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Abstract The present article considers the application of robustH∞ filters for non-
linear aircraft models in cruise flight conditions. The achieved performance of vari-
ous design scenarios are first compared with the best achievable lower bound, calcu-
lated using frequency-gridding method. The synthesis problem is than validated on
the linear uncertain aircraft model, later on the nonlinear, high-fidelity aircraft simu-
lator. The fault isolation and separation properties are compared of different designs
based on various model abstraction levels on several candidate fault scenarios.

1 Introduction

Modern fly-by-wire aircraft flight control systems are becoming more complex with
many actuators controlling several aerodynamic surfaces.While performance goals,
like aerodynamic drag minimization and structural load suppression are becoming
more and more important the safety of flight has to be improvedas well. In parallel,
there is a clear trend towards the All-Electric Aircraft. Recently, Airbus introduced
on the A380 a new hydraulics layout, where the three Hydraulics circuitry is re-
placed by a two Hydraulics plus two Electric layout, which saves one ton mass for
the aircraft. Each primary surface has a single hydraulically powered actuator and
electrically powered back-up with the exception of the outer aileron, which uses the
two hydraulic systems together. Consequently, the trends of complexity and more-
electric architectures raise the importance of availability, reliability and operating
safety. For safety critical systems, like aircrafts, the consequence of faults in the
control system hardware and software can be extremely serious in terms of human
mortality and economical impact. Therefore, there is a growing need for on-line
supervision and fault diagnosis to increase the reliability of such safety critical sys-
tems. The traditional approach to fault diagnosis in the wider application context
is based on hardware redundancy methods which use multiple sensors, actuators
computers and software to measure and control a particular variable. The interest
is in methods which do not require additional hardware redundancy, and only rely
on the ever increasing level of computational power onboardthe aircraft. In analyt-
ical redundancy schemes, the resulting difference generated from the consistency
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checking of different variables is called as a residual signal. Based on the mathe-
matical model of the plant, analytical relation between different sensor outputs can
be used to generate residual signals. The basis for residualgeneration is analytical
redundancy, which according to Chow [7] takes two forms: 1) direct redundancy-the
relationship among instantaneous outputs of sensors; and 2) temporal redundancy-
the relationship among the histories of sensor outputs and actuator inputs. It is based
on these relationships that outputs of (dissimilar) sensors (at different times) can be
compared. The residuals resulting from these comparisons are then measures of the
discrepancy between the behavior of observed sensor outputs and the behavior that
should result under normal conditions. The residual shouldbe zero when the system
is normal, and should diverge from zero when a fault occurs inthe system. This
zero and non-zero property of the residual is used to determine whether or not faults
have occurred. Analytical redundancy makes use of a mathematical model and the
goal is the determination of faults of a system from the comparison of available sys-
tem measurements with a priori information represented by the mathematical model,
through generation of residual quantities and their analysis. Various approaches have
been applied to the residual generation problem, the parityspace approach [7], the
multiple model method [5], detection filter design using geometric approach [18],
frequency domain concepts [11], unknown input observer concept [6], and dynamic
inversion based detection [9]. Most of these design approaches refer to LTI sys-
tems. The geometric concept is further generalized to LPV systems in [3], while
input affine nonlinear systems are considered in [8]. The basic concepts underly-
ing observer-based FDI schemes are the generation of residuals and the use of an
optimal or adaptive threshold function to differentiate faults from disturbances, see
[10, 12, 19]. Generally, the residuals, also known as diagnostic signals, are gen-
erated by the FDI filter from the available input and output measurements of the
monitored system. The threshold function is used to robustify the detection of the
fault by minimizing the effects from false faults, disturbances and commands on the
residuals. For fault isolation, the generated residual hasto include enough informa-
tion to differentiate said fault from another, usually thisis accomplished through
structured residuals or directional vectors. Robustness of the FDI algorithm is de-
termined by its capability to de-sensitize the filters from disturbances, errors, and
unmodelled dynamics. Estimation is important for both signal processing and feed-
back control and it is the most common approach used in fault detection. The well-
known Kalman Filter [15, 14] provides an optimal minimum-variance estimator for
linear systems subject to Gaussian noise. The rise of robustcontrol techniques in
the 1980s led to an interest in alternative filters, e.g. theH2 filter (a generalization
of the Kalman filter) and theH∞ filter ([22]). These methods assume the signals are
generated by a known dynamic model and robustness with respect to model uncer-
tainty is an important consideration. Numerous papers on robust filter design have
appeared [2, 16, 1, 20]. This paper considers the FDI problemas a robustH∞ filter-
ing problem for uncertain, continuous-time systems with the uncertainties described
by LTI dynamics. The D-K iteration yields sub-optimal solutions but is a standard
method to handle the nonconvexity that arises in robust control synthesis. In robust
filter design problem, the filter enters the design interconnection in an open loop
(rather than a feedback) configuration and this structure can be exploited. In [20],
the filter synthesis problem is converted into a semi-definite program (SDP) using
a special IQC factorization to enforce nominal stability. The set of allowable IQC
multipliers is, in general, infinite dimensional. The approach in [20] obtains a finite
dimensional optimization by restricting the multipliers to be combinations of cho-
sen basis functions. Our aim is to extend the IQC based analysis and filter design
developed in [21] to the aircraft example detailed in the present article. The impor-
tance of this paper is on the application (simulation) of theD-K iteration based LTI
FDI technique to a nonlinear high-fidelity aircraft, where issues of model uncer-
tainty, realistic disturbances and robustness have to be accounted for in the design
stage. Three FDI filters are developed based on the linear open-loop aircraft model
with the main design goal of detecting, isolating, and identifying faults in the six
degrees of freedom motion of the aircraft during closed-loop flight: aileron and ele-
vator actuator faults. These three filters are designed based on three different aircraft



models, using similar interconnection and weights specifically designed for one trim
point. The remainder of the paper has the following structure. Section 2 formulates
the robust fault detection filter design problem and describes the proposed solution
method. The application example of a civil wide-body aircraft is described in Sec-
tion 3. The method is applied to the high fidelity aircraft example that demonstrates
the proposed approach is given in Section 4. Finally, the paper is concluded in Sec-
tion 5.

2 Robust Fault Diagnosis Problem

This section presents a brief introduction to the main definitions and goals ofH∞/µ
fault detection and isolation filters. Figure 2 illustratestheH∞/µ robust fault diag-
nosis problem.P is a nominal LTI plant, andF is the desired stable filter. The vectors
f ,d,u correspond to the fault, disturbance and control inputs respectively. The esti-
mation error, to be minimized, is given bye, and is the difference between the fault
and the residual vector,res. The output from the plant is given by vectory, andw,z
denote the fictitious input and output of the uncertain model, ∆ .

Fig. 1 H∞/µ filter problem with uncertain model

The state space representation of the linearized plant is given by:

ẋ(t) = Ax(t)+ Bu(t)+ B f f (t)+ Bdd(t)+ Bδ z(t) (1)

y(t) = Cx(t)+ Du(t)+ D f f (t)+ Ddd(t)+ Dδ z(t) (2)

The corresponding diagnostic filter, residual and error signals in case of actuator
fault detection are given by:

ẋr(t) = Arxr(t)+ B1ru(t)+ B2ry(t) (3)

res(t) = Crxr(t)+ D1ru(t)+ D2ry(t) (4)

e(t) = M f (t)− Ires(t) (5)



where all matrices are of appropriate dimensions. The perturbation output,z, in
Figure 1, can be considered as a special type of disturbance.Combine the distur-
bance, and the perturbation output, into a generalized disturbance vector, [6], the
modified problem can be stated as a standardH∞ formulation, Figure 2.

Fig. 2 H∞/µ interconnection for robust performance assessment

The objective of theH∞/µ filter synthesis is to find a stable filter that min-
imizes the transfer function from the disturbances to the errors (i.e min||T Fed̂ ||

while maximizing the faults effect on the errors (i.e. max||T Fe f ||) whered̂ = [d̄u]
is the generalized disturbance, see [19], while considering the effects of structured
uncertainty. The present problem formulation uses input uncertainty to describe the
discrepancy between the nominal model and the behavior of the nonlinear model
around the trim point. Since the flight control surfaces, andhence the control inputs,
are structured into several groups, the uncertainty description has similar structure
as well. It is also assumed that only LTI uncertainties are present, then the filtering
problem reduces to theµ synthesis problem.

3 Aircraft Model

3.1 General Aircraft Characteristics

The aircraft model used in this paper is a wide-body aircraftfrom Airbus. The air-
craft has two engines and a nominal weight of 200 tons. Some ofits performance
at cruise condition are cruising speed of 240 knots altitudeof 30000 ft. The air-
craft has 19 control inputs, and measurement of 6-DOF motionwith load factor
(nx,ny,nz), body rate (p,q,r), velocity (VT ), aerodynamic angles (α,β ), position
(X ,Y,Z) and attitude (φ ,θ ,ψ) outputs. The inputs are:pi1 left andpi2 right engine;
AF (airbrake), which is disabled at cruise flight condition,δa,IL Aileron internal
Left; δa,IR Aileron internal Right;δa,EL Ail external Left;δa,ER Ail external Right;
δsp,1L Spoiler 1 Left; Spoiler 1R; Spoiler 23L; Spoiler 23R; Spoiler 45L; Spoiler



45R; Spoiler 6L; Spoiler 6R;δe,L Elevator Left;δe,R Elevator Right;δr Rudder; and
δih Trimmable Horizontal Stabilizer which is used for trimmingpurposes.

The aerodynamic data is high-fidelity and propriety of Airbus S.A.S. The rigid
body aircraft equations of motion are augmented with actuator and sensor charac-
teristics, detailed in [13]. The nonlinear body-axes rigidbody dynamics includes 13
states using quaternion formalism:p,q,r body rates,u,v,w velocities all in body
axes,q0,q1,q2,q3 quaternions, representing the rotation between the body and iner-
tial axes, andX ,Y,Z positions in the North-East-Down coordinate frame, assuming
Flat Earth for simplicity.

3.2 Linearized Aircraft Model

In the present article one design point, cruise flight condition, is considered. The LTI
model of the aircraft is obtained at level flight, withp = q = r = 0 rad/s,vx = 194.36
m/s,vy = 0m/s, vz = 15.13 m/s, at 9144 m altitude. Since the original aircraft model
uses quaternions, which impose additional constraints on the state equations, the
model used for trim and linearization is rewritten using conventional Euler angles
[23]. The model used for trim is an open-loop model without the control loop and,
since the actuators and sensors are assumed to have unit dc gain and low-pass char-
acteristics, their dynamics is omitted. Trim is obtained with zero aileron, rudder and
elevator deflection, left and right engines are providing the same amount of thrust
to balance the yawing motion. Pitch axis trim is obtained with the Trimmable Hori-
zontal Stabilizer, while the aircraft has 2.66 degrees Angle-of-attack. The resulting
12 state linear model is unstable. The airbrake, which is disabled at high Mach num-
bers, is removed from the control inputs since it has no effect on the aircraft.

3.3 Model Reduction for FDI

The open loop aircraft model is slightly unstable around theyaw angle (ψ), and
has two modes (X ,Y ) which are integrators. Since the FDI problem is invariant
of X ,Y positions and yaw angle these states are removed from the dynamics. The
resulting model with nine states, as shown on Figure 3, almost perfectly matches
the original 12 states model in the behavior of the remainingstates, and outputs.
The resulting system with nine states is stable which is necessary to linear estimator
based FDI techniques. The resulting LTI model is augmented with first order sensor
and actuator dynamics, to account for their effect on the aircraft behavior. Hence,
the filters designed based on the reduced model are most likely to be applicable to
the original model and to the nonlinear aircraft dynamics.

4 FDI Filter Design for the Aircraft

First, the formulation of the filtering problem and designing the weights are pre-
sented. Detailed simulations on the high-fidelity aircraftmodel with aileron and
elevator faults injected follows.
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Fig. 3 Aileron, elevator and rudder to p,q, and r Bode diagram of full and reduced LTI model

4.1 Filter Design Steps

The main idea behind the filter design formulation in this article is that of model
matching with tracking [17], which results in detection andisolation on the FDI fil-
ter output. As seen on Figure 4, the objective is to minimize the error (e) between the
fictitious fault input (f ) and the residual (res), which is the output of the FDI filter.
The filter must be able to detect and isolate aileron and elevator actuator faults (sim-
ilar to a decoupled tracking problem from a control point of view) while rejecting
disturbances and noise and being robust to model uncertainties. Since the FDI design
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Fig. 4 FDI filter design weighted interconnection

results in a rather large filter, with 30 inputs (y has 12 measurements and the 18 con-
trol inputs are also fed to it) and two outputs (resail ,reselev), an alternate approach
is also investigated with decoupled aileron and elevator fault detection, using re-
duced models. The blocks in the filter design interconnection correspond to weight-



ing functions, design specifications and system components. Model mismatches are
accounted for as weighted unmodeled LTI dynamics,Wu is diagonal, whereWu =
diag < w1,w1,w3,w3,w3,w3,w2,w2,w2,w2,w2,w2,w2,w2,w3,w3,w4,w3 > corre-
sponds to different levels of uncertainty on enginesw1, ailerons, elevators, rudder
w3, spoilersw2, and trimmable horizontal stabilizerw4. Each of the have approxi-
mately 10% uncertainty at low frequency and higher than 100%at high frequencies,
the difference between them is their frequency characteristics. Engines and THS
have slower dynamics, after their bandwidth their uncertainty grows to 100% after
slightly after their cutoff frequency. Similarly the otheractuators of aerodynamic
surfaces have high uncertainty after their bandwidth, but since their time constants
are lower their uncertainty grows below 100% at higher frequencies. The structured
input uncertainty block∆a is grouped according to the actuator functional groups:
∆a = diag < ∆2×2

engine,∆
4×4
aileron,∆

8×8
spoiler,∆

3×3
longitudinal,∆

1×1
rudder >. Disturbances are mod-

eled as exogenous signals, since all signals are normalizedin the H∞ framework
Wd weight is used to scale the noise level on sensors, which is assumed to have,
depending the dimension of the signals, 0.5deg,0.5deg/s,0.01m/s,0.1m/s2,0.03m
magnitude noise on all channels. The ideal fault response signal is a low-pass filtered
version of f . Two different choices are investigated in the article, oneis with 1 sec
time constant (T 1

id = 1
s2+2s+1

the other with 0.1 sec time constant (T 2
id = 100

s2+20s+100
to

understand the tradeoffs between detection time, false alarm rate and missed detec-
tions in the presence of uncertainties. The error between the ideal fault response and
the filter residual is weighted withWe = 2s+20

5s+5 I2×2 which requires good fault detec-
tion performance in the low frequency range until 1rad/s and weights less the higher
frequency content, while the diagonal structure enforces the isolation property of the
filter. The weights used in the system interconnection (Figure 4) are derived from
the design objectives. Finally, the system model is composed of actuator dynamics:
Act = diag < actengineI2×2,actaileronI4×4,actspoilerI8×8,actelevatorI2×2,actrudder,actT HS >,sensor
dynamics:Sens =< sensrateI3×3, sensangleI2×2, sensvelocity, sensθ , sensφ , sensaccI3×3, sensZ >, and
rigid body dynamics, denoted asAircraft. The corresponding values are Airbus pro-
priety, hence they are not discusses here.

As mentioned earlier, two design choices are made when selecting the aircraft
model. One detailed on Figure 4 considers the full 6-DOF aircraft dynamics, which
results in a rather large filter. The other, a with a slightly different interconnection,
considers the aileron and the elevator fault detection problems separately. In the
aileron FDI problem the aircraft has only 15 inputs, since the elevators and THS
does not affect the lateral dynamics, where the aileron actuator has influence. More-
over, measurement ofq,α,V,θ ,ax,az,Z has no influence on the aileron FDI problem
and with the remaining inputs and outputs the aircraft dynamics can be simplified
from nine to four states. Similar can be done with the elevator FDI problem, where
aileron and rudder inputs andp,r,β ,φ ,ay outputs are unnecessary and the longitu-
dinal model only has 5 states.

The FDI filter synthesis is based on the D-K iteration, which unlike the standard
H∞ synthesis takes into account the structure of the uncertainty block∆a. Moreover
state-of-art software packages exist [4] for the solution as a part of MATLAB . In
parallel with the D-K iteration basedµ-synthesis results, for each filter design setup,
theH∞ solution is also calculated, which usually results better conditioned filters
with lower state numbers.

4.2 Analysis and Results

A lower bound on the optimal performance was computed using frequency-gridding
method described in [21]. The frequency grid consisted of 25logarithmically spaced



points between 0.01 and 100rad/sec. Figure 5 shows the lower bounds versus fre-
quency. The largest value across frequency is 0.12 of the ideal optimal case,H∞ syn-
thesis achieved 1.64 in the lower frequency range, while the D-K synthesis achieved
peek gain value of 0.64 which corresponds to higher performance.
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Fig. 5 Theoretical lower bound and achieved lower bounds of the FDIproblem formulation

The filters are applied to the nonlinear aircraft model aftertaking the trim val-
ues into consideration, on both control input and sensor output signals. Since the
simulation is implemented under SIMULINK with 0.01sec fixed step size, the cor-
responding filters are also discretized with the same sampling time using bilinear
transformation. It is also worth mentioning, that the simulation is in closed-loop
with the flight control system set to altitude and heading hold mode and moderate
atmospheric windgust disturbances are perturbing the aircraft flight.

The first fault scenario is left inboard aileron liquid jamming as seen on Figure
6, this means that a bias occurs on the rod sensor and the actuator shifts from it
nominal 1.5deg deflection to−0.75deg deflection and it remains−2.25deg apart
from it commanded position.

Figure 6 also shows the abrupt change in roll rate at 10sec when the fault oc-
curs, otherwise slight deflection can be seen on the rudder but elevator and THS is
unaffected, mainly the right aileron compensates the effect of the failure.

First theµ filter with 1sec time constant on the ideal fault response is applied to
the problem, as shown on Figure 7 the coupled and the decoupled filter also detects
the fault and reaches an approximate steady state value after 10sec, although the bias
on the actuator is−2.25deg the estimate is between−0.1rad to −0.175rad which
is at least 5.7deg. The isolation property of both coupled and de-coupled filters can
be seen, as the elevator fault signal is nearly identical to zero.

The following scenario is theµ filter with 0.1sec time constant, which provides
also excellent detection and isolation properties. As seenon Figure 8 the filters
reach steady state after 7.5sec which is not significantly faster than with the previous
design with 1sec time constant. It is found during the filter synthesis that further
decreasing the ideal response time constant does not improve the performance and
only performance degradation occurs with further increasing the response speed.

To show the efficiency of the D-K iteration based design aH∞ filter with with
0.1sec time constant is also synthesized. As shown on Figure 9 the decoupled filter
achieves significantly lower steady state value, making thedetection thresholding
difficult, while the coupled design does not satisfy the isolation property, since large
signals can be seen on the otherwise healthy elevator actuator.

The second scenario is elevator runaway. At 10sec the elevator drifts away from
its current position with 1deg/s rate. According to the specification runaway has
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Fig. 6 Aileron liquid jamming scenario, fault occurs at 10s
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to be detected before 2.5deg, meaning there is 2.5sec for detection in this case. As
shown on Figure 10 the elevator runaway results initially insmall pitch rate. But
later, around 25sec, as the aircraft drifts away from the trim condition, the control
system starts to counteract radically using high elevator commands which causes
large pitch rate and oscillatory motion. The THS is also deflected to counteract the
elevator deflection, but roll rate and rudder command remains unaffected.
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Fig. 10 Elevator runaway scenario, fault occurs at 10s with 1deg/s rate

The µ filter with 1sec time constant on the ideal fault response is applied to
the second scenario, as shown on Figure 11. The coupled filterdetects the run-
away and indicates the fault after few seconds given the threshold is around 0.1,
which provides safe false alarm protection in other fault cases. On the other hand
the de-coupled filter does not indicate the fault and remainsunaffected, indicating
the necessity of coupled synthesis.

Theµ filter with 0.1sec time constant on the ideal fault response is applied next
to the second scenario, as shown on Figure 12. The de-coupledfilter still does not
work as expected. The coupled filter provides similar response to the previous sce-
nario, the difference in time constant cannot be seen, due tothe characteristics of the
fault and the fact that only little margin is left to increasethe speed of response of
the detection filter with the current approach, with given weights. It is worth men-
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Fig. 11 Elevator runaway,µ filter with 1sec time constant

tioning here, that due to the cruise flight condition, where little elevator excitation
is expected, the case when the elevator is stuck is difficult to detect.
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Fig. 12 Elevator runaway,µ filter with 0.1sec time constant

5 Conclusions

This paper considered the design of robustH∞/µ filters and their application to a
high fidelity aircraft model, and shows the advantages of advanced methods, those
are candidates for future industrial implementation. Aileron and elevator faults are
successfully detected and when designed properly isolatedfrom each other in rea-
sonable time. Performance of different designs with fasterand slower ideal fault
detection response are compared and the article shows the performance bounds on
detection speed, given the present model and methods. It is also shown that elevator
fault detection is only possible with coupled design takingthe full 6-DOF aircraft
dynamics into account. Further research should extend the validity of the present
approach and based on the present findings provide a fault detection approach for a
larger flight envelope.
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