University of Minnesota
Aerospace Engineering and Mechanics
Winter 1999 Seminar Series



MAP Stability, Design and Analysis


A. J. Ericsson-Jackson, Ph.D.

NASA Goddard Space Flight Center, Code 572, Greenbelt, MD, 20771


Abstract


Abstract The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

Friday, March 5, 1999
209 Akerman Hall
2:30-3:30 p.m.


Refreshments served after the seminar in 227 Akerman Hall.
Disability accomodations provided upon request.
Contact Kristal Belisle, Senior Secretary, 625-8000.