The historic home of the University of Minnesota's aerospace engineering and mechanics program gets a stellar renovation

TOP FLIGHT

By Camille LeFevre

The first time architect Greg Fenton, AIA, walked into the University of Minnesota's Akerman Hall, he was both amazed and dismayed. The airplane hangar for the school's Aerospace Engineering and Mechanics (AEM) department was astounding, its wide and deep two-story clear-span space bounded by a suspended U-shaped mezzanine. Who knew the 1949 building, designed by C.H. Johnston Architects and Engineers (the firm succeeding Clarence H. Johnston, who designed many of the buildings along nearby Northrop Mall), housed such a spectacular space, where aeronautics research was conducted with actual World War II aircraft?

But the hangar's condition was disconcerting. "It was completely underutilized," says Fenton, who led BWBR's renovation of the historic building. "Multiple modifications of the space over the last three
The new Akerman offers comfortable lounge space for AEM’s more than 450 undergraduate and graduate students.

1949

AKERMAN HALL HANGAR RENOVATION

Location:
Minneapolis,
Minnesota

Client:
University of Minnesota

Architect:
BWBR
bwbr.com

Preservation consultant:
Hess Roise
and Company

Mechanical engineer:
Sebesta Blomberg

Principal-in-charge:
Katherine
Lendonas, AIA

Construction manager:
M.A. Mortenson
Company

Energy design assistance:
The Weidt Group
twgi.com

Size:
66,000 square feet
(16,000 in the hangar)

Completion date:
October 2010

Cost:
$9.8 million
($4.6 for the hangar)

The renovation transformed the hangar from a crowded, underperforming space to an open learning environment.

The hangar space, once used for hands-on aircraft study, now boasts flexible work and laboratory spaces on the first floor and mezzanine, open space on the main floor for lectures and presentations, and dedicated research labs.

or four decades—including an ad-hoc exit corridor—hadn’t retained the spirit of the hangar. Plus, the hangar was a mess with non-original, out-of-date labs and a woodshop."

Still, Fenton adds, “We quickly grasped that we could take the hangar back to its essence and transform it into a modern student workspace with light-industrial labs, grad-student study rooms, and collaboration space for the department and the university at large.” One look at the “before” and “after” pictures confirms Fenton’s contention that “the transformation both recalls the hangar’s history and looks forward with new purpose.”

Today, the hangar is a light-filled study lounge lined on three sides and two levels with collaborative spaces, workstations, and labs. In the light-industrial and state-of-the-art computer and model-building laboratories, students conduct research on the guidance, navigation, and control of indoor micro-air vehicles, as well as on smart materials and wind turbines. “It was important to us that the renovation focus on improving our students’ educational experiences,” says AEM department head Gary Balas.

"BWBR embraced our vision and helped us meet and exceed our expectations,” Balas continues. “The main-floor collaborative space in the hangar is brilliant. It’s constantly full of students working, interacting, studying, and hanging out, and the students are not all aerospace engineers, since Akerman Hall is home to 10 general purpose classrooms.” The glass-and-steel mezzanine wall accentuates

>> continued on page 55
Top Flight

the hangar’s spaciousness, he adds. “Yet students whose offices are on the second floor have a quiet workspace with the best views on campus.”

The architects also brought the building up to code. The team replaced aging fenestration with new high-performance, operable windows in an approved historical style (approval was necessary because the building is located in a National Historic Preservation District). BWBR also replaced a driveway and original folding hangar door with broad, welcoming steps below paneled windows that lead from the Scholars Walk into the building.

The renovation also added a highly efficient mechanical system with heat recovery and displacement ventilation, as well as daylighting controls and occupancy sensors. Akerman Hall now operates 30 percent more efficiently than Minnesota energy code mandates. “We needed to modernize the building in a way that maintained its historic character while creating the best value for the hangar space in terms of use and functionality,” says Fenton.

Mission accomplished. “I’m so pleased we could return an historic engineering education building back to its full glory,” says Balas, “and at the same time offer students new, efficient ways of utilizing our amazing hangar space.” AMN

Butler Square

million-square-foot behemoth was best described by critic Larry Millett as “a sternly poetic mass of wine-colored brick that conveys the commercial might of Minneapolis at the dawn of the twentieth century.” Jones had spent his first year after graduating from MIT in the drafting rooms of H.H. Richardson, clearly acquiring a taste for massive masonry. His colleagues would come to revere him as not only a versatile architect but also a master of structural engineering in an era before those professions diverged.

The building’s own website claims that the timber for Butler’s structural frame was Douglas fir supplied by Waller’s own Minnesota sawmills. If the material was Minnesota-grown, it could not be Douglas fir, a species native to the state. That glorious riot of columns, beams, purlins, and decking visible in the building’s atria is almost certainly old-growth white pine, the bountiful commodity that drove Minnesota’s logging economy to its zenith in 1905. On daily display, the soaring, sawn pine timber remains a double slice of Minnesota history. AMN

REALSTONE

Real, Reclaimed & Prefabricated Natural Stone Systems
revolutionize the installation of natural stone veneer because they come in 6-inch x 24-inch pre-formed panels. These panels make installation much easier than selecting individual pieces, reducing COST, WEIGHT and TIME.

REALSTONE SYSTEMS

Realstone System panels are made of authentic split stone – slate, quartzite or sandstone – cut and formed into panels for exterior or interior applications. Realstone System panels join together seamlessly. Corner pieces are cut with fingered ends joining each panel together with strength and without visible seams. Realstone System panels are available in multiple colors and textures. They revolutionize the installation of natural stone, reducing cost, weight and installation time.

MB

Minnesota Brick & Tile

520 W. 86th Street, Bloomington, Minnesota 55420 tel 952-888-9239 fax 952-888-0077

www.mnbrick.com Click on Related Sites and Products to see all of our products.