Bode Plots: Higher Order Systems

If the system is \(n \)th order then the Bode plot can be sketched by decomposing the transfer function into simple terms.

Consider the general case where \(G(s) \) has only real poles and zeros:

\[
G(s) = K \frac{(s+z_1)(s+z_2)\ldots(s+z_m)}{(s+p_1)(s+p_2)\ldots(s+p_n)}
\]

The poles of \(G(s) \) are at \(-p_1, -p_2, \ldots, -p_n\) and the zeros are at \(-z_1, -z_2, \ldots, -z_m\). We’ll assume they’ve been ordered:

\[
|z_1| \leq |z_2| \leq \ldots \leq |z_m|
\]

and \(|p_1| \leq |p_2| \leq \ldots \leq |p_n| \)

Step 1 First convert this transfer function to a standard form where all terms are of the form \(1 + \frac{c}{s} \) for some \(c \).

\[
G(s) = K \frac{z_1(1 + \frac{s}{z_1}) \cdot z_2(1 + \frac{s}{z_2}) \cdot \ldots \cdot z_m(1 + \frac{s}{z_m})}{p_1(1 + \frac{s}{p_1}) \cdot p_2(1 + \frac{s}{p_2}) \cdot \ldots \cdot p_n(1 + \frac{s}{p_n})}
\]

\[
\Rightarrow G(s) = \left[\frac{K z_1 z_2 \ldots z_m}{p_1 p_2 \ldots p_n} \right] \frac{(1 + \frac{s}{z_1})(1 + \frac{s}{z_2}) \ldots (1 + \frac{s}{z_m})}{(1 + \frac{s}{p_1})(1 + \frac{s}{p_2}) \ldots (1 + \frac{s}{p_n})}
\]

\[
\Rightarrow G(s) = A \frac{(1 + \frac{s}{z_1})(1 + \frac{s}{z_2}) \ldots (1 + \frac{s}{z_m})}{(1 + \frac{s}{p_1})(1 + \frac{s}{p_2}) \ldots (1 + \frac{s}{p_n})}
\]
Next sketch the magnitude plot. Note that

\[
|G(j\omega)| = |A_1| \cdot \frac{|1 + j\omega/z_1| \cdot |1 + j\omega/z_2| \ldots |1 + j\omega/z_m|}{|1 + j\omega/p_1| \cdot |1 + j\omega/p_2| \ldots |1 + j\omega/p_n|}
\]

Recall that \(\log xy = \log x + \log y\) and \(\log \frac{1}{x} = -\log x\).
Thus the magnitude of \(G(j\omega)\) in dB is given by

\[
20 \log_{10} |G(j\omega)| = 20 \log_{10} |A_1| + \left[20 \log_{10} |1 + j\omega/z_1| + \ldots + 20 \log_{10} |1 + j\omega/z_m|\right] \\
+ \left[20 \log_{10} |1 + j\omega/p_1| + \ldots + 20 \log_{10} |1 + j\omega/p_n|\right]
\]

The Bode magnitude plot of \(G(j\omega)\) is equal to the sum of simple terms. Specifically you can add the Bode plots of the constant term \(|A_1|\), the real zero terms \(|1 + j\omega/z_i|\) and subtract the Bode plots for \(|1 + j\omega/p_i|\).

We've already shown how to sketch Bode plots for terms of the form \(|1 + j\omega/c|\) where \(c\) is a constant.

For \(\omega < c\) \(20 \log_{10} |1 + j\omega/c| \approx 20 \log_{10} 1 = 0\) dB

For \(\omega > c\) \(20 \log_{10} |1 + j\omega/c| \approx 20 \log_{10} |\omega/c| \Rightarrow \text{slope is} \ + 20\text{ dB/dec}

The "corner" frequency is \(\omega = c\).
Step 3

Next sketch the Bode phase plot of $G(j\omega)$. Let $\phi_G(j\omega)$ denote the phase (or angle) of G.

Recall that for two complex numbers x and y,

$$\phi(x + jy) = \phi(x) + \phi(y).$$

In other words, the phase of a product of complex numbers is the sum of the phases. Also, $\phi(1/x) = -\phi(x)$.

$$\phi(G(j\omega)) = \phi(A) + \left[\phi \left(1 + j\omega \phi_1 \right) + \ldots + \phi \left(1 + j\omega \phi_m \right) \right]$$

$$+ \left[\phi \left(\frac{1}{j\omega + p_1} \right) + \ldots + \phi \left(\frac{1}{j\omega + p_n} \right) \right]$$

We've already shown how to sketch Bode phase plots for terms of the form $\phi(1+j\omega)$.

For $\omega < \omega_c \Rightarrow \phi(1+j\omega) = 0^\circ$

For $\omega > \omega_c \Rightarrow \phi(1+j\omega) = 90^\circ$

For $\omega = \omega_c \Rightarrow \phi(1+j) = 45^\circ$

This implies that the Bode phase plot of $G(j\omega)$ is equal to the sum of the phase contributions due to the constant term, real zeros, and real poles, except for the constant A is a real # and hence

$\phi A = 0^\circ$ if $A > 0$ and $\phi A = 180^\circ$ if $A < 0$.
Ex7 \[G(s) = \frac{10(5+10)}{(s+1)(s+100)} \]

\[G(s) \] has a zero at \(s = -10 \) and poles at \(p = -1 \) and \(p = -100 \).

Step 1 Put \(G(s) \) in the standard form

\[G(s) = \frac{10 - 10(s+5/3)}{(1+s) \cdot 100 (1+s/100)} \]

\[\Rightarrow G(s) = \frac{10 - 10(s + 5/3)}{100 (1+s/100)} \]

\[\Rightarrow G(j\omega) = 1 + \frac{j\omega/10}{(1+j\omega) (1+j\omega/100)} \]

Step 2 Draw the Bode Magnitude plot

\[20 \log_{10} |G(j\omega)| = 20 \log_{10} |1 + j\omega/10| + 20 \log_{10} |1/\omega|^{-1} + 20 \log_{10} |1 + j\omega/100|^{-1} \]
Step 3

Draw the phase plot.

\[\frac{\Delta G(\omega)}{\Delta G(\omega)} = 4(1 + \frac{1}{\omega/\omega_0}) + 4(1 + \omega) + 4(1 + \frac{\omega/\omega_0}{\omega/\omega_0})^{-1} \]

4G in deg

4G is the sum of the 3 phases.

This plot is only a straight line approximation of the true Bode plot.
A similar procedure can be used to sketch the Bode plot for systems that are higher order and have complex poles/zeros.

\[G(s) = \frac{s + 0.01}{s^2 + 0.15s + 1} = \frac{0.01}{s + 0.101} \]

This transfer function has a zero at \(z = -0.01 \) and a lightly damped complex pair of poles with \(\omega_n = 1 \) and \(2\pi\omega_n = 0.1 \rightarrow f = 0.05 \). Note!

\[
20 \log_{10} |G(j\omega)| = 20 \log_{10} 0.01 + 20 \log_{10} \left| \frac{1}{1 + \omega^2/0.101^2 + 1} \right|
\]

\[-40 \text{ dB} \text{ because} \]

\[\log_{10} 0.01 = -2 \]

The Bode magnitude plot is thus the sum of 3 terms:

\[
\text{Magnitude (dB)} \quad 11 + \omega/0.011 \text{ in dB}
\]

Slope is \(\omega \text{dB/dec} \)

A more accurate sketch of the second order term includes the resonant peak \(\frac{1}{2\pi} = 20 \text{ dB/dec} \text{ (Error)} \)

The approx peak of \(\frac{1}{2\pi} \) is accurate if \(f \) is small \((f < 1) \)

Slope is \(\omega \text{dB/dec} \)

\[-40 \text{ dB} \text{/dec} \]

\[-40 \text{ dB} \]

\[-10 \text{ dB} \text{/dec} \]

\[0 \text{ dB} \]

\[20 \text{ dB} \]

\[-80 \text{ dB} \]
Add these 3 Bode Magnitude plots to obtain the final sketch of G

$|G| \text{ in dB}$

Include resonant peak for more accurate sketch.

Slope is -20 dB/dec

To draw the phase plot of G note:

$\phi G = \phi 0.01 + \phi (1 + j\omega / 0.01) + \phi \left(\frac{1}{(j\omega)^2 + 0.1j\omega + 1} \right)$

Thus the phase plot is the sum of 2 terms:

$\phi G (\text{deg})$

A more accurate sketch:

If ω is then the phase transition is shift.
Sum the phase plots for the two terms to get the phase plot for \(\angle G \)