiing full 6-DOF aircraft
dynamics into account. Further research should extenddheity of the present
approach and based on the present findings provide a faglttd®@t approach for a
larger flight envelope.
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