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Motivation: Flight Controls

I Validation of flight controls mainly relies on linear analysis
tools and nonlinear (Monte Carlo) simulations.

I This approach generally works well but there are drawbacks:
I It is time consuming and requires many well-trained engineers.
I Linear analyses are valid over an infinitesimally small region of

the state space.
I Linear analyses are not sufficient to understand truly nonlinear

phenomenon, e.g. the falling leaf mode in the F/18 Hornet.
I Linear analyses are not applicable for adaptive control laws or

systems with hard nonlinearities.

I There is a need for nonlinear analysis tools which provide
quantitative performance/stability assessments over a
provable region of the state space.

!"#$%&'()&*+(,-./001112#3455"#6+4#,"7'52#*+(
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Example: F/A-18 Hornet Falling Leaf Mode
I The US Navy lost many F/A-18

A/B/C/D Hornet aircraft due to an
out-of-control phenomenon known as
the Falling Leaf mode.

I Revised control laws were integrated
into the F/A-18 E/F Super Hornet and
this appears to have resolved the issue.

!"#$%&'()&*+(,-./001112#3455"#6+4#,"7'52#*+(

I Classical linear analyses did not detect a performance issue
with the baseline control laws.

I We have used nonlinear analyses to estimate the size of the
region of attraction (ROA) for both controllers.

I The ROA is the set of initial conditions which can be brought
back to the trim condition by the controller.

I The size of this set is a good metric for detecting departure
phenomenon.

I These nonlinear results will be discussed later in the workshop.
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Representative Example

ẋ4 = Acx4 +Bcy
u = Ccx4

0.75 Φ

1.25
ẋp = fP (xp, δ) +B(xp, δ)u
y = [x1 x3]T

- -

- -

?c- -

I 3-state pitch-axis model,
I cubic vector field, bilinear terms involving u and xp
I 2 uncertain parameters (δ, mass and mass-center variability)
I unmodeled dynamics uncertainty, Φ

I uncertainty in dynamic process how control surface deflections
manifest as forces and torques on the rigid aircraft

I Φ causal, stable operator, with ‖Φ(z)‖2 ≤ ‖z‖2 for all z ∈ L2

I integral control

Closed-loop system is not globally stable
I robust region-of-attraction analysis to assess effect of

I nonzero initial conditions
I two forms of model uncertainty

6/235



Representative Example: Results

Form of results

I Ball of initial conditions (eg., xT0 x0 ≤ β) guaranteed to lie in
the region-of-attraction

I Provably correct, certified by sum-of-squares decompositions

Nominal: Optimized quartic Lyapunov function certifies β = 15.3,
and there is an initial condition with xT0 x0 = 16.1 which
results in a divergent solution.

Parametric: Using a divide-and-conquer strategy, β = 7.7 is certified
for all parameter values; moreover, there is an admissible
parameter and initial condition with xT0 x0 = 7.9 which
results in a divergent solution.

Dynamics Uncertainty: β = 6.7 is certified for all admissible operators Φ.

Parametric and Unmodeled Dynamics: β = 4.1 is certified for all
parameter values and all admissible operators Φ.
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Tools for quantitative nonlinear robustness/performance
analysis

Quantify with certificate

............................. Internal

Regions-of-attraction

Input-output

Reachable sets,
Local gains

Nominal
system

ẋ = f(x)
z� ẋ = f(x,w)

z = h(x)
�w

Parametric
uncertainty

ẋ = f(x, δ)
z� ẋ = f(x,w, δ)

z = h(x, δ)
�w

Unmodeled
dynamics

y u

- Φ

ẋ = f(x, u)
y = g(x)

� y u
z � � w

- Φ

ẋ = f(x,w, u)
z = h(x)
y = g(x)

�

8/235



Outline

I Motivation
I Preliminaries

I Linear Algebra Notation
I Optimization with Matrix Inequalities (LMIs, BMIs, SDPs)
I Polynomials and Sum of Squares
I SOS Optimization and Connections to SDPs
I Set Containment Conditions

I ROA analysis using SOS optimization and solution strategies

I Robust ROA analysis with parametric uncertainty

I Local input-output analysis

I Robust ROA and performance analysis with unmodeled
dynamics

I Applications

9/235



Warning

I In several places, a relationship between an algebraic condition
on some real variables and input/output/state properties of a
dynamical system is claimed.

I In nearly all of these types of statements, we use the same
symbol for a particular real variable in the algebraic statement
as well as the corresponding signal in the dynamical system.

I This could be a source of confusion, so care on the readers
part is required.
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Linear Algebra Notation

I R, C, Z, N denote the set of real numbers, complex numbers,
integers, and non-negative integers, respectively.

I The set of all n× 1 column vectors with real number entries is
denoted Rn.

I The set of all n×m matrices with real number entries is
denoted Rn×m.

I The element in the i’th row and j’th column of M ∈ Rn×m is
denoted Mij or mij .

I If M ∈ Rn×m then MT denotes the transpose of M .
I Set notation:

I a ∈ A is read “a is an element of A”.
I X ⊂ Y is read “X is a subset of Y ”.
I Given S ⊂ Rn such that 0 ∈ S, Scc denotes the connected

component of the set containing 0.
I Ωp,β will denote the sublevel set {x ∈ Rn : p(x) ≤ β}.
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Sign Definite Matrices

I M ∈ Rn×n is symmetric if M = MT .

I The set of n× n symmetric matrices is denoted Sn×n.
I F ∈ Sn×n is:

1. positive semidefinite (denoted F � 0) if xTFx ≥ 0 for all
x ∈ Rn.

2. positive definite (denoted F � 0) if xTFx > 0 for all nonzero
x ∈ Rn.

3. negative semidefinite (denoted F � 0) if xTFx ≤ 0 for all
x ∈ Rn.

4. negative definite (denoted F ≺ 0) if xTFx < 0 for all nonzero
x ∈ Rn.

I For A,B ∈ Sn×n, write A ≺ B if A−B ≺ 0. Similar
notation holds for �, �, and �.
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Linear and Bilinear Matrix Inequalities

I Given matrices {Fi}Ni=0 ⊂ Sn×n, a Linear Matrix Inequality

(LMI) is a constraint on λ ∈ RN of the form:

F0 +
N∑
k=1

λkFk � 0

I Given matrices {Fi}Ni=0, {Gj}Mj=1, {Hk,j}Nk=1
M
j=1 ⊂ Sn×n, a

Bilinear Matrix Inequality (BMI) is a constraint on λ ∈ RN

and γ ∈ RM of the form:

F0 +
N∑
k=1

λkFk +
M∑
j=1

γkGj +
N∑
k=1

M∑
j=1

λkγjHk,j � 0
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Semidefinite Programming (SDP)

I A semidefinite program is an optimization problem with a
linear cost, LMI constraints, and matrix equality constraints.

I Given matrices {Fi}Ni=0 ⊂ Sn×n and c ∈ RN , the primal and
dual forms of an SDP are:

1. Primal Form:∗

maxZ∈Sn×n −Tr [F0Z]
subject to: Tr [FkZ] = ck k = 1, . . . , N

Z � 0
2. Dual Form:

minλ∈RN cTλ

subject to: F0 +
∑N
k=1 λkFk � 0

(∗) The equality constraints in the primal form are linear equality constraints on Z and hence it is easy to

construct a matrix A such that these equality constraints can be equivalently expressed as Az = c where

z = vec(Z). This is the form which will appear when we consider polynomial optimizations.
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Properties of SDPs

I SDPs have many interesting and useful properties:
I The primal form is a concave optimization and the dual form is

a convex optimization.
I For both forms, all local optima are global optima.
I The primal/dual forms are Lagrange duals of each other.
I If the primal/dual problems are strictly feasible then there is no

duality gap, i.e. both problems achieve the same optimal value.

I There is quality software to solve SDPs
I Freely available solvers: Sedumi, SDPA-M, CSDP, DSDP,

SDPT3
I Commercial solvers: LMILab, PENNON
I Some algorithms, e.g. the method of centers, solve only the

dual form.
I Primal/dual methods, e.g. Sedumi, solve both forms

simultaneously.
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Optimizations with BMIs
I Given c ∈ RN , d ∈ RM , and {Fi}Ni=0, {Gj}Mj=1, {Hk,j}Nk=1

M
j=1

⊂ Sn×n, a bilinear matrix optimization is of the form:

min
λ∈RN ,γ∈RM

cTλ+ dT γ

subject to:

F0 +
NX
k=1

λkFk +

MX
j=1

γkGj +
NX
k=1

MX
j=1

λkγjHk,j � 0

I Optimizations with BMIs do not have all of the nice
properties of SDPs. In general,

I They are not convex optimizations.
I They have provably bad computational complexity.
I There can be local minima which are not global minima.
I The Lagrange dual is a concave optimization but there is a

duality gap.

I One useful property is that the bilinear matrix inequality
constraint is an LMI if either λ or γ is held fixed.
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Solving BMI Optimizations

I Approaches to solving BMI Optimizations:
I Commercial software designed for BMIs, e.g. PENBMI
I Gradient-based nonlinear optimization, e.g. fmincon
I Coordinate-wise Iterations (using SDPs):

1. Initialize a value of λ.
2. Hold λ fixed and solve for optimal γ This is an SDP.
3. Hold γ fixed and solve for optimal λ This is an SDP.
4. Go back to step 2 and repeat until values converge.

I Branch and Bound
I Exploit structure: If M = 1, the objective function is γ, and

the BMI is a quasi-convex constraint on λ and γ then the BMI
optimization can be solved via bisection.

I Issues:
I The solver may converge to a local minima which is not the

global minima. Even worse, coordinate-wise iterations may
stop at non-local minima.

I The final solution is dependent on solver initial conditions.
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Polynomials

I Given α ∈ Nn, a monomial in n variables is a function
mα : Rn → R defined as mα(x) := xα1

1 xα2
2 · · ·xαnn .

I The degree of a monomial is defined as degmα :=
∑n

i=1 αi.

I A polynomial in n variables is a function p : Rn → R defined
as a finite linear combination of monomials:

p :=
∑
α∈A

cαmα =
∑
α∈A

cαx
α

where A ⊂ Nn is a finite set and cα ∈ R ∀α ∈ A.

I The set of polynomials in n variables {x1, . . . , xn} will be
denoted R [x1, . . . , xn] or, more compactly, R [x].

I The degree of a polynomial f is defined as
deg f := maxα∈A,cα 6=0 degmα.

I θ ∈ R [x] will denote the zero polynomial, i.e. θ(x) = 0 ∀x.
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Multipoly Toolbox

I Multipoly is a Matlab toolbox for the creation and
manipulation of polynomials of one or more variables.

I Example:

pvar x1 x2
p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4

I A scalar polynomial of T terms and V variables is stored as a
T × 1 vector of coefficients, a T × V matrix of natural
numbers, and a V × 1 array of variable names.

p.coef =


2
2
−1
5

 , p.deg =


4 0
3 1
2 2
0 4

 , p.var =
[

x1
x2

]
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Vector Representation

I If p is a polynomial of degree ≤ d in n variables then there
exists a coefficient vector c ∈ Rlw such that p = cTw where

w(x) :=
[
1, x1, x2, . . . , xn, x

2
1, x1x2, . . . , x

2
n, . . . , x

d
n

]T
lw denotes the length of w. It is easy to verify lw =

(
n+d
d

)
.

I Example:

p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4;
x = [x1;x2];
w = monomials(x,0:4);
c = poly2basis(p,w);
p - c’*w
[c w]
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Gram Matrix Representation

I If p is a polynomial of degree ≤ 2d in n variables then there
exists a Q ∈ S lz×lz such that p = zTQz where

z :=
[
1, x1, x2, . . . , xn, x

2
1, x1x2, . . . , x

2
n, . . . , x

d
n

]T
The dimension of z is lz =

(
n+d
d

)
.

I Equating coefficients of p and zTQz yields linear equality
constraints on the entries of Q

I Define q := vec(Q) and lw :=
(
n+2d

2d

)
.

I There exists A ∈ Rlw×l2z and c ∈ Rlw such that p = zTQz (i.e.
p(x)− z(x)TQz(x) ≡ θ) is equivalent to Aq = c.

I There are h := lz(lz+1)
2 − lw linearly independent homogeneous

solutions {Ni}hi=1 each of which satisfies zTNiz = θ(x).

I Summary: All solutions to p = zTQz can be expressed as the
sum of a particular solution and a homogeneous solution. The
set of homogeneous solutions depends on n and d while the
particular solution depends on p.
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Gram Matrix Example

p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4;

[z,c,A,w] = gramconstraint(p);

p-c’*w

Q = full(reshape(A\c,[3 3]));

p-z’*Q*z

% Q is a particular solution in vectorized form

% Each column of N is a homogenous solution in vectorized form.

[z,Q,N] = gramsol(p);

Q = full(reshape(Q,[3 3]));

N = full(reshape(N,[3 3]));

p-z’*Q*z

z’*N*z

z =

 x2
1

x1x2

x2
2

 , Q =

 2 1 −0.5
1 0 0
−0.5 0 5

 , N =

 0 0 −0.5
0 1 0
−0.5 0 0
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Positive Semidefinite Polynomials

I p ∈ R [x] is positive semi-definite (PSD) if p(x) ≥ 0 ∀x. The
set of PSD polynomials in n variables {x1, . . . , xn} will be
denoted P [x1, . . . , xn] or P [x].

I Testing if p ∈ P [x] is NP-hard when the polynomial degree is
at least four.

I For a general class of functions, verifying global non-negativity
is recursively undecidable.

I Our nonlinear analysis tools (to be presented) require a
computational procedure for constructing polynomials that are
PSD.

I Objective: Given p ∈ R [x], we would like a polynomial-time
sufficient condition for testing if p ∈ P [x].

Reference: Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and

Optimization, Ph.D. thesis, California Institute of Technology, 2000. (Chapter 4 of this thesis and the reference

contained therein summarize the computational issues associated with verifying global non-negativity of functions.)
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Sum of Squares Polynomials
I p is a sum of squares (SOS) if there exist polynomials {fi}Ni=1

such that p =
∑N

i=1 f
2
i .

I The set of SOS polynomials in n variables {x1, . . . , xn} will
be denoted Σ [x1, . . . , xn] or Σ [x].

I If p is a SOS then p is PSD.
I The Motzkin polynomial, p = x2y4 + x4y2 + 1− 3x2y2, is

PSD but not SOS.
I Hilbert (1888) showed that P [x] = Σ [x] only for a) n = 1, b)

degree= 2, and c) degree= 4, n = 2.
I p is a SOS iff there exists Q � 0 such that p = zTQz.

Proof:
p is SOS↔ ∃ polynomials {fi}Ni=1 such that p =

PN
i=1 f

2
i

↔ ∃{Li}Ni=1 ⊆ Rlz such that p =
PN
i=1(Liz)

2

↔ ∃L ∈ RN×lz such that p = zTLTLz

↔ ∃Q � 0 such that p = zTQz

Reference: Choi, M., Lam, T., and Reznick, B., Sums of Squares of Real Polynomials, Proceedings of Symposia in

Pure Mathematics, Vol. 58, No. 2, 1995, pp. 103 − 126.
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SOS Example (1)

All possible Gram matrix representations of

p = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2

are given by zT (Q+ λN) z where:

z =
[

x2
1

x1x2

x2
2

]
, Q =

[
2 1 −0.5
1 0 0
−0.5 0 5

]
, N =

[
0 0 −0.5
0 1 0
−0.5 0 0

]

p is SOS iff

Q+ λN � 0

for some λ ∈ R.
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SOS Example (2)

p is SOS since Q+ λN � 0 for λ = 5.
An SOS decomposition can be constructed from a Cholesky
factorization:

Q+ 5N = LTL

where:

L =
1√
2

[
2 1 −3
0 3 1

]
Thus

p = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2

= (Lz)T (Lz)

=
1
2
(
2x2

1 − 3x2
2 + x1x2

)2 +
1
2
(
x2

2 + 3x1x2

)2 ∈ Σ [x]

Example from: Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness

and Optimization, Ph.D. thesis, California Institute of Technology, 2000.
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Gram Matrix Rank

I The number of terms in the SOS decomposition is equal to
the rank of the Gram matrix.

I In the previous example Q+ 5N � 0 has rank = 2 and the
SOS decomposition has two terms.

I For λ = 2.5, Q+ 2.5N � 0 has rank = 3 and the SOS
decomposition has three terms.

I Low rank Gram matrix solutions are positive semidefinite but
not strictly positive definite.

I For some problems, the feasible solution set is low-dimension
and consists only of low-rank Gram matrix solutions. This can
cause some numerical difficulties.
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Connection to LMIs

Checking if a given polynomial p is a SOS can be done by solving a
linear matrix inequality (LMI) feasibility problem.

1. Primal (Image) Form:

I Find A ∈ Rlw×l2z and c ∈ Rlw such that p = zTQz is
equivalent to Aq = c where q = vec(Q).

I p is a SOS if and only if there exists Q � 0 such that Aq = c.

2. Dual (Kernel) Form:
I Let Q0 be a particular solution of p = zTQz and let {Ni}hi=1

be a basis for the homogeneous solutions.
I p is a SOS if and only if there exists λ ∈ Rh such that
Q0 +

∑h
i=1 λiNi � 0.
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Complexity of SOS LMI Feasibility Problem
If p is a degree 2d polynomial in n variables then the dimensions of
the primal or dual LMI test for p ∈ Σ [x] can be computed with the
function sossize:

n = 2; % Number of variables in polynomial

deg = 10; % Degree of polynomial

[lz,lw,h]=sossize(n,deg)

lz =
“
n+d
d

”
2d=4 6 8 10

n = 2 6 10 15 21
5 21 56 126 252
9 55 220 715 2002

14 120 680 3060 11628
16 153 969 4845 20349

lw =
“
n+2d

2d

”
2d=4 6 8 10

n = 2 15 28 45 66
5 126 462 1287 3003
9 715 5005 24310 92378

14 3060 38760 319770 1961256
16 4845 74613 735471 5311735

h =
lz(lz+1)

2 − lw 2d=4 6 8 10

n = 2 6 27 75 165
5 105 1134 6714 28875
9 825 19305 231660 1912625

14 4200 192780 4363560 65649750
16 6936 395352 11003964 201739340
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SOS Test with issos
The issos function tests if p ∈ Σ [x] by converting to an LMI
feasibility problem:

[feas,z,Q,f] = issos(p)

feas=1 if p ∈ Σ [x] and feas=0 otherwise. If feasible, then

I z and Q provide a Gram matrix decomposition:

p = z’*Q*z,

where z is a vector of monomials and Q is a positive
semidefinite matrix.

I z may not include the complete list of
(
n+d
d

)
monomials since

issos uses some simple heuristics to prune out un-needed
monomials.

I f is a vector of polynomials providing the SOS decomposition:

p = f’*f,
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SOS Example using issos
>> pvar x1 x2;

>> p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4;

>> [feas,z,Q,f]=issos(p);

% Verify feasibility of p \in SOS

>> feas

feas =

1

% Verify z and Q are a Gram matrix decomposition

>> p - z’*Q*z

ans =

-1.3185e-012*x1^4 + 6.5814e-013*x1^3*x2 - 2.3075e-012*x1^2*x2^2 +

5.6835e-016*x1*x2^3 - 3.304e-013*x2^4

% Verify Q is positive semi-definite

>> min(eig(Q))

ans =

0.7271

% Verify SOS decomposition of p

>> p - f’*f

ans =

-1.3221e-012*x1^4 + 6.5148e-013*x1^3*x2 - 2.3106e-012*x1^2*x2^2 +

1.3323e-015*x1*x2^3 - 3.3396e-013*x2^4
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SOS Feasibility

SOS Feasibility: Given polynomials {fk}mk=0, does there exist
α ∈ Rm such that f0 +

∑m
k=1 αkfk is a SOS?

The SOS feasibility problem can also be posed as an LMI feasibility
problem since α enters linearly.

1. Primal (Image) Form:

I Find A ∈ Rlw×l2z and ck ∈ Rlw such that fk = zTQz is
equivalent to Aq = ck where q = vec(Q).

I Define C := −[c1, c2, · · · cn] ∈ Rlw×n.
I There is an α ∈ Rn such that f0 +

∑m
k=1 αkfk is a SOS iff

there exists α ∈ Rn and Q � 0 such that Aq + Cα = c0

2. Dual (Kernel) Form:
I Let Qk be particular solutions of fk = zTQz and let {Ni}hi=1

be a basis for the homogeneous solutions.
I There is an α ∈ Rn such that f0 +

∑m
k=1 αkfk is a SOS iff

there exists α ∈ Rn and λ ∈ Rh such that
Q0 +

∑m
k=1 αkQk +

∑h
i=1 λiNi � 0.
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SOS Programming

SOS Programming: Given c ∈ Rm and polynomials {fk}mk=0, solve:

min
α∈Rm

cTα

subject to:

f0 +
m∑
k=1

αkfk ∈ Σ [x]

This SOS programming problem is an SDP.

I The cost is a linear function of α.

I The SOS constraint can be replaced with either the primal or
dual form LMI constraint.

A more general SOS program can have many SOS constraints.
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General SOS Programming

SOS Programming: Given c ∈ Rm and polynomials {fj,k}Nsj=1
m
k=0,

solve:

min
α∈Rm

cTα

subject to:

f1,0(x) + f1,1(x)α1 + · · ·+ f1,m(x)αm ∈ Σ [x]
...

fNs,0(x) + fNs,1(x)α1 + · · ·+ fNs,m(x)αm ∈ Σ [x]

There is freely available software (e.g. SOSTOOLS, YALMIP,
SOSOPT) that:

1. Converts the SOS program to an SDP

2. Solves the SDP with available SDP codes (e.g. Sedumi)

3. Converts the SDP results back into polynomial solutions
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SOS Programming with sosopt

I SOS programs can be solved with
[info,dopt,sossol] = sosopt(sosconstr,x,obj)

I sosconstr is a cell array of polynomials constrained to be SOS.
I x is a vector of the independent (polynomial) variables.
I obj is the objective function to be minimized. obj must be a linear

function of the decision variables.
I Feasibility of the problem is returned in info.feas.
I Decision variables are returned in dopt.
I sossol provides a Gram decomposition for each constraint.

I Use Z=monomials(vars,deg) to generate a vector of all
monomials in specified variables and degree.

I Use p=polydecvar(dstr,Z,type) to create a polynomial
decision variable p.

I If type=’vec’ then p has the form p = D’*Z where D is a column
vector of decision variable coefficients.

I If type=’mat’ then p has the form p = Z’*D*Z where D is a
symmetric matrix of decision variable coefficients.

I Note: For efficient implementations, only use the ’mat’ if p is

constrained to be SOS. p must then be included in sosconstr. Do

not use the ’mat’ form if p is not SOS constrained.
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SOS Synthesis Example (1)

Problem: Minimize α subject to f0 + αf1 ∈ Σ [x] where

f0(x) := −x4
1 + 2x3

1x2 + 9x2
1x

2
2 − 2x4

2

f1(x) := x4
1 + x4

2

For every α, λ ∈ R, the Gram Matrix Decomposition equality holds:

f0 + αf1 = zT (Q0 + αQ1 + λN1) z

where

z :=
[

x2
1

x1x2

x2
2

]
, Q0 =

[−1 1 4.5
1 0 0

4.5 0 −2

]
, Q1 =

[
1 0 0
0 0 0
0 0 1

]
, N1 =

[
0 0 −0.5
0 1 0
−0.5 0 0

]
If α = 2 and λ = 0 then Q0 + 2Q1 + 9N1 =

[
1 1 0
1 9 0
0 0 0

]
� 0.
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SOS Synthesis Example (2)

Use sosopt to minimize α subject to f0 + αf1 ∈ Σ [x]

% Problem set-up with polynomial toolbox and sosopt

>> pvar x1 x2 alpha;

>> f0 = -x1^4 + 2*x1^3*x2 + 9*x1^2*x2^2 - 2*x2^4;

>> f1 = x1^4 + x2^4;

>> x = [x1;x2];

>> obj = alpha;

>> [info,dopt,sossol]=sosopt(f0+alpha*f1,x,obj);

% s is f0+alpha*f1 evaluated at the minimal alpha

>> s = sossol{1};

% z and Q are the Gram matrix decomposition of s

>> z=sossol{2}; Q=sossol{3};
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SOS Synthesis Example (3)
% Feasibility of sosopt result

>> info.feas

ans =

1

% Minimal value of alpha

>> dopt

dopt =

’alpha’ [2.0000]

% Verify s is f0+alpha*f1 evaluated at alpha = 2.00

>> s-subs( f0+alpha*f1, dopt)

ans =

0

% Verify z and Q are the Gram matrix decomposition of s

>> s-z’*Q*z

ans =

-2.4095e-010*x1^4 + 4.3804e-011*x1^3*x2 - 2.1894e-011*x1^2*x2^2

+ 9.2187e-016*x1*x2^3 - 2.6285e-010*x2^4

% Verify Q is positive semi-definite

>> min(eig(Q))

ans =

1.3718e-010
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Set Containment Conditions

I Many nonlinear analysis problems can be formulated with set
containment constraints.

I We need conditions for proving set containments:

Given polynomials g1 and g2, define sets S1 and S2:

S1 := {x ∈ Rn : g1(x) ≤ 0}
S2 := {x ∈ Rn : g2(x) ≤ 0}

Is S2 ⊆ S1?

I In control theory, the S-procedure is a common condition used
to prove set containments involving quadratic functions. This
can be generalized to higher degree polynomials.
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S-Procedure
I Theorem: Suppose that g1 and g2 are quadratic functions, i.e.

there exists matrices G1, G2 ∈ Rn+1×n+1 such that

g1(x) = [ 1
x ]T G1 [ 1

x ] , g2(x) = [ 1
x ]T G2 [ 1

x ]

Then S2 ⊆ S1 iff ∃λ ≥ 0 such that −G1 + λG2 � 0.

I Proof:
(⇐) If there exists λ ≥ 0 such that −G1 + λG2 � 0 then
λg2(x) ≥ g1(x) ∀x. Thus,

x ∈ S2 ⇒ g1(x) ≤ λg2(x) ≤ 0 ⇒ x ∈ S1

(⇒) See references.

I Comments:
I For quadratic functions, an LMI feasibility problem can be

solved to determine if S2 ⊆ S1.
I λ is called a multiplier.

Reference: S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control

Theory, SIAM, 1994. (See Chapter 2 and the reference contained therein for more details on the S-procedure.)

40/235



Polynomial S-Procedure

I Theorem: Let g1 and g2 be given polynomials. If there exists
a polynomial λ ∈ P [x] such that −g1(x) + λ(x)g2(x) ∈ P [x]
then S2 ⊆ S1.

I Proof: If −g1(x) + λ(x)g2(x) ≥ 0 ∀x and λ(x) ≥ 0 ∀x then:

x ∈ S2 ⇒ g1(x) ≤ λ(x)g2(x) ≤ 0 ⇒ x ∈ S1

I The PSD constraints are numerically difficult to handle. The
theorem still holds if relaxed to SOS constraints:

I If there exists a polynomial λ ∈ Σ [x] such that
−g1(x) + λ(x)g2(x) ∈ Σ [x] then S2 ⊆ S1.

I Comments:
I For polynomials, the feasibility of an SOS problem proves
S2 ⊆ S1. This is only a sufficient condition.

I This SOS feasibility problem can be converted to an LMI
feasibility problem as described earlier.

I λ is a polynomial (SOS) multiplier.
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Set Containment Maximization

I Given polynomials g1 and g2, the set containment
maximization problem is:

γ∗ = max
γ∈R

γ

s.t.: {x ∈ Rn : g2(x) ≤ γ} ⊆ {x ∈ Rn : g1(x) ≤ 0}

I The polynomial S-procedure can be used to relax the set
containment constraint:

γlb = max
γ∈R,s∈Σ[x]

γ

s.t.: − g1 + (g2 − γ)s ∈ Σ [x]

I The solution of this optimization satisfies γlb ≤ γ∗.
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Solving the Set Containment Maximization

γlb = max
γ∈R,s∈Σ[x]

γ

s.t.: − g1 + (g2 − γ)s ∈ Σ [x]

I This optimization is bilinear in γ and s.
I For fixed γ, this is an SOS feasibility problem.

I The constraint s ∈ Σ [x] is replaced with s = zTQz and Q � 0.
I The user must specify the monomials in z.
I Let lz denote the length of z. The lz(lz+1)

2 unique entries of Q
are decision variables associated with s.

I The constraint −g1 + (g2 − γ)s ∈ Σ [x] is replaced with
−g1 + (g2 − γ)s = wTMw and M � 0.

I M ∈ Rlw×lw where lw :=
(
n+d
d

)
and n, d are the number of

variables and degree of the constraint.

I The set containment maximization can be solved via a
sequence of SOS feasibility problems by bisecting on γ.

I This bisection has been efficiently implemented in pcontain.
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pcontain Example
% Maximize size of a disk inside

% the contour of a 6th degree poly

pvar x1 x2;

x = [x1;x2];

% S1 := { x : g1(x)<= 0}

g1 = 0.3*x1^6 + 0.05*x2^6 - 0.5*x1^5 - 1.4*x1^3*x2

+ 2.3*x1^2*x2^2 - 0.9*x1^3 + 2.6*x1^2*x2 - 1;

% S2 := { x : g2(x)<= gamma}

g2 = x’*x;

% Define monomials for s

z = monomials(x,0:2);

% Use pcontain to maximize gamma s.t. S2 \in S1

% gbnds gives lower/upper bounds on optimal gamma

% sopt is the optimal multiplier

[gbnds,sopt] = pcontain(g1,g2,z)

gamma = gbnds(1);

gbnds =

0.5560 0.5569

sopt =

1.4483*x1^4 + 0.055137*x1^3*x2 + 0.44703*x1^2*x2^2 - 0.043336*x1*x2^3

+ 1.2961*x2^4 - 0.21988*x1^3 - 0.26998*x1^2*x2 - 0.050453*x1*x2^2

+ 0.13586*x2^3 + 1.6744*x1^2 - 0.41955*x1*x2 + 1.4875*x2^2

- 0.49756*x1 + 0.50148*x2 + 1.2679

% Plot contours of unit disk and maximal ellipse

plotdomain = [-2 3 -2 2];

pcontour(g1,0,plotdomain,’b’); hold on;

pcontour(g2,gamma,plotdomain,’r’)

axis equal; axis(plotdomain)
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Additional Set Containment Conditions

I There are algebraic geometry theorems (Stellensatz) which
provide necessary and sufficient conditions for set
containments involving polynomial constraints.

I These conditions are more complex than the polynomial
S-procedure but they can be simplified to generate different
sufficient conditions.

I For example, let g0, g1, g2 ∈ R [x] be given and assume
g0(x) > 0 ∀x 6= 0 and g0(0) = 0. Then:

1. If there exists s1, s2 ∈ Σ [x] such that
−g1s1 − g0 + g2s2 ∈ Σ [x] then
{x ∈ Rn : g2(x) ≤ 0} ⊆ {x ∈ Rn : g1(x) < 0} ∪ {0}.

2. Assume g1(0) = 0 and g1(x) < 0 ∀x 6= 0 in a neighborhood of
the origin. If there exists r(x) ∈ R [x] such that
−g1r + g2g0 ∈ Σ [x] then
{x ∈ Rn : g2(x) < 0}cc ⊆ {x ∈ Rn : g1(x) < 0} ∪ {0}.
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Application of Set Containment Conditions (1)

Let V , f ∈ R [x]. Assume that V is positive definite ∀x and
∇V · f is negative definite on a neighborhood of x = 0.

The following sets appear in ROA analysis:

ΩV,γ := {x ∈ Rn : V (x) ≤ γ}
(ΩV,γ)cc := The connected component of ΩV,γ containing x = 0

S := {x ∈ Rn : ∇V · f < 0} ∪ {0}

In ROA analysis, we want to solve:

max
γ∈R

γ s.t. ΩV,γ ⊆ S
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Application of Set Containment Conditions (2)

Assume l(x) > 0 ∀x 6= 0 and l(0) = 0.
The polynomial S-procedure and the two more general sufficient
conditions can be applied to the ROA set containment problem:

1. ΩV,γ ⊆ S if ∃s ∈ Σ [x] such that − (l +∇V · f) + (V − γ) s ∈ Σ [x].

2. ΩV,γ ⊆ S if ∃s1, s2 ∈ Σ [x] such that −∇V · fs1 − l+ (V − γ)s2 ∈ Σ [x].

3. (ΩV,γ)cc ⊆ S if ∃r ∈ R [x] such that −∇V · fr + (V − γ)l ∈ Σ [x].

So, using these sufficient conditions, based on the S-procedure and
SOS, we conclude that:

I Maximizing γ subject to constraints 1 or 2 requires a bisection
on γ.

I Constraint 3 does not require a bisection on γ but the degree
of the polynomial constraint is higher.

I If s1 = 1, then constraint 2 reduces to constraint 1. In most
cases, maximizing γ subject to constraint 1 achieves the same
level set as maximizing subject to constraint 2.

47/235



Outline

I Motivation

I Preliminaries

I ROA analysis using SOS optimization and solution
strategies

I Robust ROA analysis with parametric uncertainty

I Local input-output analysis

I Robust ROA and performance analysis with unmodeled
dynamics

I Applications
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Region of Attraction

Consider the autonomous nonlinear dynamical system

ẋ(t) = f(x(t))

where x ∈ Rn is the state vector and f : Rn → Rn.
Assume:

I f ∈ R [x]

I f(0) = 0, i.e. x = 0 is an equilibrium point.

I x = 0 is asymptotically stable.

Define the region of attraction (ROA) as:

R0 := {ξ ∈ Rn : lim
t→∞

φ(ξ, t) = 0}

where φ(ξ, t) denotes the solution at time t starting from the
initial condition φ(ξ, 0) = ξ.

Objective: Compute or estimate the ROA.

49/235



Global Stability Theorem

Theorem: Let l1, l2 ∈ R [x] satisfy li(0) = 0 and li(x) > 0 ∀x for
i = 1, 2. If there exists V ∈ R [x] such that:

I V (0) = 0
I V − l1 ∈ Σ [x]
I −∇V · f − l2 ∈ Σ [x]

Then R0 = Rn.

Proof:
I The conditions imply that V and −∇V · f are positive

definite.
I V is a positive definite polynomial and hence it is both

decrescent and radially unbounded.
I It follows from Theorem 56 in Vidyasagar that x = 0 is

globally asymptotically stable (GAS) and R0 = Rn.
I V is a Lyapunov function that proves x = 0 is GAS.

Reference: Vidyasagar, M., Nonlinear Systems Analysis, SIAM, 2002.

(Refer to Section 5.3 for theorems on Lyapunov’s direct method.)
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Global Stability via SOS Optimization

I We can search for a Lyapunov function V that proves x = 0 is
GAS. This is an SOS feasibility problem.

I Implementation:
I V is a polynomial decision variable in the optimization and the

user must select the monomials to include.
I V can not include constant or linear terms.
I A good (generic) choice for V is to include all monomials

from degree 2 up to dmax:

V = polydecvar(’c’,monomials(x,2:dmax),’vec’);

I l1 and l2 can usually be chosen as ε
∑n
i=1 x

dmin
i where dmin is

the lowest degree of terms in V , e.g. li = εxTx for dmin = 2.

I The theorem only provides sufficient conditions for GAS.
I If feasible, then V proves R0 = Rn.
I If infeasible, then additional monomials can be included in V

and the SOS feasibility problem can be re-solved.
I If x = 0 is not GAS then the conditions will always be

infeasible. A local stability analysis is needed to estimate R0.
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Global Stability Example with sosopt
% Code from Parrilo1_GlobalStabilityWithVec.m

% Create vector field for dynamics

pvar x1 x2;

x = [x1;x2];

x1dot = -x1 - 2*x2^2;

x2dot = -x2 - x1*x2 - 2*x2^3;

xdot = [x1dot; x2dot];

% Use sosopt to find a Lyapunov function

% that proves x = 0 is GAS

% Define decision variable for quadratic

% Lyapunov function

zV = monomials(x,2);

V = polydecvar(’c’,zV,’vec’);

% Constraint 1 : V(x) - L1 \in SOS

L1 = 1e-6 * ( x1^2 + x2^2 );

sosconstr{1} = V - L1;

% Constraint 2: -Vdot - L2 \in SOS

L2 = 1e-6 * ( x1^2 + x2^2 );

Vdot = jacobian(V,x)*xdot;

sosconstr{2} = -Vdot - L2;

% Solve with feasibility problem

[info,dopt,sossol] = sosopt(sosconstr,x);

Vsol = subs(V,dopt)

Vsol =

0.30089*x1^2 + 1.8228e-017*x1*x2 + 0.6018*x2^2
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polydecvar Implementation of V
I In the previous example, we enforced V (x) > 0 ∀x by using a

vector form decision variable and constraining V − l1 ∈ Σ [x]:
zV = monomials(x,2);

V = polydecvar(’c’,zV,’vec’);

L1 = 1e-6 * ( x1^2 + x2^2 );

sosconstr{1} = V - L1;

I sosopt introduces a Gram matrix variable for this constraint
in addition to the coefficient decision variables in V .

I A more efficient implementation is obtained by defining the
positive semidefinite part of V using the matrix form decision
variable:
zV = monomials(x,1);

S = polydecvar(’c’,zV,’mat’);

L1 = 1e-6 * ( x1^2 + x2^2 );

V = S + L1;

I In this implementation, the coefficient decision variables are
the entries of the Gram matrix of S. These Gram matrix of S
is directly constrained to be positive semidefinite by sosopt
and no additional variables are introduced.
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Global Stability Example with mat Implementation
% Code from Parrilo2_GlobalStabilityWithMat.m

% Create vector field for dynamics

pvar x1 x2;

x = [x1;x2];

x1dot = -x1 - 2*x2^2;

x2dot = -x2 - x1*x2 - 2*x2^3;

xdot = [x1dot; x2dot];

% Use sosopt to find a Lyapunov function

% that proves x = 0 is GAS

% Use ’mat’ option to define psd

% part of quadratic Lyapunov function

zV = monomials(x,1);

S = polydecvar(’c’,zV,’mat’);

L1 = 1e-6 * ( x1^2 + x2^2 );

V = S + L1;

% Constraint 1 : S \in SOS

sosconstr{1} = S;

% Constraint 2: -Vdot - L2 \in SOS

L2 = 1e-6 * ( x1^2 + x2^2 );

Vdot = jacobian(V,x)*xdot;

sosconstr{2} = -Vdot - L2;

% Solve with feasibility problem

[info,dopt,sossol] = sosopt(sosconstr,x);

Vsol = subs(V,dopt)

Vsol =

0.40991*x1^2 + 2.4367e-015*x1*x2 + 0.81986*x2^2

This implementation has three fewer de-

cision variables (the vector form coeffi-

cients of V are not needed) and sosopt

finds the same V to within a scaling.
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Local Stability Theorem

Theorem: Let l1 ∈ R [x] satisfy l1(0) = 0 and l1(x) > 0 ∀x.
If there exists V ∈ R [x] such that:

I V (0) = 0
I V − l1 ∈ Σ [x]
I ΩV,γ := {x ∈ Rn : V (x) ≤ γ} ⊆ {x ∈ Rn : ∇V · f < 0} ∪ {0}

Then ΩV,γ ⊆ R0.

Proof: The conditions imply that ΩV,γ is bounded and hence the
result follows from Lemma 40 in Vidyasagar.

0

∂V
∂x

f < 0

V ≤ γ
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Local Stability via SOS Optimization

Idea: Let ẋ = Ax be the linearization of ẋ = f(x). If A is Hurwitz
then a quadratic Lyapunov function shows that x = 0 is locally
asymptotically stable. Use the polynomial S-procedure to verify a
quantitative estimate.

1. Select Q ∈ Sn×n, Q > 0 and compute P > 0 that satisfies
the Lyapunov Equation: ATP + PA = −Q

I Vlin(x) = xTPx is a quadratic Lyapunov function proving
x = 0 is locally asymptotically stable.

I This step can be done with: [Vlin,A,P]=linstab(f,x,Q)

2. Define l2 ∈ R [x] such that l2(0) = 0 and l2(x) > 0 ∀x. Solve
the set containment maximization problem using pcontain:

max
γ∈R

γ subject to ΩV,γ ⊂ {x ∈ Rn : ∇Vlin · f + l2 ≤ 0}
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Example: ROA Estimate for the Van der Pol Oscillator (1)

% Code from VDP_LinearizedLyap.m

% Vector field for VDP Oscillator

pvar x1 x2;

x = [x1;x2];

x1dot = -x2;

x2dot = x1+(x1^2-1)*x2;

f = [x1dot; x2dot];

% Lyap func from linearization

Q = eye(2);

Vlin = linstab(f,x,Q);

% maximize gamma

% subject to:

% {Vlin<=gamma} in {Vdot<0} U {x=0}

z = monomials(x, 1:2 );

L2 = 1e-6*(x’*x);

Vdot = jacobian(Vlin,x)*f;

[gbnds,s] = pcontain(Vdot+L2,Vlin,z);

Gamma = gbnds(1)

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2
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Example: ROA Estimate for the Van der Pol Oscillator (2)

Choosing Q = [ 1 0
0 2 ] slightly increases ΩV,γ along one direction but

decreases it along another.
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Example: ROA Estimate for the Van der Pol Oscillator (3)

Choosing Q = [ 5 0
0 2 ] has the opposite effect on ΩV,γ .
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Increasing the ROA Estimate
For this problem, pcontain solves:

max
γ∈R,s∈Σ[x]

γ

s.t.: − (∇Vlin · f + l2 + s(γ − Vlin)) ∈ Σ [x]

Objective: Increase the “size” of ΩV,γ subject to the same
constraints by searching over quadratic or higher degree Lyapunov
functions.

Question: How should we measure the “size” of the ROA estimate?

Approach:
Introduce a shape factor p which:

I is a positive definite polynomial

I captures the intent of the analyst

I (preferably) has simple sublevel sets

0

V ≤ γ

dV
dx

f < 0

p ≤ β
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Interpretation of Shape Function p

Ωp,β ⊆ ΩV,γ ⊆ {∇V · f(x) < 0} ∪ {0}
0

V ≤ γ

dV
dx

f < 0

p ≤ β

I Ωp,β := {x : p(x) ≤ β} is a subset of ROA
I p simple ⇒ Ωp,β is simple
I Ωp,β is not an invariant set.
I This skews the analysis in the directions implied by level sets of p.
I This potentially misses out on other areas in the ROA

I ΩV,γ := {x : V (x) ≤ γ} is an invariant subset of ROA
I V is chosen by optimization over a rich class of functions.
I V is not simple ⇒ ΩV,γ is difficult to visualize and additional

analysis is needed to understand.

I p scalarizes the problem with β as the cost function
I The analyst picks p to reflect a particular objective.
I The methodology skews its goals towards this objective.
I The methodology offers no guidelines as to the appropriateness of p.
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Increasing the ROA Estimate

We increase the ROA estimate by increasing the shape function
contained with a Lyapunov level set.

β∗ = max
V ∈R[x], β∈R

β

subject to:

Ωp,β ⊆ ΩV,1

ΩV,1 ⊆ {∇V · f(x) < 0} ∪ {0}
V − l1 ∈ Σ [x] , V (0) = 0

0

V ≤ 1

∂V
∂x

f < 0

p ≤ β

How are the set containments verified?
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Increasing the ROA Estimate

Applying the polynomial S-procedure to both set containment
conditions gives:

max
s1,s2∈Σ[x], V ∈R[x], β∈R

β

subject to:

− ((V − 1) + s1(β − p)) ∈ Σ [x]

− ((∇V · f + l2) + s2(1− V )) ∈ Σ [x]

V − l1 ∈ Σ [x] , V (0) = 0

0

V ≤ 1

∂V
∂x

f < 0

p ≤ β

This is not an SOS programming problem since the first constraint
is bilinear in variables s1 and β and the second constraint is
bilinear in variables s2 and V .

The second constraint can be replaced by the alternative set
containment condition (introducing an additional multiplier
s3 ∈ Σ [x]):

− ((∇V · f)s3 + l2 + s2(1− V )) ∈ Σ [x]
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Properties of Bilinear ROA SOS Conditions

Several properties of this formulation are presented in the following
slides,

I Example with known ROA (from Davison, Kurak, 1971)

I Comparison with linearized analysis

I Non-convexity of local analysis conditions

Methods to solve the Bilinear ROA SOS problem will be presented
after discussing these properties of the formulation.
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System with known ROA (from Davison, Kurak, 1971)

For a positive definite matrix B,[
ẋ = −x+ (xTBx)x

]
ROA0

=
{
x : xTBx < 1

}
Proof: V (x) := xTBx. Then V̇ = 2V (V − 1), . . .

For positive-definite, quadratic shape factor p(x) := xTRx,

1
λmax (R−1B)

= supβ s.t.
{
x : xTRx ≤ β

}
⊂
{
x : xTBx < 1

}
Can the bilinear SOS formulation yield this?

I Yes (Tan thesis), any β less than supremum

1. choose γ > 1 and any 1 < τ < γ
2. define V := γxTBx
3. for large enough α, the choices s2 := 2ατxTBx, s3 := α work.
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Linear versus SOS-based nonlinear analysis
SOS-based nonlinear analysis

I Analysis method: a series of (potentially conservative)
relaxations/reformulations

I Finite parameterizations for the certificates
I S-procedure sufficient conditions
I SOS relaxations
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Linear versus SOS-based nonlinear analysis
SOS-based nonlinear analysis

I Analysis method: a series of (potentially conservative)
relaxations/reformulations

I Finite parameterizations for the certificates
I S-procedure sufficient conditions
I SOS relaxations

In contrast, linearization based analysis

I Question: Is the origin asymptotically stable for ẋ = f(x)?

I Analysis method: Let ˙̃x = Ax̃ be the linearization (at the
origin). Whenever A has no eigenvalues with zero real part,

I the nonlinear system is asymptotically stable if and only if its
linearization is asymptotically stable.

I Existence of quadratic Lyapunov functions is necessary and
sufficient for linear stability.

Linear analysis + real analysis ⇒ “∃ an open ball around origin in
ROA”
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Quantitative improvement on linearized analysis
Consider systems of the form

ẋ = Ax+ fnl(x)

where A is Hurwitz, and fnl contains terms of degree 2 or higher
(so fnl(0) = 0).

Theorem: The SOS problem is always feasible with ∂(V ) = 2,
∂(s2) ≥ ∂(f)− 1 (and even, since s2 ∈ Σ[x]), and
∂(s1) = ∂(s3) = 0.

Precisely, given p, fnl, li(x) := xTRix, if A is Hurwitz, then there
exist γ > 0, β > 0, s1, s2, s3, and V feasible for

V − l1 ∈ Σ[x], V (0) = 0, s1, s2, s3 ∈ Σ[x],
− [(β − p)s1 + (V − γ)] ∈ Σ[x]

− [(γ − V )s2 +∇V fs3 + l2] ∈ Σ[x].

The proof is constructive.
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Useful facts

Let

I Let xTQx be a positive definite form

I c1, . . . , cm be positive real numbers, and

I g : Rm → R be defined as g(y) = .

Then,

xTQx ·
(
c1y

2
1 + c2y

2
2 + . . .+ cmy

2
m

)
= z(x, y)THz(x, y),

where z(x, y) = y ⊗ x and H � 0.

For h (cubic) and g (quartic) functions in x, there exist matrices
such that

h(x) = xTM2z
g(x) = zTM3z.
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Construction of V and multipliers for ∂(fnl) ≤ 3

I Let Q � 0 satisfy ATQ+QA � −2R2 and Q � R1.

I V (x) := xTQx.

I ε := λmin(R2).
I Let H � 0 be such that (xTx)V (x) = zTHz (where

z = x⊗ x).

I Let M2 ∈ Rn×nz and symmetric M3 ∈ Rnz×nz satisfy
∇V f2(x) = xTM2z and ∇V f3(x) = zTM3z.

I Let M+
3 be the positive semidefinite part of M3, define

s1(x) := λmax(Q)
λmin(P ) , c2 :=

λmax(M+
3 + 1

2ε
MT

2 M2)
λmin(H)

s2(x) := c2x
Tx, γ := ε

2c2
β := γ

2s1
, s3(x) := 1.
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Proof H � 0, ATQ+QA � −R2, P � 0, s1(x) = λmax(Q)
λmin(P )

− [(γ − V )s2 +∇V fs3 + l2]

=
[
x
z

]T
B1

[
x
z

]
,

where

B1 :=
[
−γc2I −R2 − (ATQ+QA) −M2/2

−MT
2 /2 c2H −M3

]
Choose c2 large and γ small enough to make B1 � 0.

− [(β − p)s1 + (V − γ)]

=
[

1
x

]T [ −βs1 + γ 0
0 s1P −Q

]
︸ ︷︷ ︸

B2

[
1
x

]
(1)

Choose β small enough to make B2 � 0.
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Implications of the constructive proof

The construction provides suboptimal, computationally less
demanding, yet less conservative (compared to Lyapunov functions
for the linearized dynamics) solution techniques.

max
γ,c2,β,Q=QT�R1

β subject to[
−γc2I −R2 −ATQ−QA −M2(Q)/2

−M2(Q)T /2 c2H(Q)−M3(Q)

]
� 0[

−β + γ 0
0 P −Q

]
� 0.

Results for the VDP dynamics (with p(x) = xTx):

I β = 0.7 by this suboptimal technique
I β = 0.2 for V from linear analysis (i.e., V (x) = xTQx such

that Q � 0 and ATQ+QA = −I)
I β = 1.54 for quadratic V using the “full” solution technique

(discussed next).
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Non-convexity of Local Analysis (1)

This bilinearity of the local stability analysis is an effect of the
non-convexity of local stability constraints.
This contrasts with the convexity of global analysis.

Global Analysis: The set of functions V : Rn → R that satisfy
V (0) = 0, V (x) > 0 ∀x 6= 0, and ∇V (x) · f(x) < 0 ∀x 6= 0 is a
convex set.

Proof: If V1 and V2 satisfy the global analysis constraints then
λV1 + (1− λ)V2 is also feasible for any λ ∈ [0, 1],
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Non-convexity of Local Analysis (2)

Local Analysis: The set of functions V : Rn → R that satisfy
V (0) = 0, V (x) > 0 ∀x 6= 0, and ΩV,γ=1 ⊆
{∇V (x) · f(x) < 0} ∪ {0} is a NOT convex set.

Example: Let f(x) = −x and define
V1(x) = 16x2 − 19.95x3 + 6.4x4 and V2(x) = 0.1x2

V1 and V2 satisfy the local analysis constraints but their convex
combination V3 := 0.58V1 + 0.42V2 does not.
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Solving the Bilinear ROA Problem
A coordinate-wise V -s iteration is a simple algorithm to find a
sub-optimal solution to this optimization.

I For fixed V , the constraints decouple into two subproblems

γ∗ = max
γ∈R,s2∈Σ[x]

γ s.t. − ((∇V · f + l2) + s2(1− V )) ∈ Σ [x]

≤ max
γ∈R

γ s.t. ΩV,γ ⊆ {∇V · f(x) < 0} ∪ {0}

β∗ = max
β∈R,s1∈Σ[x]

β s.t. − ((V − γ∗) + s1(β − p)) ∈ Σ [x]

≤ max
β∈R

β s.t. Ωp,β ⊆ ΩV,γ∗

pcontain can be used to compute γ∗ and β∗ as well as
multipliers s1 and s2.

I For fixed s1 and s2, we could maximize β with V subject to
the local ROA constraints. We obtain better results by re-
centering V to the analytic center of the LMI associated with:

−
`
(V − 1) + s1(β

∗ − p)
´
∈ Σ [x]

−
`
(∇V · f + l2) + s2(γ

∗ − V )
´
∈ Σ [x]

V − l1 ∈ Σ [x] , V (0) = 0
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V -step as a feasibility problem
I An informal justification for the LMI re-centering in the
V -step is:

I The constraint − (∇V · f + l2 + s2(γ − V )) ∈ Σ [x] is active
after the γ-step.

I In the V -step, compute the analytic center of the LMI
constraints to obtain a new feasible V . Thus the V -step
feasibility problem pushes V away from the constraint.

I Loosely, this finds V that satisfies:

−
(
∇V · f + l̃2 + s2(γ − V )

)
∈ Σ [x]

where l̃2 ≥ l2.
I This means that ΩV,γ ⊆ {x ∈ Rn : V̇ < −l̃2}.
I l̃2 ≥ l2 would mean the next γ-step has freedom to increase γ

while still satisfying the constraint with l2.
I This feasibility step is not guaranteed to increase γ or β over

each step but it typically makes an improvement.
I A more formal theory for the behavior of this feasibility step is

still an open question.
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Implementation Issue: Scaling of V

I If l2 = 0 and (V, γ∗, β∗, s1, s2) satisfy the local ROA
constraints then (cV, cγ∗, β∗, cs1, s2) are also feasible for any
c > 0.

I The solution can still be scaled by some amount if l2 is a
small positive definite function.

I As a result, the scaling of V tends to drift during the V -s
iteration such that larger values of γ∗ are returned at each
step.

I This makes it difficult to pre-determine a reasonable upper
bound on γ∗ for the bisection in the γ-step.

I Scaling V by γ∗ after each V step roughly normalizes V . This
tends to keep the γ∗ computed in the next γ-step close to
unity.
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Implementation Issue: Constraint on s2
The multiplier s2 ∈ Σ [x] appears in the constraint:

− ((∇V · f + l2) + s2(1− V )) ∈ Σ [x]

Evaluating this constraint at x = 0 gives −s2(0) ≥ 0 while
s2 ∈ Σ [x] implies the reverse inequality: s2(0) ≥ 0.

I Hence, the constant term of the multiplier s2 must be zero.

I SDP solvers can have difficulty resolving this implicit equality
constraint, so this degree of freedom should be removed by
directly parameterizing s2 to have zero constant term.

I SOSOPT is able to detect and remove simple implicit equalities
of this type. SOSTOOLs and YALMIP do not appear to do this
simplification.

I If numerical problems occur then the user should do an
analysis on all SOS constraints to determine if implicit
constraints exist.
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Complete ROA V-s Iteration

Initialization: Find V (x) which proves local stability in some
neighborhood of x = 0.

1. γ Step: Hold V (x) fixed and use pcontain to solve for s2:

γ∗ = max
s2∈Σ[x],γ∈R

γ s.t. − (∇V · f + l2 + s2(γ − V )) ∈ Σ [x]

2. β Step: Hold V (x) fixed and use pcontain to solve for s1:

β∗ = max
s1∈Σ[x],β∈R

β s.t. − ((V − γ) + s1(β − p)) ∈ Σ [x]

3. V step: Hold s1, s2, β
∗, γ∗ fixed and compute V from the

analytic center of:

−
„
∂V

∂x
f + l2 + s2(γ − V )

«
∈ Σ [x]

− ((V − γ) + s1(β − p)) ∈ Σ [x]

V − l1 ∈ Σ [x] , V (0) = 0

4. V Scaling: Replace V with V
γ∗ .

5. Repeat
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Example: V-s Iteration for the Van der Pol Oscillator
% Code from VDP_IterationWithVlin.m

pvar x1 x2;

x = [x1;x2];

x1dot = -x2;

x2dot = x1 + (x1^2-1)*x2;

f = [x1dot; x2dot];

% Create shape function and monomials vectors

p = x’*x;

zV = monomials( x, 2:6 ); % V has Deg = 6

z1 = monomials( x, 0:2 );

z2 = monomials( x, 1:2 );

L2 = 1e-6*(x’*x);

% Initialize Lyapunov Function

V = linstab(f,x);

% Run V-s iteration

opts.L2 = L2;

for i1=1:30;

% gamma step

Vdot = jacobian(V,x)*f;

[gbnds,s2] = pcontain(Vdot+L2,V,z2,opts);

gamma = gbnds(2);

% beta step

[bbnds,s1] = pcontain(V-gamma,p,z1,opts);

beta = bbnds(1)

% V step (then scale to roughly normalize)

if i1~=30

V = roavstep(f,p,x,zV,beta,gamma,s1,s2,opts);

V = V/gamma;

end

end

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x2

Iteration = 30 beta = 2.3236

 

 

Limit Cycle
V==γ
p==β
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System with known ROA (from Davison, Kurak, 1971)

For a positive definite matrix B,[
ẋ = −x+ (xTBx)x

]
ROA0

=
{
x : xTBx < 1

}

For positive-definite, quadratic shape factor p(x) := xTRx,

1
λmax (R−1B)

= supβ s.t.
{
x : xTRx ≤ β

}
⊂
{
x : xTBx < 1

}
Can the iteration proposed find this solution?

I Yes, thousands of examples on n ≤ 10
I Relatively fast, see radialvectorfield.m

But, not all problems work so nicely...
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Use of Simulation Data

I The performance of the V -s iteration depends on the initial
choice for V .

I Up to this point we have only started the iteration using the
Lyapunov function obtained from linear analysis.

I It is also possible to used simulation data to construct initial
Lyapunov function candidates for the iteration.

I The following slides explore this use of simulation data.

81/235



Use of Simulation Data

I Given a set G, is G ⊂ ROA ?

I Run simulations starting in G.

I If any diverge, no.

I If all converge, “maybe yes.”

G
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I Given a set G, is G ⊂ ROA ?

I Run simulations starting in G.

I If any diverge, no.

I If all converge, “maybe yes.”

G

Fact: A Lyapunov certificate would remove the “maybe”.

G ⊆ ΩV,γ=1 ⊆ {x ∈ Rn : ∇V (x) · f(x) < 0}
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Use of Simulation Data

I Given a set G, is G ⊂ ROA ?

I Run simulations starting in G.

I If any diverge, no.

I If all converge, “maybe yes.”

G

Fact: A Lyapunov certificate would remove the “maybe”.

G ⊆ ΩV,γ=1 ⊆ {x ∈ Rn : ∇V (x) · f(x) < 0}

Question: Can we use the simulation data to construct candidate
Lyapunov functions for assessing the ROA?
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How can the simulation data be used?
If there exists V to certify that G is in the ROA through Lyapunov
arguments, it is necessary that

I V > 0
I V ≤ 1 on converging trajectories starting in G
I V̇ < 0 on converging trajectories starting in G
I V > 1 on non-converging trajectories starting in the

complement of G

V ≤ 1

∂V
∂x

f < 0

c

d

G

The V we are looking for (which may not even exist) must satisfy
these constraints.
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Simulation-based constraints on V

I Assume V is linearly parameterized in some basis functions
V (x) = αTφ(x), e.g. φ(x) can be a vector of monomials.

I Let Fα denote the set of coefficients α of Lyapunov functions
which satisfy the constraints on some domain in the state
space.

I Enforcing the constraints on the previous slide on the
simulation trajectory points leads to linear inequality (LP)
constraints on α.

I The collection of the LP constraints forms a polytope outer
bound on the set Fα of coefficients.

Fα
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Set of Candidate V ’s

I We can sample the polytope outer bound of Fα by solving an
LP feasibility problem.

I If the LP is infeasible then Fα is empty.
I If the LP is feasible then we can test if V = αTφ is a

Lyapunov function using SOS optimization methods.

I We can incorporate additional convex constraints on α
I V − l1 ∈ Σ [x] ⇒ LMI constraints on α
I The linear part of f and quadratic part of V must satisfy the

Lyapunov inequality ⇒ LMI constraints on α.

I Let Y denote the set of α which satisfy the LP constraints
from simulation data and the LMI constraints described above.
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Hit-and-run (H&R) algorithm

• As the number of constraints in-
creases, the outer convex set Y
becomes a tighter relaxation.

⇒ Samples from Y become
more likely to be in Fα.
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Hit-and-run (H&R) algorithm

• As the number of constraints in-
creases, the outer convex set Y
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⇒ Samples from Y become
more likely to be in Fα.

α(0)

ΦT
3 α = b3

ΦT
2 α = b2

ΦT
4 α = b4

ΦT
1 α
= b1

• Strategy: generate points in Y, i.e., Lyapunov function
candidates, and evaluate β they certify.

• Generation of each point in Y (after the initial feasible point)
involves solving 4 small LMIs and trivial manipulations.

t
(k) := min

{
maxj

{
0,

bj−ΦTj α
(k)

ΦTj ζ
(k)

}
, t

(k)
SOS , t

(k)
lin

}
,

t(k) := max
{

minj

{
0,

bj−ΦTj α
(k)

ΦTj ζ
(k)

}
, t

(k)
SOS , t

(k)
lin

}
,
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Assessing the candidate: checking containments

For a given V ,

βV := max
β,γ

β subject to:

0

V ≤ γ

dV
dx

f < 0

p ≤ β

This can be solved in two steps solving smaller SDPs (affine by
line search on γ and β) sequentially:
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β subject to:

0

V ≤ γ

dV
dx

f < 0

p ≤ β

This can be solved in two steps solving smaller SDPs (affine by
line search on γ and β) sequentially:

γ∗ := max γ
−
[
(γ − V )s2 + s3

dV
dx f + l2

]
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βV := max β
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Assessing the candidate: checking containments

For a given V ,

βV := max
β,γ

β subject to:

0

V ≤ γ

dV
dx

f < 0

p ≤ β

This can be solved in two steps solving smaller SDPs (affine by
line search on γ and β) sequentially:

γ∗ := max γ
−
[
(γ − V )s2 + s3

dV
dx f + l2

]
∈ Σ[x]

βV := max β
− [(β − p)s1 + (V − γ∗)] ∈ Σ[x]

0

∂V
∂x

f < 0

V ≤ γ∗

p ≤ β∗

These are the same γ and β steps from the V -s iteration.

87/235



Simulation and Lyapunov function generation algorithm
Given positive definite convex p ∈ R[x], a vector of polynomials ϕ(x) and
constants βSIM , Nconv, NV , βshrink ∈ (0, 1), and empty sets C and D,
set γ = 1, Nmore = Nconv, Ndiv = 0.

1. Integrate ẋ = f(x) from Nmore initial conditions in Ωp,βSIM .
2. If there is no diverging trajectory, add the trajectories to C and go

to (3). Otherwise, add the divergent trajectories to D and the
convergent trajectories to C, let Nd denote the number of diverging
trajectories found in the last run of (1) and set Ndiv to Ndiv +Nd.
Set βSIM to the minimum of βshrinkβSIM and the minimum value
of p along the diverging trajectories. Set Nmore to Nmore −Nd,
and go to (1).

3. At this point C has Nconv elements. For each i = 1, . . . , Nconv, let
τ i satisfy ci(τ) ∈ Ωp,βSIM for all τ ≥ τ i. Eliminate times in Ti that
are less than τ i.

4. Find a feasible point in Y. If Y is empty, set βSIM = βshrinkβSIM ,
and go to (3). Otherwise, go to (5).

5. Generate NV Lyapunov function candidates using H&R algorithm,
and return βSIM and Lyapunov function candidates.
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Lower and upper bounds on certifiable β
Every solution of the optimization

max
s1,s2∈Σ[x], V ∈R[x], β∈R

β

subject to:

− ((V − 1) + s1(β − p)) ∈ Σ [x]
− ((∇V · f + l2) + s2(1− V )) ∈ Σ [x]
V − l1 ∈ Σ [x] , V (0) = 0

0

V ≤ 1

∂V
∂x

f < 0

p ≤ β

provides a lower bound on the maximum certifiable value βcert

(through Lyapunov analysis by optimal choice of V ) of β such that

{x : p(x) ≤ βcert} ⊆ ΩV,1 ⊂ {x : ∇V f(x) < 0}.
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s1,s2∈Σ[x], V ∈R[x], β∈R
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V − l1 ∈ Σ [x] , V (0) = 0

0

V ≤ 1

∂V
∂x

f < 0

p ≤ β

provides a lower bound on the maximum certifiable value βcert

(through Lyapunov analysis by optimal choice of V ) of β such that

{x : p(x) ≤ βcert} ⊆ ΩV,1 ⊂ {x : ∇V f(x) < 0}.
By contrast, simulation trajectories provide upper bounds on βcert.
Upper bounds are used

I to assess the sub-optimality and

I to get clues for non-achievable.
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Upper bound on certifiable β

A divergent trajectory cannot enter the ROA. Consequently,

βcert < minimum value of p on any divergent trajectory

These minimum values are uppers bound regardless of the type of
Lyapunov function and multipliers.
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A divergent trajectory cannot enter the ROA. Consequently,

βcert < minimum value of p on any divergent trajectory

These minimum values are uppers bound regardless of the type of
Lyapunov function and multipliers.

Upper bounds due to emptiness of Y (convex set in α-space)
I Vϕ := {ϕ(x)Tα : α ∈ RNb}
I Let S be the set of S-procedure

multipliers search over.

I Let Yβ̄ be generated using convergent
simulation trajectories with initial
conditions in Ωp,β̄.

Fα

Yβ̄ is empty ⇒ βcert(Vϕ,S) ≤ βcert(Vϕ) ≤ β̄
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Examples: upper bounds on certifiable β

Demonstrate the upper bounds on VDP dynamics with deg(V ) =
2 and deg(V ) = 6

DemoBoundsVDP.html and DemoBoundsVDP.m

HTML codepad is rendered in the appendix.
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Overview of the method

Is G ⊂ ROA? -

V ≤ 1

∂V
∂x

f < 0

G

x-space

- Large bilinear
SOS problem

- Prior info
simulation, etc.

-

Fα

α-space

- Smaller affine
SOS problem

�

?
Further optimization

?
Relatively efficient results

92/235



Overview of the method

Is G ⊂ ROA? -

V ≤ 1

∂V
∂x

f < 0

G

x-space

- Large bilinear
SOS problem

- Prior info
simulation, etc.

-

Fα

α-space

- Smaller affine
SOS problem

�

?
Further optimization

?
Relatively efficient results

92/235



Controlled short period aircraft dynamics (1)

I States pitch rate (q), AoA (α), and pitch angle (θ).

I Cubic polynomial approximation of the dynamics (from
Honeywell).

ẋp =

 c1(xp)
q2(xp)
x1

+

 `Tb xp
b2
0

u,
I xp = [x1 x2 x3]T = [q α θ]T .
I c1 is a cubic polynomial, q2 is a quadratic polynomial, `12 and
`b are vectors in R3, b2 ∈ R.

I The control input, elevator deflection, is determined by

ẋ4 = −0.864y1 − 0.321y2

u = 2x4,

x4 is the controller state and the plant output y = [q θ]T .
I x :=

[
xTp x4

]T
.
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Controlled short period aircraft dynamics (2)

ẋ4 = Acx4 +Bcy
u = Ccx4 +Dcy

-u
q̇ = fq(q, α, u)
α̇ = fα(q, α, u)

θ̇ = q, y = [q θ]T
y-

Results (with p(x) = xTx):
I ∂(V ) = 2→ Ωp,9.2 is in the ROA.

I ∂(V ) = 4→ Ωp,15.8 is in the ROA.

I A divergent trajectory witnesses that Ωp,17.0 cannot be in the
ROA.
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Controlled short period aircraft dynamics (2)

ẋ4 = Acx4 +Bcy
u = Ccx4 +Dcy

-u
q̇ = fq(q, α, u)
α̇ = fα(q, α, u)

θ̇ = q, y = [q θ]T
y-

Results (with p(x) = xTx):
I ∂(V ) = 2→ Ωp,9.2 is in the ROA.

I ∂(V ) = 4→ Ωp,15.8 is in the ROA.

I A divergent trajectory witnesses that Ωp,17.0 cannot be in the
ROA.

Coming: ROA analysis for systems with parametric uncertainties
and/or unmodeled dynamics.
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Outline

I Motivation

I Preliminaries

I ROA analysis using SOS optimization and solution strategies

I Robust ROA analysis with parametric uncertainty

I Local input-output analysis

I Robust ROA and performance analysis with unmodeled
dynamics

I Applications
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Systems with parametric uncertainty

System with parametric uncertainty governed by

ẋ(t) = f(x(t), δ)

The parameter δ is

I constant

I unknown

I known to take values on the bounded set ∆

Assumption:

I For each δ ∈ ∆, the origin is an equilibrium point, i.e.,

f(0, δ) = 0 for all δ ∈ ∆.
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ROA analysis for systems with parametric uncertainty

System with constant parametric uncertainty governed by

ẋ(t) = f(x(t), δ)

Question: Given a set G,

I is G in the ROA for each δ ∈ ∆?
I is G a subset of the robust ROA, defines as⋂

δ∈∆

{ζ ∈ Rn : lim
t→∞

ϕ(ζ, t; δ) = 0}?

[ ϕ(ζ, t; δ) is the solution at time t with initial condition ζ for δ.]

G
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System with constant parametric uncertainty governed by

ẋ(t) = f(x(t), δ)

Question: Given a set G,

I is G in the ROA for each δ ∈ ∆?
I is G a subset of the robust ROA, defines as⋂

δ∈∆

{ζ ∈ Rn : lim
t→∞

ϕ(ζ, t; δ) = 0}?

[ ϕ(ζ, t; δ) is the solution at time t with initial condition ζ for δ.]

G

δ1

δ2
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ROA analysis for ẋ = f(x, δ)

Theorem: If there exists a continuously differentiable function V
such that

I V (0) = 0, and V (x) > 0 for all x 6= 0
I ΩV,1 = {x : V (x) ≤ 1} is bounded

I For each δ ∈ ∆, the set containment

{x : V (x) ≤ 1}\{0} ⊂ {x : ∇V (x)f(x, δ) < 0}

holds, then {x ∈ Rn : V (x) ≤ 1} is an invariant subset of the
robust ROA.
Proof: Apply Lyapunov theory to each system ...

A few issues:

I “For each δ ∈ ∆...” there are infinite number of set containment
conditions.

I V does not depend on δ, though f does, will this be restrictive?
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ROA analysis: f(x, δ) affine in δ

Affine uncertainty dependence & bounded, polytopic ∆ (with
vertices E)

ẋ(t) = f0(x(t)) +
m∑
i=1

fi(x(t))δi = f0(x(t)) + F (x(t))δ

Theorem: If ∆ is a polytope, and for all δ ∈ E

ΩV \ {0} ⊆ {x ∈ Rn : ∇V (x)(f0(x) + F (x)δ) < 0} ,

then the set containment holds for all δ ∈ ∆.

Proof:
For each δ̃ ∈ ∆, ∇V (x)F (x)δ̃
is a convex combination of
{∇V (x)F (x)δ : δ ∈ ∆}.

δ1

f [3] = f0 + Fδ[3]

f [2] = f0 + Fδ[2]f [1] = f0 + Fδ[1]

δ2

f [5]

f [4]
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ROA analysis with parameter-independent V (2)

ẋ(t) = f0(x(t)) + F (x(t))δ

Impose at the vertices of ∆, then they hold everywhere on ∆.

ΩV \ {0} ⊆ {x ∈ Rn : ∇V (x)(f0(x) + F (x)δ) < 0}

0

V ≤ 1

∂V
∂x

f [1] < 0

∂V
∂x

f [2] < 0

∂V
∂x

f [3] < 0

δ1

f [3] = f0 + Fδ[3]

f [2] = f0 + Fδ[2]f [1] = f0 + Fδ[1]

δ2

f [5]

f [4]

For every i = 1, . . . , Nvertex (index to elements of E),

−
[
(1− V )s2 + s3∇V · (f0 + Fδ[i]) + l2

]
is SOS in x (only)
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SOS problem for robust ROA computation

max
0<γ,0<β,V ∈V,s1∈S1,s2δ∈S2,s3δ∈S3

β subject to

s2δ ∈ Σ[x], and s3δ ∈ Σ[x]

−[(γ − V )s2δ +∇V (f0 + F (x)δ)s3δ + l2] ∈ Σ[x] ∀δ ∈ E ,
−[(β − p)s1 + V − 1] ∈ Σ[x]

I Bilinear optimization problem
I SOS conditions:

I only in x
I δ does not appear, but...
I there are a lot of SOS constraints (δ ∈ E)
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Example

Consider the system with a single uncertain parameter δ

ẋ1 = x2

ẋ2 = −x2 − (δ + 2)(x1 − x3
1)

with δ ∈ [−1, 1].

Codepad Demo: RobustROACalc.m and RobustROACalc.html
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Dealing with conservatism: partition ∆
6

-δ1

δ2

For all δ ∈ ∆:

{x : V0(x) ≤ 1}\{0}
⊂
{
x : ∂V0

∂x f(x, δ) < 0
}

6

-δ1

δ2

For all δ ∈ upper half of ∆:

{x : V1(x) ≤ 1}\{0}
⊂
{
x : ∂V1

∂x f(x, δ) < 0
}

For all δ ∈ lower half of ∆:
{x : V2(x) ≤ 1}\{0}
⊂
{
x : ∂V2

∂x f(x, δ) < 0
}

V1 := V0 and V2 := V0 are feasible for the right-hand side.
Improve the results by searching for different V1 and V2.

103/235



Dealing with conservatism: branch-and-bound in ∆

Systematically refine the partition of ∆:

I Run an informal branch-and-bound (B&B) refinement
procedure

Sub-division strategy: Divide the worst cell into 2 subcells.

6

-δ1

δ2
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Dealing with conservatism: branch-and-bound in ∆

Systematically refine the partition of ∆:

I Run an informal branch-and-bound (B&B) refinement
procedure

Sub-division strategy: Divide the worst cell into 2 subcells.

6

-δ1

δ2
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Properties of the branch-and-bound refinement

I Yields piecewise-polynomial,
δ-dependent V .

I Local problems are decoupled
→ parallel computing

6

-δ1

δ2

I Organizes extra info regarding system behavior: returns a data
structure with useful info about the system

I Lyapunov functions, SOS certificates,
I certified β,
I worst case parameters,
I initial conditions for divergent trajectories,
I values of β not achievable, etc.
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Non-affine dependence on δ

Let g : R→ R.

ẋ(t) = f0(x(t)) + δf1(x(t)) + g(δ)f2(x(t))
= f0(x(t)) + δf1(x(t)) + ζf2(x(t))

Treat (δ, g(δ)) as 2 parameters, whose values lie on a
1-dimensional curve. Then

∗ Cover 1-d curve with 2-polytope
∗ Compute ROA
∗ Refine polytope into a union of
smaller polytopes
∗ Solve robust ROA on each poly-
tope
∗ Intersect ROAs → robust ROA

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

δ 

δ 2
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ẋ(t) = f0(x(t)) + δf1(x(t)) + g(δ)f2(x(t))
= f0(x(t)) + δf1(x(t)) + ζf2(x(t))

Treat (δ, g(δ)) as 2 parameters, whose values lie on a
1-dimensional curve. Then

∗ Cover 1-d curve with 2-polytope
∗ Compute ROA
∗ Refine polytope into a union of
smaller polytopes
∗ Solve robust ROA on each poly-
tope
∗ Intersect ROAs → robust ROA

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
2 subdivisions 

106/235



Non-affine dependence on δ

Let g : R→ R.
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Generalization of covering manifold
Given:

I polynomial g(δ) in many real variables, δ ∈ Rq

I domain H ⊆ Rq, typically a polytope

Find a polytope that covers {(δ, g(δ)) : δ ∈ H} ⊆ Rq+1.

I Tradeoff between number of vertices, and

I excess “volume” in polytope

One approach: Find “tightest” affine upper and lower bounds to g
over H.

H 
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Generalization of covering manifold (2)

g(!) 

H 

min
c0,c

∫
H

(c0 + cT δ)dδ subject to

c0 + cT δ ≥ g(δ) ∀δ ∈ H

I

∫
H

(c0 + cT δ)dδ is linear in c0 and c.

I Let H = {ζ ∈ Rm : hi(ζ) ≥ 0, i = 1, . . . , N} be an
inequality description of H where h1, . . . , hN are polynomials.

An upper bound on the optimal value of the problem above can be
computed through the SOS program

min
c0,c,σi∈Si

∫
H

(c0 + cT δ)dδ subject to σ1, . . . , σN ∈ Σ[δ]

−g(δ) + (cT δ + c0)−∑N
i=1 σi(δ)hi(δ) ∈ Σ[δ].
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Non-affine dependence on δ (2)

Covering {(δ, g(δ) : δ ∈ H} introduces extra conservatism.
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Non-affine dependence on δ (2)

Covering {(δ, g(δ) : δ ∈ H} introduces extra conservatism.

H
1 

H
2 

H 

partition H 

B&B refinement reduces the conservatism due to covering by
reducing the extra covered space.
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Multiple non-affine parametric uncertainty

For multivariable g,

ẋ = f0(x) + δ1f1(x) + · · ·+ δqfq(x)+
g1(δ)fq+1(x) + · · ·+ gm(δ)fq+m(x)

On H, bound each gi with affine functions ci and di

ci(δ) ≤ gi(δ) ≤ di(δ) ∀δ ∈ H

Then (Amato, Garofalo, Gliemo) a poly-
tope covering {(δ, g(δ)) : δ ∈ H} is{

(δ, v) ∈ Rq×m : δ ∈ H,C(δ) ≤ v ≤ D(δ)
}

with 2q+m easily computed vertices.
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Example: 2-state uncertain dynamics [Chesi, 2004]

ẋ =
[

−x1

3x1 − 2x2

]
−
[

6x2 − x2
2 − x3

1

10x1 − 6x2 − x1x2

]
δ+
[

4x2 − x2
2

12x1 − 4x2

]
δ2,

• δ ∈ [0, 1].
• No common quadratic V for uncertain linearized dyn.
• p(x) = xTx.
• 50 branch-and-bound refinements

x
1

x
2

!1 0 1

!1 

!0.5 

0

0.5

1

1.5 Blue dotted curve: Result from Chesi,
2004.

Red curves: Intersection of ΩV,1 for
V ’s obtained through the B&B refine-
ment (inner for deg(V ) = 2 and outer
for deg(V ) = 4)

Black dotted curves: Certified Ωp,β
for deg(V ) = 2 (inner) and for deg(V )
= 4 (outer)

Gray dots: Initial conditions of diver-
gent trajectories for some δ ∈ [0, 1]
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Example: 2-state uncertain dynamics
B&B iterations: Divide the cell with the smallest β into 2.

deg(V ) = 2

10 20 30
0

0.5

1

number of iterations

β

deg(V ) = 4

10 20 30
0

0.5

1

number of iterations

β

I Upper bounds from divergent trajectories
I Upper bound does not depend on the complexity/degree of V

I Upper bounds from infeasibility of the affine relaxation
I These show how the basis choice for V impacts what is

certifiable.

I Certified values (using ideas from previous 100+ slides)
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Dealing with large number of constraints

The SOS problem for the robust ROA includes the constraint:

−[(γ − V )s2δ +∇V (f0 + F (x)δ)s3δ + l2] ∈ Σ[x] ∀δ ∈ E

The number of vertices grows fast with the dimension of the
uncertainty space.

6

-δ1

δ2
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The number of vertices grows fast with the dimension of the
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•

•

•

Suboptimal procedure:

I Sample ∆ with fewer points (fewer than in E)

I Optimize V for this restricted sampling

I Certify a value of β, using this V , at all vertices of ∆
The last step involves solving decoupled smaller problems.
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Dealing with large number of constraints: 2-step procedure

I Call the Lyapunov function computed for a sample of ∆ as Ṽ .

I For each δ ∈ E , compute

γδ := max
0<γ,s2δ∈S2,s3δ∈S3

γ subject to

s2δ ∈ Σ[x], and s3δ ∈ Σ[x]
−[(γ − Ṽ )s2δ +∇Ṽ (f0 + Fδ)s3δ + l2] ∈ Σ[x],

and define
γsubopt := min {γδ : δ ∈ E} .

ΩṼ ,γsubopt is an invariant subset of the robust ROA.

I Determine the largest sublevel set of p contained in ΩṼ ,γsubopt

max
s1∈S1,β

β subject to

s1 ∈ Σ[x]
−[(β − p)s1 + Ṽ − γsubopt] ∈ Σ[x].
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Revisit Chesi, 2004 with suboptimal ∆ sampling
B&B iterations: Divide the cell with the smallest β into 2.

deg(V ) = 2

10 20 30 40 50
0

0.5

1

number of iterations

β

deg(V ) = 4

20 40 60
0

0.5

1

number of iterations

β

I Upper bounds from divergent trajectories

I Upper bounds from infeasibility of the affine relaxation

I Lower bounds directly computing the robust ROA

I Lower bounds computing the robust ROA in two steps (sample
∆ at cell center → optimize V → verify at the vertices)
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Controlled aircraft [Short period pitch axis model]

Uncertain closed loop dynamics with

I x = (xp, x4), p(x) = xTx
I Cubic poly approx from Honeywell

ẋ = f0(x) + f1(x)δ1 + f2(x)δ2 + f3(x)δ2
1

I δ1 ∈ [0.99, 2.05] (uncertainty in the center of gravity)

I δ2 ∈ [−0.1, 0.1] (uncertainty in mass)

Implemented on a 9-processor cluster

I Problems for 9 cells are solved at a time

I Trivial speed up as expected.

ẋ4 = Acx4 +Bcy
v = Ccx4

controller

-u ẋp = fp(xp, δ1, δ2) +B(xp)u

y = [x1 x3]T

plant
(pitch rate, AoA, pitch angle)

y-
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Results - controlled aircraft dynamics

! " # $ % & '
!

&

"!

"&

()*+,-./0.121.34,53

!
!
(6

78)93:!)55,-7.9(;.</=,-.+/)(;3.0/-.">?@.A.#

78)93:!)55,-7.9(;.</=,-.+/)(;3.0/-.">?@.A.%

Strategy:

I Optimize at the center

I Verify at the vertices

Quasi upper bound: β cer-
tified (by the SOS problem)
for the “center system” in
the first step.

0.8 1 1.2 1.4 1.6 1.8 2 2.2

−0.1

−0.05

0

0.05

0.1

δ
1

δ
2

ẋ = f0(x) + f1(x)δ1

+ f2(x)δ2 + f3(x)δ2
1
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Controlled aircraft + 1st order unmodeled dynamics

ẋ4 = Acx4 +Bcy
v = Ccx4

δ3 ∈ [−1, 1], δ4 ∈ [10−2, 102]

-v

- 0.75δ3
s−δ4
s+δ4

1.25 ?•
+
- -u

δp = (δ1, δ2)

ẋp = fp(xp, δp) +B(xp, δp)u

y = [x1 x3]T
y-

ẋ = f0(x) +
4∑
i=1

fi(x)δi + f5(x)δ2
1 + f6(x)δ1δ3 + f7(x)δ2δ3

I First order LTI
unmodeled dyn
(state x5)

I p(x) = xTx,

x =
[
xTp x4 x5

]T
.

Certified

hhhhhhhhhhhhhhdyn uncer
param uncer

with without

with 2.8 4.9
without 5.4 8.0

How about other uncertainty descriptions (e.g. unmodeled
dynamics)?

Coming up later
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Alternative uncertainty description
An alternate uncertainty description includes

I nonpolynomial vector fields
I limited domain of validity

ẋ(t) = f0(x(t))+g(x(t))

g : Rn → Rn is unknown and satisfies polynomial, local bounds

gl(x) � g(x) � gu(x) ∀x ∈ B := {x : b(x) � 0}
where gu, gl ∈ R[x], gu(0) = gl(0) = 0, and B contains the origin.

x, Rn 

gi(x) gi,u(x) 

gi,l(x) 

B 

Recall v � w implied vi ≤ wi for all i = 1, . . . , n. 119/235



Robust ROA with the alternative uncertainty description

A family D of vector fields:

ẋ(t) = f0(x(t))+g(x(t))

g : Rn → Rn is (only) known to satisfy

gl(x) � g(x) � gu(x) ∀x ∈ B := {x : b(x) � 0}

Question: Compute an estimate of the ROA for the uncertain
vector field, i.e., a set that is

I invariant for each vector field of the form f0 + g ∀g ∈ D
I such that every trajectory with initial condition in the set

converges to the origin.

Computed invariant subset of the robust ROA has to be a subset
of B (region of validity).
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Sufficient conditions in alternative uncertainty description

Impose the set containment constraint for each g ∈ D

{x : V (x) ≤ 1}\{0} ⊂
{
x :

∂V

∂x
(f0(x) + g(x)) < 0

}
,

then {x ∈ Rn : V (x) ≤ 1} is an invariant subset of robust ROA.
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then {x ∈ Rn : V (x) ≤ 1} is an invariant subset of robust ROA.
D contains infinitely many constraints. But,

I dependence on g is affine

I D is a “polytope”
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Sufficient conditions in alternative uncertainty description

Impose the set containment constraint for each g ∈ D

{x : V (x) ≤ 1}\{0} ⊂
{
x :

∂V

∂x
(f0(x) + g(x)) < 0

}
,

then {x ∈ Rn : V (x) ≤ 1} is an invariant subset of robust ROA.
D contains infinitely many constraints. But,

I dependence on g is affine

I D is a “polytope”

Vertices of “polytope of functions”
E := {g : gi = gi,α α = u, l}

(g1,l , g2,l ) (g1,u , g2,l ) 

(g1,u , g2,u ) (g1,l , g2,u ) 

Impose the set containment constraints for each g ∈ E , then they
will hold for each g ∈ D
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Computing robust ROA (alternative uncer. model)
max

V ∈V,β>0
β subject to

V (0) = 0 and V (x) > 0 for all x 6= 0, ΩV,1 is bounded,
Ωp,β ⊆ ΩV,1 ⊆ B,

ΩV,1\ {0} ⊆
⋂
g∈E
{x ∈ Rn : ∇V (f0(x) + g(x)) < 0} .
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Computing robust ROA (alternative uncer. model)
max

V ∈V,β>0
β subject to

V (0) = 0 and V (x) > 0 for all x 6= 0, ΩV,1 is bounded,
Ωp,β ⊆ ΩV,1 ⊆ B,

ΩV,1\ {0} ⊆
⋂
g∈E
{x ∈ Rn : ∇V (f0(x) + g(x)) < 0} .

Let B be defined by several polynomial inequalities
B = {x : b(x) � 0}. Then, a SOS relaxation for the above
problem is

max
V ∈V,β>0,s1∈S1, s4k∈S4k, s2g∈S2g ,s3g∈S3g

β subject to

V − l1 is SOS, V (0) = 0, s1, s41, . . . , s4,m are SOS

s2g, s3g are SOS for g ∈ E
− [(β − p)s1 + (V − 1)] is SOS

bk − (1− V )s4k is SOS for k = 1, . . . ,m,
[(1− V )s2ξ +∇V (f0 + g)s3ξ + l2] is SOS for g ∈ E
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Example
Consider the system governed by

ẋ =
[

−2x1 + x2 + x3
1 + 1.58x3

2

−x1 − x2 + 0.13x3
2 + 0.66x2

1x2

]
+ g(x),

where g satisfies the bounds

−0.76x2
2 ≤ g1(x) ≤ 0.76x2

2

−0.19(x2
1 + x2

2) ≤ g2(x) ≤ 0.19(x2
1 + x2

2)

for all x ∈ {x ∈ R2 : xTx ≤ 2.1}.
• p(x) = xTx
• deg(V ) = 4 (dashed curve)
• deg(V ) = 2 (solid curve)
• initial conditions for tra-
jectories that leave the
region of validity for g(x) =
±(0.76x2

2, 0.19(x2
1 + x2

2))
(dots)

x1

x2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1
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Outline

I Motivation

I Preliminaries

I ROA analysis using SOS optimization and solution strategies

I Robust ROA analysis with parametric uncertainty

I Local input-output analysis

I Robust ROA and performance analysis with unmodeled
dynamics

I Applications
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What if there is external input/disturbance?

So far, only internal properties, no external inputs!

What if there are external inputs/disturbances?

z� ẋ = f(x,w)
z = h(x)

� w

f(0, 0) = 0, h(0) = 0
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What if there is external input/disturbance?

So far, only internal properties, no external inputs!

What if there are external inputs/disturbances?

z� ẋ = f(x,w)
z = h(x)

� w

f(0, 0) = 0, h(0) = 0

If w has bounded energy/amplitude and system starts from rest

I (reachability) how far can x be driven from the origin?

I (input-output gain) what are bounds on the output
energy/amplitude in terms of input energy?

125/235



Notation

I For u : [0,∞)→ Rn, define the (truncated) L2 norm as

‖u‖2,T :=

√∫ T

0
u(t)Tu(t)dt.

I For simplicity, denote ‖u‖2,∞ by ‖u‖2.
I L2 is the set of all functions u : [0,∞)→ Rn such that
‖u‖2 < 0.

I For u : [0,∞)→ Rn and for T ≥ 0, define uT : [0,∞)→ Rn

as

uT (t) :
{

u(t), 0 ≤ t ≤ T
0, T < t

I L2,e is the set functions u : [0,∞)→ Rn such that uT ∈ L2

for all T ≥ 0.
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Upper bounds on “local” L2 → L2 input-output gains

Goal: Establish relations between inputs and
outputs:

z� ẋ = f(x,w)
z = h(x)

�w

x(0) = 0 & ‖w‖2 ≤ R ⇒ ‖z‖2 ≤ γ‖w‖2.

I Given R, minimize γ

I Given γ, maximize R

The H∞ norm is a lower bound
on the set of γ’s which satisfy
inequalty.

127/235



Upper bounds on “local” L2 → L2 input-output gains

Goal: Establish relations between inputs and
outputs:
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Local gain analysis

Theorem: If there exists a continuously differentiable function V
such that V (0) = 0, V (x) > 0 for all x 6= 0,

I ΩV,R2 := {x : V (x) ≤ R2} is bounded

z� ẋ = f(x,w)
z = h(x)

�w

I ∇V f(x,w) ≤ wTw − 1
γ2h(x)Th(x) for all x ∈ ΩV,R2 and

w ∈ Rnw ,

then

x(0) = 0, w ∈ L2,e, & ‖w‖2,T ≤ R ⇒ ‖z‖2,T ≤ γ‖w‖2,T .

I Note that algebraic condition on (x,w) ∈ Rn × Rnw implies a
relation between the signals w ∈ L2,e and z = h(x) ∈ L2,e.

I Supply rate, wTw − 1
γ2h(x)Th(x); Storage function, V .
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Bilinear SOS problem formulation for gain analysis

For given γ > 0 and positive definite function l, define RL2 by

R2
L2

:= max
V ∈Vpoly ,R2>0,s1∈S1

R2 subject to

V (0) = 0, s1 ∈ Σ[(x,w)],
V − l ∈ Σ[x],

−
[
(R2 − V )s1 +∇V f(x,w)− wTw + γ−2zT z

]
∈ Σ[(x,w)].

Then,

x(0) = 0 & ‖w‖2 ≤ RL2 ⇒ ‖z‖2 ≤ γ‖w‖2.

I Vpoly and S’s are prescribed finite-dimensional subsets of R[x].
I R2

L2
is a function of Vpoly, S, and γ. This dependence will be

dropped in notation.

• Similar problem for minimizing γ for given R.
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Strategy to solve the bilinear SOS problem in gain analysis

Coordinate-wise affine search: Given a “feasible” V , alternate
between

I maximize R2 by choice of s1 (requires bisection on R!)

R2
L2

:= max
R2>0,s1∈S1

R2 subject to

s1 ∈ Σ[(x,w)],
−
[
(R2 − V )s1 +∇V f(x,w)− wTw + γ−2zT z

]
∈ Σ[(x,w)].

I fix the multiplier and maximize R2 by choice of V .

R2
L2

:= max
V ∈Vpoly ,R2>0

R2 subject to

V (0) = 0, V − l ∈ Σ[x],
−
[
(R2 − V )s1 +∇V f(x,w)− wTw + γ−2zT z

]
∈ Σ[(x,w)].
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Strategy to solve the bilinear SOS problem in gain analysis

Finding initial “feasible” V :
I Incorporate simulation data (requires to sample the input

space!)

I Let γ > gain of the linearized dynamics

δ̇x = Aδx + δw
δz = Cδx

and let P � 0 satisfy[
ATP + PA+ 1

γ2C
TC PB

BTP −I

]
≺ 0.

Then, there exists a small enough R such that

x(0) = 0 & ‖w‖2 ≤ R ⇒ ‖z‖2 ≤ γ‖w‖2.
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Coordinate-wise affine search with no bisection

For given l, f , γ, and h (such that z = h(x)), if V, R > 0, and s1)
are feasible for

V (0) = 0, s1 ∈ Σ[(x,w)],
V − l ∈ Σ[x],

−
[
(R2 − V )s1 +∇V f(x,w)− wTw + γ−2zT z

]
∈ Σ[(x,w)],

then
K :=

V

R2
s̃1 = R2s1

are feasible for

K(0) = 0, s̃1 ∈ Σ[(x,w)],
K − 1

R2 l ∈ Σ[x],
−
[
(1−K)s̃1 +∇Kf(x,w)− 1

R2 (wTw − γ−2zT z)
]
∈ Σ[(x,w)].

• For given s̃1, the last constraint is affine in K and 1/R2.
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Lower bound for L2 → L2 gain

Let γ and R be obtained through the SOS based gain analysis.
Then, for T ≥ 0

max
w
{‖z‖2,T : x(0) = 0 & ‖w‖2,T ≤ R} ≤ γR.

The first-order conditions for stationarity of the above finite horizon
maximum are the existence of signals (x, λ) and w which satisfy

ẋ = f(x,w)
‖w‖22,T = R2

λ(T ) =
(
∂‖z‖22,T
∂x

)T
λ̇(t) = −

(
∂f(x(t),w(t))

∂x

)T
λ(t)

w(t) = µ
(
∂f(x(t),w(t))

∂w

)T
λ(t),

for t ∈ [0, T ], where µ is chosen such that ‖w‖2,T = R.
Tierno, et.al., propose a power-like method to solve a similar
maximization. 133/235



Gain Lower-Bound Power Algorithm
Adapting for this case yields: Pick T > 0 and w with
‖w‖22,T = R2. Repeat the following steps until w converges.

1. Compute ‖z‖2,T (integration ẋ = f(x,w) with x(0) = 0
forward in time).

2. Set λ(T ) =
(
∂‖z‖22,T
∂x

)T
.

3. Compute the solution of λ̇(t) = −∂f(x(t),w(t))
∂x

T
λ(t),

t ∈ [0, T ] (integration backward in time).

4. Update w(t) = µ
(
∂f(x(t),w(t))

∂w

)T
λ(t).

I Step (1) of each iteration gives a valid lower bound on the
maximum (over ‖w‖2 = R) of ‖z‖2,T , independent of whether
the iteration converges;

I (main point of Tierno) if dynamics are linear and p quadratic,
then the iteration is convergent power iteration for H∞.

Implemented in worstcase.
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Local L2 gain: Guaranteed SOS feasibility

Consider

ẋ = Ax+Bw + f23(x) + g12(x)w (=: f(x,w))
z = Cx+ h2(x) (=: h(x))

where f23 is quadratic and cubic, g12 is linear and quadratic, h2 is
quadratic and A Hurwitz. Note (A,B,C) is linearization at 0.

Pick any γ with ∥∥C(sI −A)−1B
∥∥
∞ < γ

Theorem: The SOS-based dissipation inequalities for local L2 gain

R > 0, s1 ∈ Σ [x,w] , V − l1 ∈ Σ [x]
−
(
dV
dx f − wTw + 1

γ2 z
T z + (R2 − V )s1

)
∈ Σ [x,w]

are always feasible, using ∂(V ) = 2, ∂(s1) = 2.
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Local L2 gain: Proof of Guaranteed SOS feasibility

Bounded-Real lemma implies there exist P = P T � 0 such that

Λ :=
[
ATP + PA+ γ−2CTC PB

BTP −I

]
≺ 0.

Define V (x) := xTPx, q :=
[
x
w

]
, and v := q ⊗ x. Then, there exist

constant M1, M2

xTM1v + vTMT
1 x+ vTM2v

= 2xT
[
Pf23(x) + CTh2(x) + Pg12(x)w

]
+ h2(x)Th2(x)

Substitution gives

dV

dx
f−wTw+

1
γ2
zT z =

[
q
v

]T  Λ
[
−M1

0

]
[
−MT

1 0
]

−M2

[ q
v

]
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Local L2 gain: Proof of Guaranteed SOS feasibility

Since P � 0, there exist H � 0 with zTHz = (xTx+wTw)xTPx.

For any α > 0, define s1(x,w) := α(xTx+ wTw).

Collecting together, for any R > 0,

D := −
[
∇V f(x,w)− wTw + hT (x)h(x)

]
− s1(x,w)

(
R2 − V

)
is “quadratic” in x,w and v, specifically D =

[
q
z

]T  −Λ
[
−M1

0

]
[
−MT

1 0
]

−M2

+
[
−αR2 0

0 αH

][ q
z

]

By proper choice of α,R, this can be made SOS,...
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Local L2 gain: Proof of Guaranteed SOS feasibility

Since
H � 0,Λ ≺ 0

there is a α > 0 such that −Λ
[
−M1

0

]
[
−MT

1 0
]

−M2

+
[

0 0
0 αH

]
� 0

With this α fixed, by continuity there exist R > 0 such that −Λ
[
−M1

0

]
[
−MT

1 0
]

−M2

+
[
−αR2 0

0 αH

]
� 0

as desired
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Local L2 gain: Summary

Consider

ẋ = Ax+Bw + f23(x) + g12(x)w (=: f(x,w))
z = Cx+ h2(x) (=: h(x))

where f23 is quadratic and cubic, g12 is linear and quadratic, h2 is
quadratic, A Hurwitz, and

∥∥C(sI −A)−1B
∥∥
∞ < γ.

Theorem: The SOS-based dissipation inequalities for local L2 gain

R > 0, s1 ∈ Σ [x,w] , V − l1 ∈ Σ [x]
−
(
dV
dx f − wTw + 1

γ2 z
T z + (R2 − V )s1

)
∈ Σ [x,w]

are always feasible, using ∂(V ) = 2, ∂(s1) = 2. Moreover, the
inequality can be strengthened to include a positive-definite term,
l(x),

−
(
dV

dx
f − wTw +

1
γ2
zT z + (R2 − V )s1 + l(x)

)
∈ Σ [x,w]

139/235



Upper bounds on the reachable set

ẋ = f(x,w) with f(0, 0) = 0

I Find upper bounds on the reachable set from the origin for
bounded L2 input norm

I Denote the set of points reached from the origin with input
signals w such that ‖w‖2 ≤ R by ReachR.

ReachR := {x(t) : x(0) = 0, t ≥ 0, ‖w‖2 ≤ R}

Goal:
I Given a shape factor p (positive definite, convex function with
p(0) = 0), establish relations of the form

x(0) = 0 & ‖w‖2 ≤ R ⇒ p(x(t)) ≤ β ∀t ≥ 0.

I Two types of optimization
I Given R, minimize β
I Given β, maximize R
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A characterization of upper bounds on the reachable set

ẋ = f(x,w) with f(0, 0) = 0

Theorem: If there exists a continuously differentiable function V

such that

I V (x) > 0 for all x 6= 0 and V (0) = 0
I ΩV,R2 =

{
ξ : V (ξ) ≤ R2

}
is bounded

I ∇V f(x,w) ≤ wTw for all x ∈ ΩV,R2 and for all w ∈ Rnw

then ReachR ⊆ ΩV,R2 .
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A characterization of upper bounds on the reachable set

ẋ = f(x,w) with f(0, 0) = 0

Theorem: If there exists a continuously differentiable function V

such that

I V (x) > 0 for all x 6= 0 and V (0) = 0
I ΩV,R2 =

{
ξ : V (ξ) ≤ R2

}
is bounded

I ∇V f(x,w) ≤ wTw for all x ∈ ΩV,R2 and for all w ∈ Rnw

then ReachR ⊆ ΩV,R2 .

Given R, solve

min
V,β

β

s.t. ΩV,R2 ⊆ Ωp,β
V satisfies above conditions

OR

Given β, solve

max
V,R2

R2

s.t. ΩV,R2 ⊆ Ωp,β
V satisfies above conditions
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Bilinear SOS problem formulation for reachability analysis

max
R2,V

R2 Original Problem

subject to:
V (0) = 0, V (x) > 0 ∀x 6= 0{
x ∈ Rn : V (x) ≤ R2

}
is bounded

ΩV,R2 ⊆ Ωp,β

∇V f(x,w) ≤ wTw ∀ x ∈ ΩV,R2 & w ∈ Rnw

⇑ S-procedure - SOS

max
R2,V,s1,s2

R2 Reformulation

subject to:

−
[
(β − p) + (V −R2)s1

]
is SOS[x],

−
[
(R2 − V )s2 +∇V f(x,w) + wTw

]
is SOS[x,w],

V − εxTx is SOS[x], V (0) = 0, and
s1, s2, s3 are SOS.
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Reachability Refinement (exploit slack in V̇ ≤ wTw)
Suppose g : R→ (0, 1] is piecewise continuous, with

∂V
∂x f(x,w) ≤ g(V (x))wTw ∀x ∈ {x : V (x) ≤ R2},∀w ∈ Rnw .
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Reachability Refinement (exploit slack in V̇ ≤ wTw)
Suppose g : R→ (0, 1] is piecewise continuous, with

∂V
∂x f(x,w) ≤ g(V (x))wTw ∀x ∈ {x : V (x) ≤ R2},∀w ∈ Rnw .

Define

K(x) :=
∫ V (x)

0

1
g(τ)

dτ and R2
e :=

∫ R2

0

1
g(τ)

dτ

Note that K(0) = 0,K(x) > 0, ∂K
∂x = 1

g(V (x))
∂V
∂x , Re ≥ R and{

x : V (x) ≤ R2
}

=
{
x : K(x) ≤ R2

e

}
.
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Reachability Refinement (exploit slack in V̇ ≤ wTw)
Suppose g : R→ (0, 1] is piecewise continuous, with

∂V
∂x f(x,w) ≤ g(V (x))wTw ∀x ∈ {x : V (x) ≤ R2},∀w ∈ Rnw .

Define

K(x) :=
∫ V (x)

0

1
g(τ)

dτ and R2
e :=

∫ R2

0

1
g(τ)

dτ

Note that K(0) = 0,K(x) > 0, ∂K
∂x = 1

g(V (x))
∂V
∂x , Re ≥ R and{

x : V (x) ≤ R2
}

=
{
x : K(x) ≤ R2

e

}
.

Divide tightened inequality by g,

∂K
∂x f(x,w) ≤ wTw ∀x ∈ {x : K(x) ≤ R2

e},∀w ∈ Rnw .

So K establishes a reachability bound, namely

x(0) = 0, ‖w‖2,T ≤ Re ⇒ K(x(T )) ≤ ‖w‖22,T
(
≤ R2

e

)
⇒ V (x(T )) ≤ R2 (refined bound)

143/235



Computing a refinement function g (1)

• For given feasible V and R, search for g can be formulated as a
sequence of SOS programming problems.
• Restrict g to be piecewise constant (extensions to piecewise
polynomial g are straightforward).
• Let m > 0 be an integer, define ε := R2/m, and partition the set
ΩV,R2 into m annuli

ΩV,R2,k := {x ∈ Rn : (k − 1)ε ≤ V (x) ≤ kε} for k = 1, . . . ,m.

!"#$%#&'

!"#$%#&()'
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Computing a refinement function g (2)
Given numbers {gk}mk=1, define

g(τ) = gk ∀ε(k − 1) ≤ τ < εk

Piecewise-constant function g satisfies

!"#$%#&'

!"#$%#&()'

∂V
∂x f(x,w) ≤ g(V (x))wTw ∀x ∈ {x : V (x) ≤ R2},∀w ∈ Rnw .

if and only if for all k

∂V
∂x f(x,w) ≤ gkwTw ∀x ∈ {x : ε(k−1) ≤ V (x) < εk}, ∀w ∈ Rnw .
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Computing a refinement function g (2)
Given numbers {gk}mk=1, define

g(τ) = gk ∀ε(k − 1) ≤ τ < εk

Piecewise-constant function g satisfies

!"#$%#&'

!"#$%#&()'

∂V
∂x f(x,w) ≤ g(V (x))wTw ∀x ∈ {x : V (x) ≤ R2},∀w ∈ Rnw .

if and only if for all k

∂V
∂x f(x,w) ≤ gkwTw ∀x ∈ {x : ε(k−1) ≤ V (x) < εk}, ∀w ∈ Rnw .

This motivates m separate, uncoupled SOS optimizations, namely
minimize gk such that s1k and s2k are SOS

gkw
Tw−∇V f(x,w)−s1k(kε−V )−s2k(V −(k−1)ε) ∈ Σ[(x,w)].

For this g : R2
e :=

∫ R2

0

1
g(τ)

dτ = ε

m∑
k=1

1
gk

145/235



Reachability Lower-Bound Power Algorithm

For any T > 0 and β obtained from SOS analysis

max
w∈L2[0,T ]
||w||2≤R

p(x(T )) ≤ max
t ≥ 0

w ∈ L2[0,∞)
||w||2 ≤ R

p(x(t)) ≤ β

The first-order conditions for stationarity of the finite horizon
maximum are the existence of signals (x, λ) and w which satisfy

ẋ = f(x,w)
‖w‖22,T = R2

λ(T ) =
(
∂p(x(T ))

∂x

)T
λ̇(t) = −

(
∂f(x(t),w(t))

∂x

)T
λ(t)

w(t) = µ
(
∂f(x(t),w(t))

∂w

)T
λ(t),

for t ∈ [0, T ], where µ is chosen such that ‖w‖22,T = R2.
Tierno, et.al., propose a power-like method to solve a similar
maximization.
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Reachability Lower-Bound Power Algorithm
Adapting for this case yields: Pick T > 0 and w with
‖w‖22,T = R2. Repeat the following steps until w converges.

1. Compute p(x(T )) (integration ẋ = f(x,w) with x(0) = 0
forward in time).

2. Set λ(T ) =
(
∂p(x(T ))

∂x

)T
.

3. Compute the solution of λ̇(t) = −∂f(x(t),w(t))
∂x

T
λ(t),

t ∈ [0, T ] (integration backward in time).

4. Update w(t) = µ
(
∂f(x(t),w(t))

∂w

)T
λ(t).

I Step (1) of each iteration gives a valid lower bound on the
maximum (over ‖w‖2 = R) of p(x(T )), independent of
whether the iteration converges;

I (main point of Tierno) if dynamics are linear and p quadratic,
then the iteration is convergent power iteration for operator
norm of w → p(x(T )).

Implemented in worstcase (used in the demos later).
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Reachability: Guaranteed SOS feasibility

Consider

ẋ1(t) = A11x1(t) + b(x1, x2) + Ew
ẋ2(t) = q(x1)

where b is bilinear, q purely quadratic, and A11 Hurwitz.

This has marginally stable linearization at x = 0, and is a common
structure related to some adaptive systems.

Theorem: The SOS-based dissipation inequalities for bounded
reachability,

R > 0, s1 ∈ Σ [x,w] , V − l1 ∈ Σ [x]
−
(
dV
dx f − wTw + (R2 − V )s1

)
∈ Σ [x,w]

are always feasible, using ∂(V ) = 2, ∂(s1) = 2.
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Reachability: Proof of Guaranteed SOS feasibility

1. Choose Q1, Q2 � 0 with[
AT11Q1 +Q1A11 Q1E

ETQ1 −I

]
≺ 0

2. Set V (x) := xT1 Q1x1 + xT2 Q2x2.

3. Let s1(x) := αxT1 x1 (α to be chosen...)

4. Define M1 � 0, M2 � 0, and B1 and B2 to satisfy identities

xT1 Q1b(x1, x2) = xT1 B1(x1 ⊗ x2)
xT2 Q2q(x1) = xT1 B2(x1 ⊗ x2)
xT1 Q1x1x

T
1 x1 = (x1 ⊗ x1)TM1(x1 ⊗ x1)

xT2 Q2x2x
T
1 x1 = (x1 ⊗ x2)TM2(x1 ⊗ x2).
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Reachability: Proof of Guaranteed SOS feasibility

Write
(
dV
dx f − wTw + (R2 − V )s1

)
as zTHz, with

z :=


x1

w
x1 ⊗ x1

x1 ⊗ x2


and

H =


AT11Q1 +Q1A11 + αR2I Q1E 0 B1 +B2

ETQ1 −I 0 0
0 0 −αM1 0

BT
1 +BT

2 0 0 −αM2


If R = 0, then for large enough α, H ≺ 0. With such a large α,
the H remains negative definite for some R > 0.
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Generalizations: dissipation inequalities

The system
ẋ = f(x,w)
z = h(x,w)

with f(0, 0) = 0 and h(0) = 0 is said to be dissipative w.r.t. to
the supply rate r : (w, z) 7→ R if there exists a positive definite
function V such that V (0) = 0 and the following dissipation
inequality (DIE) holds

∂V

∂x
f(x,w) ≤ r(w, z)

for all x ∈ Rn & w ∈ Rnw . Familiar cases are:

I L2 → L2 gain: r(w, z) = wTw − zT z
I Reachability: r(w, z) = wTw
I Passivity: r(w, z) = wT z

The system is said to be locally dissipative if the above DIE holds
only for all x ∈ {x : V (x) ≤ γ} for some γ > 0.

151/235



Generalizations: dissipation inequalities (2)

ẋ = f(x,w)
z = h(x,w)

If there exists a positive-definite V with V (0) = 0,{
x ∈ Rn : V (x) ≤ R2

}
bounded, and{

(x,w) ∈ Rn+nw : V (x) ≤ R2, w ∈ W
}

⊆ {(x,w) ∈ Rn+nw : ∇V f(x,w) ≤ r(w, h(x,w))}

then for x(0) = x0 with V (x0) < R2, and all w with w(t) ∈ W, as
long as ∫ τ

0
r(w(t), h(x(t), w(t)))dt ≤ R2 − V (x0)

for all 0 ≤ τ ≤ T , the solution exists on [0 T ], and

V (x(T )) ≤ V (x0) +
∫ T

0
r(w(t), h(x(t), w(t)))dt ≤ R2.
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Incorporating L∞ constraints on w

• In local gain and reachability analysis with ‖w‖2 ≤ R, the
dissipation inequalities held on

{x ∈ Rn : V (x) ≤ R2} × Rnw .

• If wT (t)w(t) ≤ α for all t, then the dissipation inequality only
needs to hold on

{x ∈ Rn : V (x) ≤ R2} × {w ∈ Rnw : wTw ≤ α}.

I Incorporate the L∞ bounds on w using the S-procedure.
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Incorporating L∞ constraints on w

• L2 → L2 gain analysis:

Original: −
[
(R2 − V )s1 +∇V f − wTw + γ−2zT z

]
∈ Σ[(x,w)]

New:

−
[
(R2 − V )s1 +∇V f − wTw + γ−2zT z

]
−s2(α− wTw) ∈ Σ[(x,w)]

• Reachability analysis:

Original: −
[
(R2 − V )s1 +∇V f − wTw

]
∈ Σ[(x,w)]

New:

−
[
(R2 − V )s1 +∇V f − wTw

]
−s2(α− wTw) ∈ Σ[(x,w)]

[In all constraints above: s1, s2 ∈ Σ[(x,w)]]
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Outline

I Motivation

I Preliminaries

I ROA analysis using SOS optimization and solution strategies

I Robust ROA analysis with parametric uncertainty

I Local input-output analysis

I Robust ROA and performance analysis with unmodeled
dynamics

I Applications
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Recall: the small-gain theorem

For stable M and Φ, the feedback interconnec-
tion is internally stable if

γ(M)γ(Φ) < 1. z w

- Φ

M �

I γ is an upper bound on the global L2 → L2 gain.

I Extensively used in linear robustness analysis where M is
linear time-invariant (existence of global gains is guaranteed).

I How to generalize to nonlinear M with possibly only local
gain relations?
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Recall: the small-gain theorem

For stable M and Φ, the feedback interconnec-
tion is internally stable if

γ(M)γ(Φ) < 1. z w
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M �

I γ is an upper bound on the global L2 → L2 gain.

I Extensively used in linear robustness analysis where M is
linear time-invariant (existence of global gains is guaranteed).

I How to generalize to nonlinear M with possibly only local
gain relations?
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Local small-gain theorems for stability analysis
dx/dt = f(x,w) 

z = h(x) 
M 

w z 
Let l be a positive definite func-
tion with l(0) = 0 e.g. l(x) =
εxTx and R > 0.
Let l̃ be a positive definite func-
tion with l̃(0) = 0.

For M : There exists a positive definite function V such that ΩV,R2

is bounded and for all x ∈ ΩV,R2 and w ∈ Rnw

∇V · f(x,w) ≤ wTw − h(x)Th(x)− l(x).

[M is “locally strictly dissipative” w.r.t. the supply rate
wTw − zT z certified by the storage function V.]
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Local small-gain theorems for stability analysis
dx/dt = f(x,w) 

z = h(x) 

dη/dt = g(η,z) 
w = k(η) 

M 
Φ 

w z 
Let l be a positive definite func-
tion with l(0) = 0 e.g. l(x) =
εxTx and R > 0.
Let l̃ be a positive definite func-
tion with l̃(0) = 0.

For M : There exists a positive definite function V such that ΩV,R2

is bounded and for all x ∈ ΩV,R2 and w ∈ Rnw

∇V · f(x,w) ≤ wTw − h(x)Th(x)− l(x).

[M is “locally strictly dissipative” w.r.t. the supply rate
wTw − zT z certified by the storage function V.]
For Φ: There exists a positive definite function Q such that for all
η ∈ Rnη and z ∈ Rnz

∇Q · g(η, z) ≤ zT z − k(η)Tk(η)− l̃(η).

[Φ is “strictly dissipative” w.r.t. zT z − wTw.]
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Local small-gain theorems for stability analysis (2)

Conclusion: S := V + Q is a Lya-
punov function for the closed-loop for
the closed-loop dynamics (ξ̇ = F (ξ)).

dx/dt = f(x,w) 
z = h(x) 

dη/dt = g(η,z) 
w = k(η) 

M 
Φ 

w z 

ξ =

»
x
η

–
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Local small-gain theorems for stability analysis (2)

Conclusion: S := V + Q is a Lya-
punov function for the closed-loop for
the closed-loop dynamics (ξ̇ = F (ξ)).

dx/dt = f(x,w) 
z = h(x) 

dη/dt = g(η,z) 
w = k(η) 

M 
Φ 

w z 

ξ =

»
x
η

–

Proof:

∇V · f(x,w) ≤ wTw − zT z − l(x) ∀x ∈ ΩV,R2 & w ∈ Rnw

∇Q · g(η, z) ≤ zT z − wTw − l̃(η) ∀η ∈ Rnη & z ∈ Rnz
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Local small-gain theorems for stability analysis (2)

Conclusion: S := V + Q is a Lya-
punov function for the closed-loop for
the closed-loop dynamics (ξ̇ = F (ξ)).

dx/dt = f(x,w) 
z = h(x) 

dη/dt = g(η,z) 
w = k(η) 

M 
Φ 

w z 

ξ =

»
x
η

–

Proof:

∇V · f(x,w) ≤ wTw − zT z − l(x) ∀x ∈ ΩV,R2 & w ∈ Rnw

∇Q · g(η, z) ≤ zT z − wTw − l̃(η) ∀η ∈ Rnη & z ∈ Rnz

∇V · f(x, g(η)) +∇Q · g(η, h(x)) ≤ l(x) + l̃(η)
∀(x, η) ∈

{
(x, η) : V (x) +Q(η) ≤ R2

}
∇S · F (ξ) ≤ −l(x)− l̃(η) = −L(ξ)

∀(x, η) ∈
{

(x, η) : S(x, η) ≤ R2
}

Corollary:

I {(x, η) : V (x) +Q(η) ≤ R2} is an invariant subset of the
ROA for the closed-loop dynamics.
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Interpretation for the states x and (x, η)

dx/dt = f(x,w) 
z = h(x) 

dη/dt = g(η,z) 
w = k(η) 

M 
Φ 

w z 

ξ =

»
x
η

–

{(x, η) : V (x) +Q(η) ≤ R2} = {ξ : S(ξ) ≤ R2} is an invariant
subset of the ROA for the closed-loop dynamics (ξ̇ = F (ξ)).

Consequently,
I For η(0) = 0 and any x(0) ∈ ΩV,R2 , x(t) ∈ ΩV,R2 for all t ≥ 0

and x(t)→ 0 as t→∞.
I For any ξ(0) = (x(0), η(0)) ∈ ΩS,R2 , x(t) ∈ ΩV,R2 for all
t ≥ 0 and x(t)→ 0 as t→∞.

Reiterating: For η(0) = 0, conclusions on x (in the first bullet
above) hold even if Φ is not known but known to be strictly
dissipative w.r.t. zT z − wTw.
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Estimating the ROA (for x states)

Let p be a shape factor (as before) and (V̄ , β̄, R̄) be a solution to
the above optimization

max
V ∈V,β≥0,R≥0

β subject to

V (x) > 0 for all x 6= 0, V (0) = 0,
Ωp,β ⊆ ΩV,R2 ,

ΩV,R2 is bounded,
∇V f(x,w) ≤ wTw − zT z − l(x) ∀ x ∈ ΩV,R2 , ∀ w ∈ Rnw .

If Φ is strictly dissipative w.r.t. zT z − wTw and η(0) = 0, then for
any x(0) ∈ Ωp,β̄,

I x(t) stays in ΩV̄ ,R̄2

I x(t)→ 0 as t→∞.

160/235



Estimating the ROA - SOS problem

Original problem:

max
V ∈V,β≥0,R≥0

β subject to

V (x) > 0 for all x 6= 0, V (0) = 0,
Ωp,β ⊆ ΩV,R2 ,

ΩV,R2 is bounded,
∇V f(x,w) ≤ wTw − zT z − l(x) ∀ x ∈ ΩV,R2 , ∀ w ∈ Rnw .

Use the S-procedure and standard relaxations to obtain a SOS
reformulation:

max
V ∈Vpoly ,β≥0,R≥0,s1∈S1,s2∈S2

β subject to

V − l1 ∈ Σ[x], s1 ∈ Σ[x], s2 ∈ Σ[(x,w)],
(R2 − V )− s1(β − p) ∈ Σ[x],

−∇V f + wTw − zT z − l(x)− s2(R2 − V ) ∈ Σ[(x,w)].
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Incorporating parametric uncertainties in M

dx/dt = f(x,w,!) 

z = h(x) 

d"/dt = g(",z) 

w = k(") 

M 

# 

w z 

Uncertain parameters δ in the vector fields f can be handled as
before.

I Restrict to polytopic ∆ and affine δ dependence

ẋ(t) = f0(x(t), w(t)) + F (x(t))δ

Resulting SOS condition is affine in δ

−∇V (f0(x,w)+F (x)δ)+wTw−zT z−l(x)−s2(R2−V ) ∈ Σ[(x,w)]

and if it holds for the vertices of ∆ then it holds for all δ ∈ ∆.
I Branch-and-bound in ∆
I Coverings for non-affine δ dependence and non-polytopic ∆
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Example: Controlled aircraft dynamics with unmodeled
dynamics

ẋ4 = Acx4 + Bcy
v = Ccx4

-

z w

6

-

1.25

0.75

Φ

?•
+
- -u ẋp = fp(xp, δp) + B(xp, δp)u

y = [x1 x3]T

y-

no δp with δp
no ∆ 9.4 / 16.1 5.5 / 7.9

with ∆ 4.2 / 6.7 2.4 / 4.1

In the table :
(∂(V ) = 2/∂(V ) = 4)

Closed-loop response with randomly generated first-order LTI Φ:
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Relaxed version of the local small-gain theorem

Relax the strict dissipation for Φ by dissipation (i.e., l̃(η) = 0):

∇Qg(η, z) ≤ zT z − wTw ∀η ∈ Rnη & z ∈ Rnz

Weaker conclusion: For η(0) = 0 and for any 0 < R̃ < R,

I x(0) ∈ ΩV,R̃2 ⇒ (x(t), η(t)) ∈ ΩS,R̃2 ∀t ≥ 0
I x(0) ∈ ΩV,R̃2 ⇒ x(t) ∈ ΩV,R̃2 ∀t ≥ 0 & limt→∞ x(t) = 0

Proof idea: arguments as before + Barbalat’s lemma
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Unit gain → Gains γ and 1/γ

Conditions (that hold appropriately for x, η, w, z as indicated
before)

∇V f(x,w) ≤ wTw − zT z − l(x) ⇒ ‖M‖∞ < 1
∇Qg(η, z) ≤ zT z − wTw − l̃(η) ⇒ ‖Φ‖∞ < 1.

These gain conditions can relaxed to gain of non-unity.

Previous results will hold when the dissipation inequalities are
replaced by

∇V f(x,w) ≤ wTw − γ2zT z − l(x) (⇒ ‖M‖∞ < 1/γ)
∇Qg(η, z) ≤ γ2zT z − wTw − l̃(η) (⇒ ‖Φ‖∞ < γ).
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Generalization to generic supply rates

Results hold when the “L2-gain supply rate” is
replaced by a general supply rate. z w

- Φ

M �

Suppose that

I Φ is strictly dissipative w.r.t. the supply rate r1(z, w) with the
corresponding storage function Q

I M satisfies

∇V f(x,w) ≤ r2(w, z)− l(x) ∀x ∈ ΩV,R2 & w ∈ Rnw

with
r1(z, w) = −r2(w, z) ∀w, z.

Then, {(x, η) : V (x) +Q(η) ≤ R2} is an invariant subset of the
ROA for the closed-loop dynamics.

166/235



Local small-gain theorems for performance analysis

dx/dt = f(x,w1,w2) 

z = h(x) 

d!/dt = g(!,z) 

w = k(!) 

M 

" 

w2 z 

w1 e 

Global gain condition on Φ:
starting from rest (i.e., initial
condition equal to 0) Φ satisfies

‖w2‖2 = ‖Φ(z)‖2 ≤ ‖z‖2.
Goal: Find an upper bound on ‖e‖2 provided that M and Φ start
from rest and ‖w1‖2 ≤ R.

I Bound ‖w2‖2 in terms of ‖w1‖2.

I Bound ‖e‖2 in terms of ‖w1‖2.

I Each step is a separate local gain analysis.
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Local small-gain theorems for performance analysis

dx/dt = f(x,w1,w2) 

z = h(x) 

d!/dt = g(!,z) 

w = k(!) 

M 

" 

w2 z 

w1 e 

Global gain condition on Φ:
starting from rest (i.e., initial
condition equal to 0) Φ satisfies

‖w2‖2 = ‖Φ(z)‖2 ≤ ‖z‖2.
Goal: Find an upper bound on ‖e‖2 provided that M and Φ start
from rest and ‖w1‖2 ≤ R.
Strategy:

I Bound ‖w2‖2 in terms of ‖w1‖2.

M 

! 

w
2 

z 

w
1 e

 

I Bound ‖e‖2 in terms of ‖w1‖2.

I Each step is a separate local gain analysis.
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M w
2 

w
1 e

 

I Each step is a separate local gain analysis.
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Step 1 (bound ‖w2‖2,T in terms of ‖w1‖2,T ):
For R > 0, 0 < α < 1 and β > 0, if ∃ C1 function V
s. t. V (0) = 0, V (x) > 0 ∀x 6= 0, ΩV,R2 is bounded,

∇V f(x,w1, w2) ≤ β2wT1 w1 + wT2 w2 −
1
α2
zT z

M 

! 

w
2 

z 

w
1 e

 

∀x ∈ ΩV,R2 , w1 ∈ Rnw1 , and w2 ∈ Rnw2 , then for Φ starting from

rest and for all T ≥ 0
x(0) = 0 & ‖w1‖2,T ≤ R/β ⇒ ‖w2‖2,T ≤ αR/

√
1− α2.
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For R > 0, 0 < α < 1 and β > 0, if ∃ C1 function V
s. t. V (0) = 0, V (x) > 0 ∀x 6= 0, ΩV,R2 is bounded,

∇V f(x,w1, w2) ≤ β2wT1 w1 + wT2 w2 −
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α2
zT z
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∀x ∈ ΩV,R2 , w1 ∈ Rnw1 , and w2 ∈ Rnw2 , then for Φ starting from

rest and for all T ≥ 0
x(0) = 0 & ‖w1‖2,T ≤ R/β ⇒ ‖w2‖2,T ≤ αR/

√
1− α2.

Step 2 (bound ‖e‖2,T in terms of ‖w1‖2,T ): In ad-
dition to above conditions, if ∃ C1 function Q s.t.
Q(0) = 0, Q(x) > 0 ∀x 6= 0, and

∇Qf(x,w1, w2) ≤ β2wT1 w1 + wT2 w2 −
1
γ2
eT e

M w
2 

w
1 e

 

∀x ∈ ΩQ,R2/(1−α2), w1 ∈ Rnw1 , w2 ∈ Rnw2 , then for Φ starting

from rest and for all T ≥ 0
x(0) = 0 & ‖w1‖2,T ≤ R/β ⇒ ‖e‖2,T ≤ γR/

√
1− α2.
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OTHER APPLICATIONS
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Control Lyapunov functions ẋ = f(x) + g(x)u

If V is smooth, radially unbounded, positive-definite, and

{x : ∇V · g(x) = 0} ⊆ {x : ∇V · f(x) < 0}
⋃
{0}

then V is a Control Lyapunov function (CLF), and ∀α > 0, the
control defined via u(x) := − (∇V · g)T γ(x), where

a(x) := ∇V · f(x), b(x) := ∇V · g(x),

and β(x) := b(x)bT (x), and

γ(x):=

8><>:
a+
√
a2+α2β2

β if β > 0
0 if β = 0

is continuous at 0, smooth everywhere else, and globally stabilizing.
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Control Lyapunov functions

Containment condition

{x : ∇V · g(x) = 0} ⊆ {x : ∇V · f(x) < 0}
⋃
{0}

is satisfied if for positive-definite l1, l2, ∃s ∈ Σ [x] , p ∈ Rnu [x]

V − l1 ∈ Σ [x] , − ((∇V · f) s+ (∇V · g) p+ l2) ∈ Σ [x]

Tan (thesis) solves a global (quadratic) CLF for ẋ1

ẋ2

ẋ3

 =

 −x1 + x2
2

−2x2

3x3 + x2
2

+

 −2
1 + x2

3

1 + 4x2
1

u1 +

 5x1

1− x2
2

3

u2

(from Banks, Salamci, Ozgoren, ’99) with ∂(s) = 0, ∂(p) = 1.
Local version, change to include sublevel set of V ...

{x : V (x) ≤ 1,∇V · g(x) = 0} ⊆ {x : ∇V · f(x) < 0}
⋃
{0}

171/235



Outline

I Motivation

I Dynamical system analysis

I Preliminaries

I ROA analysis using SOS optimization and solution strategies

I Robust ROA analysis with parametric uncertainty

I Local input-output analysis

I Robust ROA and performance analysis with unmodeled
dynamics

I Applications
I GTM
I F-18

172/235



Motivation

Issue: It is difficult to obtain accurate models of aerodynamic
coefficients at the limits of the flight envelope∗.

I Simulations using aero coefficient look-up tables may be
unreliable at the extreme flight conditions.

I Linear analysis will not capture these nonlinear aerodynamic
effects (even if accurate models are available).

Objective: Demonstrate the utility of nonlinear ROA analysis
using NASA’s Generic Transport Model (GTM) aircraft.

I A two-state short period model is used for illustration.

I Nonlinearities in the pitch rate derivative are studied.

(*) Reference: Brandon, Jay. M and Foster, John V. Recent Dynamic Measurements and Considerations for

Aerodynamic Modeling of Fighter Airplane Configurations, AIAA Atmospheric Flight Mechanics Conference and

Exhibit, Boston, MA, 1998.
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NASA Generic Transport Model (GTM) Aircraft
NASA constructed the remote-controlled GTM aircraft for
studying advanced safety technologies.

I The GTM is a 5.5 percent scale commercial aircraft.
I NASA created a high-fidelity 6DOF model of the GTM

including look-up tables for the aerodynamic coefficients.

References:

Jordan, T., Foster, J.V., Bailey, R.M, and Belcastro, C.M., AirSTAR: A UAV platform for flight dynamics and
control system testing. 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conf.,
AIAA-2006-3307 (2006).

Cox, D., The GTM DesignSim v0905.
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Longitudinal Dynamics

The longitudinal dynamics are described by:

V̇ = −D
m

+mg sin (θ − α)− T cosα

α̇ = − L

mV
+mg cos (θ − α)− T sinα+ q

q̇ =
M

Iyy

θ̇ = q

States: air speed V (ft/sec), angle of attack α (deg), pitch rate q
(deg/sec) and pitch angle θ (deg).

Controls: elevator deflection δelev (deg) and engine thrust T (lbs).

Forces/Moment: drag force D (lbs), lift force L (lbs), and
pitching moment M (lbs-ft).
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Aerodynamic Forces/Moment

The forces/moment are given by:

D = q̄SCD(α, δelev)
L = q̄SCL(α, δelev)
M = q̄Sc̄Cm(α, δelev, q̂)

where q̄ = 1
2ρV

2 is the dynamic pressure (lbs/ft2), q̂ = c̄
2V q is the

normalized pitch rate (unitless), S is the wing area (ft2), and c̄ is
the mean aerodynamic chord (ft).

CD, CL, and Cm are provided by NASA in the form of look-up
tables. We used least-squares to obtain polynomial fits of the form:

CD(α, δelev) =
(
CDα2

α2 + CDα1
α+ CDα0

)
+
(
CDδelev1

α+ CDδelev0

)
δelev

CL(α, δelev) =
(
CLα2

α2 + CLα1
α+ CLα0

)
+
(
CLδelev1

α+ CLδelev0

)
δelev

Cm(α, δelev, q̂) =
(
Cmα2

α2 + Cmα1
α+ Cm0

)
+ Cmδelev δelev +

(
Cmq q̂ + Cmq3 q̂

3
)
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Model Parameters

Table: Aircraft Parameters

Wing Area, S 5.9018 ft2

Mean Aerodynamic Chord, c̄ 0.9153 ft
Mass, m 1.5416 slugs

Pitch Axis Moment of Inertia, Iyy 4.2540 slug-ft2

Air Density, ρ 0.002375 slug/ft3

Gravity Constant, g 32.2 ft/sec2

Table: Aerodynamic Coefficients

Pitching Moment Lift Force Drag Force

Cmα2
= −5.6643 CLα2

= −9.9676 CDα2
= 2.8855

Cmα1
= −1.2692 CLα1

= 6.2603 CDα1
= −0.4598

Cm0 = 0.3804 CLα0
= 0.0244 CDα0

= 0.1233
Cmδelev = −1.8335 CLδelev1

= −0.0973 CDδelev1
= 0.4577

Cmq = −45.0 CLδelev0
= 0.4732 CDδelev0

= 0.0004

Cmq3 = 0.0
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Short Period Approximation
A nonlinear short-period model is given by holding V , θ and T at
fixed values Vt, θt and Tt:

α̇ =− L(α, δelev, Vt)
mVt

+mg cos (θt − α)− Tt sinα+ q

q̇ =
M(α, δelev, Vt)

Iyy

Comments:

I Short-period approximations are typically obtained from
linearizations about a trim condition.

I The approximation is also accurate for nonlinear models.
I We simulated the two and four state models with initial

conditions (α0, q0) and (Vt, α0, q0, θt). The trajectories
(α(t), q(t)) were close over a wide range of initial conditions.

I A polynomial short-period model is obtained using Taylor
series approximations for the trigonomentric terms, i.e.
sin z ≈ z − z3

6 and cos z ≈ 1− z2

2 .
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Rate Feedback Control Law

The control law is designed for the following trim condition:
Vt
αt
qt
θt

 =


200 ft/sec
0.5253o

0o/sec,
−0.5253o

 , [δelevtTt

]
=
[

11.50o

33.7119 lbs

]

Pitch rate feedback is used to improve the damping of the
short-period dynamics of the aircraft:

δelev = −0.045q + δelevt

The poles of the linearized open-loop short-period dynamics have a
damping of 0.55. This rate feedback increases the damping to
0.70.
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Pitch Rate Damping

Our analysis will focus on the pitch moment coefficient, Cm. In
the full GTM model, Cm is based on three look-up tables:

Cm(α, δelev, q̂) =Cm,basic(α) + Cm,control(α, δelev) + Cm,rate(α, q̂)

The model presented on the previous slides uses a polynomial fit
for Cm including a cubic fit for the rate damping term:

Cm,rate(α, q) = Cmq q̂ + Cmq3 q̂
3

A good approximation to the look-up tables is obtained with a
linear fit: Cmq = −45 and Cmq3 = 0.
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Pitch Rate Damping
We’ll analyze the closed-loop stability properties for two cases:

1. Nominal: Cmq3 = 0
2. Off-Nominal: Cmq3 = 60

The off-nominal case models a reduction in damping at higher
pitch rates. This nonlinear effect has the potential to cause
stability issues.
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Linearization

The nonlinear short-period model can be analytically linearized.
Assuming zero pitch rate (qt = 0) and level flight (αt = θt), we
obtain the state matrices:

A =

[
− q̄S
mVt

(CLα1
+ 2CLα2

αt + CLδelev1
δelevt)− Tt

mVt
+ Ttαt

2

2mVt
1

ρSc̄Vt
2

2Iyy
(2Cmα2

αt + Cmα1
) ρSc̄2Vt

4Iyy
Cmq

]

B =

[
− q̄S
mVt

(CLδelev1 αt + CLδelev0
)

ρSc̄Vt
2

2Iyy
Cmδelev

]

Notice that the linear model does not depend on Cmq3 since qt = 0
at trim. Thus linear analyses will produce the same results for both
the nominal and off-nominal rate damping models.
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Linear Analysis

Linear Stability Analyses

I Nyquist Plot (Gain/Phase margins)

I Robustness test with 10% real uncertainty introduced in the
aerodynamic terms: CLα1

, CLα2
, Cmα2

, Cmα1
, and Cmq

Both analyses indicate the (nominal / off-nominal) closed loop
system is very robust.

Nyquist Plot µ test
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ROA Analysis

I The region-of-attraction (ROA) of the nonlinear model can be
used to assess the effect of the nonlinear rate damping term.

R0 =
{
x0 ∈ Rn : If x(0) = x0 then lim

t→∞
x(t) = 0

}
I We used the V − s iteration to obtain an ellipsoideal estimate

of the ROA, Ωp,β ⊆ R0

I We used quartic Lyapunov functions and initialized the
iteration using the solution from ATP + PA = −I.

I The shape function is p = α2

400 + q2

50000 .
I For the two-state short-period model, the ROA can be

visualized with a phase plane plot.
I The use of the V − s iteration is to illustrate the capabilities

for higher dimensional systems for which phase plane analysis
cannot be used.
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ROA Analysis

Nominal Model, Cmq3 = 0 Off-Nominal Model, Cmq3 = 60

I The off-nominal plant has a significantly smaller stability
region compared to the nominal plant.

I The nonlinear short period model is valid within the
rectangular regions. We still need to rigorously account for
the approximation errors introduced by the polynomial fitting.
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Conclusions

I It is difficult to obtain accurate models of aerodynamic
coefficients at the limits of the flight envelope∗.

I Nonlinear region of attraction analysis can be a useful tool for
studying the robustness of control laws with respect to these
nonlinear effects.

I We have also performed ROA analyses on the 4-state
longitudinal model of the GTM. These results are omitted
since there will be similar results for the F-18 analysis.
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F/A-18 Out-of-Control Flight

I The US Navy has lost many F/A-18
A/B/C/D Hornet aircraft due to an
out-of-control flight (OCF) departure
phenomenon described as ’falling leaf’ mode.

F/A-18 : NASA Dryden Photo

I The falling leaf mode is associated with sustained oscillatory OCF mode
that can require 4.5K-6K meters altitude to recover∗.

∗ Heller, David and Holmberg, “Falling Leaf Motion Suppression in the F/A-18 Hornet with Revised Flight Control

Software,” AIAA-2004-542, 42nd AIAA Aerospace Sciences Meeting, Jan 2004, Reno, NV.
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Analysis of F/A-18 Aircraft Flight Control Laws Motivation

I Administration action by the Naval Air
Systems Command (NAVAIR) to prevent
aircraft losses due to falling leaf entry to
focused on

I aircrew training,
I restrictions on angle-of-attack and
I center-of-gravity location. F/A-18 Hornet: NASA Dryden Photo

I A solution to falling leaf mode entry was also pursued via modification of
the baseline flight control law.

I The revised control law was tested and integrated into the F/A-18 E/F
Super Hornet aircraft.
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Analysis of F/A-18 Aircraft Flight Control Laws Motivation

Flight Control Law Analysis Objectives∗:

I Identify the susceptibility of F/A-18 baseline and revised flight
control laws to entry in falling leaf mode.

I Identify limits on the F/A-18 aircraft angle-of-attack (α) and
sideslip (β) to prevent falling leaf entry for both F/A-18 flight
control laws.

∗Chakraborty, Seiler, and Balas, “Applications of Linear and Nonlinear Robustness Analysis Techniques to the

F/A-18 Flight Control Laws,” AIAA Guidance, Navigation, and Control Conference, Chicago, IL, August 2009
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Aircraft Terminology

Terminology:

α = Angle-of-attack
β = Sideslip Angle
p = Roll Rate
L = Rolling Moment
q = Pitch Rate
M = Pitching Moment
r = Yaw Rate
N = Yawing Moment
u = Velocities in X-direction
v = Velocities in Y-direction
w = Velocities in Z-direction

ay = Lateral Acceleration

Reference: Klein Vladislav & Morelli A. Eugene, ’Aircraft System Identification: Theory and Practice’ AIAA

Education Series, 2006
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Characteristics of Falling Leaf Mode

Falling leaf mode characterized by large coupled oscillations in all
three axes, with large fluctuations in the angle-of-attack (α) and
sideslip (β).

I Result of interaction between aerodynamic and kinematic
effects, highly nonlinear.

I Vehicle often has small aerodynamic rate damping.
I Roll/yaw rates generated by aerodynamic effects of sideslip.
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F/A-18 Geometric View

Control surfaces considered :

u=

24 aileron deflection(δail)
rudder deflection(δrud)

stabilator deflection(δstab)

35

Reference: Iliff W. Kenneth, Wang C. Kon-Sheng, ’Flight Determined, Subsonic, Lateral-directional Stability and
Control Derivatives of the Thrust-Vectoring F-18 high Angle of attack Research Vehicle (HARV), and Comparisons
to the Basic F-18 and Predicted Derivatives’, NASA/TP-1999-206573
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Baseline Control Law Architecture

We present a simplified representation of the baseline control law.

I Stabilator, Rudder
and Aileron are
considered as control
effectors.

I F/A-18 is susceptible
to falling leaf mode
under baseline control
law.

I The baseline control
law is not able to
damp out sideslip
direction at high AoA
(α).
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Revised Control Law Architecture

A simplified representation of the revised control law is presented.

I Falling leaf mode is
suppressed under revised
control law.

I Sideslip (β) feedback
improves sideslip
damping at high AoA
(α).

I Sideslip rate (β̇)
feedback improves
lateral-directional
damping.

I β and β̇ signals are
computed from the
kinematic equation.
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Model Formulation

Computational burden and limitation of the nonlinear analysis
technique used in this analysis restricts the F/A-18 model
description :

I to be cubic degree polynomial function of the states.

I to have minimal state dimensions.

These limitations impose a challenge in formulating a cubic
polynomial description of the F/A-18 aircraft with fewer state
dimensions and yet capture the characteristics of the falling leaf
motion.
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Model Approximation

Least Square Approximation

6 DoF / 9 State Open Loop 
F/A-18 Plant

Reduced State Roll-Coupled Model
6 State Open Loop

Cubic Polynomial Roll-Coupled Model
6 State Open Loop

F/A-18 Open Loop Linear 
Plant

Rational Baseline 
Closed Loop Model

Rational Revised 
Closed Loop Model

Baseline Linear
Closed  Loop

Revised Linear 
Closed Loop

High Degree Baseline 
Closed Loop Model

Cubic Degree Baseline 
Closed Loop Model

High Degree Revised 
Closed Loop Model

Cubic Degree Revised
Closed Loop Model

Least Square Approximation

Taylor Series Approximation

Trim & Linearize Feedback with
Baseline Revised

Baseline Revised
Feedback with

197/235



Model Approximation

Least Square Approximation

6 DoF / 9 State Open Loop 
F/A-18 Plant

Reduced State Roll-Coupled Model
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Model Approximation: Six DoF 9-State Model
Force Equation:

˙VTAS = −
q̄S

m
CDwind + g(cosφ cos θ sinα cosβ + sinφ cos θ sinβ)

+ g(− sin θ cosα cosβ) +
T

m
cosα cosβ

α̇ = −
q̄S

mVTAS cosβ
CL + q − tanβ(p cosα+ r sinα)

+
g

VTAS cosβ
(cosφ cos θ cosα+ sinα sin θ)−

T sinα

mVTAS cosβ

β̇ = −
q̄S

mVTAS
CYwind + p sinα− r cosα+

g

VTAS
cosβ sinφ cos θ

+
sinβ

VTAS
(g cosα sin θ − g sinα cosφ cos θ +

T

m
cosα)

The following state
description have
formulated the 6 DoF
9-state F/A-18 plant.

α : Angle-of-attack, rad
β : Sideslip Angle, rad
VTAS : Velocity, ft/s
p : Roll rate, rad/s
q : Pitch rate, rad/s
r : Yaw rate, rad/s
φ : Bank angle, rad
θ : Pitch angle, rad
ψ : Yaw angle, rad
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Model Approximation: Six DoF 9-State Model
Moment Equation:

ṗ =
IzzL+ IxzN − [Ixz(Iyy − Ixx − Izz)]pq − [I2

xz + Izz(Izz − Iyy)]rq

(IxxIzz − I2
xz)

q̇ =
M − Ixz(p2 − r2) + (Izz − Ixx)pr

Iyy

ṙ =
IxzL+ IxxN + [Ixz(Iyy − Ixx − Izz)]rq + [I2

xz + Ixx(Ixx − Iyy)]pq

(IxxIzz − I2
xz)

Kinematic Equation:

φ̇ = p+ (q sinφ+ r cosφ) tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = (q sinφ+ r cosφ) sec θ
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Model Approximation: Reduced State Roll-Coupled Model

Least Square Approximation

6 DoF / 9 State Open Loop 
F/A-18 Plant

Reduced State Roll-Coupled Model
6 State Open Loop

Cubic Polynomial Roll-Coupled Model
6 State Open Loop

F/A-18 Open Loop Linear 
Plant

Rational Baseline 
Closed Loop Model

Rational Revised 
Closed Loop Model

Baseline Linear
Closed  Loop

Revised Linear 
Closed Loop

High Degree Baseline 
Closed Loop Model

Cubic Degree Baseline 
Closed Loop Model

High Degree Revised 
Closed Loop Model

Cubic Degree Revised
Closed Loop Model

Least Square Approximation

Taylor Series Approximation

Trim & Linearize Feedback with
Baseline Revised

Baseline Revised
Feedback with
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Model Approximation: 6 DOF to Reduced Order Model

Assumption:

I Velocity has been assumed to be constant at 250 ft/s.

I Polynomial approximation to the trigonometric terms has been
made.

I Only bank turn maneuver has been considered with zero climb rate
(θ̇ = 0). Hence, pitch angle (θ) state can be ignored.

I Heading angle (ψ) does not contribute to any other dynamics in the
state. Hence, this state can also be ignored.

I Aerodynamic coefficients are fitted by a polynomial function of
α− β over the grid −20◦ ≤ β ≤ 20◦, and 0◦ ≤ α ≤ 40◦.

I Aerodynamic coefficients are extracted from the F/A-18 HARV
aerodynamic database.

I Aerodynamic data are based on a constant altitude of 25,000 ft.
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Model Approximation: Six DoF to Roll-Coupled Model

Approximation of Force Equation

Force Equation:

���:
0

˙VTAS = −
q̄S

m
CDwind

+ g(cosφ cos θ sinα cos β + sinφ cos θ sin β)

+g(− sin θ cosα cos β) +
T

m
cosα cos β

α̇ = −
q̄S

mVTAS cos β
CL + q − tan β(p cosα + r sinα)| {z }

Polynomial approx

+
g

VTAS cos β
(cosφ cos θ cosα + sinα sin θ)−

T sinα

mVTAS cos β| {z }
Polynomial approx

β̇ = −
q̄S

mVTAS
CYwind

+ p sinα− r cosα +
g

VTAS
cos β sinφ cos θ| {z }

Polynomial approx

+
sin β

VTAS
(g cosα sin θ − g sinα cosφ cos θ +

T

m
cosα)| {z }

Polynomial approx
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Model Approximation: Six DoF to Roll-Coupled Model

Approximation to Moment and Kinematic Equation
Moment Equation:

ṗ =
IzzL + IxzN −

��
���

���
�: 0

[Ixz(Iyy − Ixx − Izz)]pq − [I2xz + Izz(Izz − Iyy)]rq

(IxxIzz − I2xz)

q̇ =
M −���

��: 0

Ixz(p2 − r2) + (Izz − Ixx)pr

Iyy

ṙ =
IxzL + IxxN +

���
���

���:
0

[Ixz(Iyy − Ixx − Izz)]rq + [I2xz + Ixx(Ixx − Iyy)]pq

(IxxIzz − I2xz)

Kinematic Equation:

φ̇ = p +

���
���

��: 0

(q sinφ + r cosφ) tan θ

��
���

��: 0

θ̇ = q cosφ− r sinφ

��
���

���
��: 0

ψ̇ = (q sinφ + r cosφ) sec θ
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Model Approximation: Reduced State Roll-Coupled Model
Force Equation:

α̇ = −
q̄S

mVTAS
CL + q − pβ − rβα +

g

VTAS
−

Tα

mVTAS

β̇ = −
q̄S

mV
CYwind

+ pα− r +
g

VTAS
φ

where
CL = −CX sinα + CZ cosα

CYwind
= −CY cos β + CD sin β

Moment Equation:

ṗ =
IzzL + IxzN − [I2xz + Izz(Izz − Iyy)]rq

(IxxIzz − I2xz)

q̇ =
M + (Izz − Ixx)pr

Iyy

ṙ =
IxzL + IxxN + [I2xz + Ixx(Ixx − Iyy)]pq

(IxxIzz − I2xz)

Kinematic Equation:

φ̇ = p

The roll-coupled, reduced order
model states are:

VTAS : 250 ft/s (assumed constant)
α : Angle-of-attack, rad
β : Sideslip Angle, rad
p : Roll rate, rad/s
q : Pitch rate, rad/s
r : Yaw rate, rad/s
φ : Bank angle, rad
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Model Approximation: Roll-Coupled to Cubic Polynomial

Least Square Approximation

6 DoF / 9 State Open Loop 
F/A-18 Plant

Reduced State Roll-Coupled Model
6 State Open Loop

Cubic Polynomial Roll-Coupled Model
6 State Open Loop

F/A-18 Open Loop Linear 
Plant

Rational Baseline 
Closed Loop Model

Rational Revised 
Closed Loop Model

Baseline Linear
Closed  Loop

Revised Linear 
Closed Loop

High Degree Baseline 
Closed Loop Model

Cubic Degree Baseline 
Closed Loop Model

High Degree Revised 
Closed Loop Model

Cubic Degree Revised 
Closed Loop Model

Least Square Approximation

Taylor Series Approximation

Trim & Linearize Feedback with
Baseline Revised

Baseline Revised
Feedback with
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Model Approximation: Roll-Coupled to Cubic Polynomial

Aerodynamic terms approximation:

I CYwind is approximated as:

CYwind = −CY cosβ + CD sinβ
= −CY + CDβ

I CZ , CX , CY , CD are aerodynamic coefficients which are
polynomial function of α, β.

CX = f(α2, α, β)

CZ = f(α2, α)

CY = f(α3, α2, α, β)

CD = f(α2, α, β2)

I L, M, N are aerodynamic moments represented as f(α2, α, β).

I Now only CL needs to be approximated.

207/235



Model Approximation: Roll-Coupled to Cubic Polynomial

CL = −CZ cosα+ CX sinα

I CL is evaluated on the grid
−20◦ ≤ β ≤ 20◦, and
0◦ ≤ α ≤ 40◦.

I CL is fit by a polynomial
function of α− β up to
cubic degree.

Result is a 6-state roll-coupled, cubic order polynomial model

208/235



Model Approximation: Cubic Degree Closed Loop Model

Least Square Approximation

6 DoF / 9 State Open Loop 
F/A-18 Plant

Reduced State Roll-Coupled Model
6 State Open Loop

Cubic Polynomial Roll-Coupled Model
6 State Open Loop

F/A-18 Open Loop Linear 
Plant

Rational Baseline 
Closed Loop Model

Rational Revised 
Closed Loop Model

Baseline Linear
Closed  Loop

Revised Linear 
Closed Loop

High Degree Baseline 
Closed Loop Model

Cubic Degree Baseline 
Closed Loop Model

High Degree Revised
Closed Loop Model

Cubic Degree Revised 
Closed Loop Model

Least Square Approximation

Taylor Series Approximation

Trim & Linearize Feedback with
Baseline Revised

Baseline Revised
Feedback with

I Implementation of flight
controller(s) with cubic
polynomial model results in
4th order, rational
polynomial model.

I Rational terms are due to
the ’D’ matrix in the
controller realization.

I 1st order Taylor series
approximation is used to
handle rational terms.
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Model Approximation: Cubic Degree Closed Loop Model

Least Square Approximation

6 DoF / 9 State Open Loop 
F/A-18 Plant

Reduced State Roll-Coupled Model
6 State Open Loop

Cubic Polynomial Roll-Coupled Model
6 State Open Loop

F/A-18 Open Loop Linear 
Plant

Rational Baseline 
Closed Loop Model

Rational Revised 
Closed Loop Model

Baseline Linear
Closed  Loop

Revised Linear 
Closed Loop

High Degree Baseline 
Closed Loop Model

Cubic Degree Baseline 
Closed Loop Model

High Degree Revised
Closed Loop Model

Cubic Degree Revised 
Closed Loop Model

Least Square Approximation

Taylor Series Approximation

Trim & Linearize Feedback with
Baseline Revised

Baseline Revised
Feedback with

I Need to approximate
resulting 4th order F-18
closed-loop polynomial
model by to 3rd order
polynomial model.

I Most of the nonlinearities
occur as a function of α− β.

I 4th order polynomial model
is approximated using least
square technique on the
α− β grid.
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Comparison: 6 DOF and 6 State Cubic Polynomial Model
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Modeling Summary

I The reduced order, nonlinear polynomial model captures the
characteristics of the falling leaf motion.

I For analysis purpose, roll-coupled maneuvers are consider
which drive the aircraft to the falling leaf motion.

I The velocity is assumed to be fixed at 250 ft/s.

ẋ = f(x, u) , y = h(x)

x=

2666664
angle-of-attack(α)
sideslip angle(β)

roll rate(p)
yaw rate(r)

pitch rate(q)
bank angle(φ)

3777775 , y =

266666664

angle-of-attack(α)
roll rate(p)
yaw rate(r)

pitch rate(q)
lateral acceleration(ay)

sideslip rate(β̇)
sideslip angle(β)

377777775

u =

24 aileron deflection(δail)
rudder deflection(δrud)

stabilator deflection(δstab)

35
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Flight Control Law Analysis

We have presented a cubic degree nonlinear polynomial model
representation of the F/A-18 aircraft. Now, both the baseline and
the revised flight control laws will be analyzed using the linear and
nonlinear analysis techniques.

I The reduced order, nonlinear polynomial model will be
trimmed at different equilibrium points.

I Linear robustness analyses will be performed around those
equilibrium conditions for both the control laws.

I Similarly, V − s iteration procedure will be perfroemd to
estimate the invariant ellipsoid of the region-of-attraction for
both the control laws.
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Linear Analysis

I F/A-18 aircraft is trimmed at selected equilibrium points

I VT = 250 ft/s; Altitude = 25,000 feet; α = 26o .

I φ = [0o 25o 45o 60o ]

I β = [0o (Coordinated) 10o(Non-coordinated) ]

I Classical Loop-at-a-time Margin Analysis

I Disk Margin Analysis

I Multivariable Input Margin Analysis

I Diagonal Input Multiplicative Uncertainty Analysis

I Full Block Input Multiplicative Uncertainty Analysis

I Robustness Analysis with Uncertainty in Aerodynamic
Coefficients & Stability Derivatives

The linearized aircraft models do not exhibit the falling leaf mode
characteristics.
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Linear Analysis: Linear Model Formulation

Coupling is present across all 3 channels for 8 different linear models.
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Linear Analysis (cont’d)

For classical margin analysis we consider the linearized plant at
25,000 feet with φ = 60o, β = 10o

Classical Loop-at-a-time Margin Analysis

Input Channel Baseline Revised

Aileron Gain Margin ∞ 27 dB

Phase Margin 104o 93o

Delay Margin 0.81 sec 0.44 sec

Rudder Gain Margin 34 dB 34 dB

Phase Margin 82o 76o

Delay Margin 2.23 sec 1.99 sec

Stabilator Gain Margin ∞ ∞
Phase Margin 91o 91o

Delay Margin 0.24 sec 0.24 sec
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Linear Analysis (cont’d)

The same linearized plant at 25,000 feet, φ = 60o, β = 10o, is
used for the disk margin analysis.

Disk Margin Analysis (Similar to Nichols Chart)
Combined gain/phase variations Loop-at-a-time

Input Channel Baseline Revised

Aileron Gain Margin 20 dB ∞
Phase Margin 78o 90o

Rudder Gain Margin 15 dB 14 dB

Phase Margin 69o 67o

Stabilator Gain Margin ∞ ∞
Phase Margin 90o 90o
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Linear Analysis (cont’d)

Multivariable Input Margin Analysis
Simultaneous independent gain / phase variations across all channels

Coordinated Turn: φ = 60o Non-coordinated Turn :φ = 60o

I Both flight control laws have similar margins for coordinated
maneuvers.

I Revised performs slightly better for non-coordinated maneuvers.

I The margins indicate both the controllers are robust.
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Linear Analysis (cont’d)

Diagonal Input Multiplicative Uncertainty Analysis

I Diagonal uncertainty structure models no uncertain cross-coupling
in actuation channels.

Coordinated Turns Non-coordinated Turns

I Both control laws have similar stability margins ( km = 1
µ ).

I The margins indicate both the controllers are robust for coordinated
maneuvers.
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Linear Analysis (cont’d)

Full Input Multiplicative Uncertainty Analysis

I Full-block uncertainty structure models potential cross-coupling
between actuation channels due to uncertainty.

Coordinated Turns Non-coordinated Turns

I Both control laws have similar stability margins ( km = 1
µ ).

I The margins indicate both the controllers are robust for coordinated
maneuvers.

220/235



Linear Analysis (cont’d)

Robustness to Uncertainty in Aerodynamic Coefficients &
Stability Derivatives

I ±10% real parametric uncertainty is introduced in important eight
aerodynamic / stability derivatives in open loop A matrix.

Coordinated Turns Non-coordinated Turns

I Again, both controllers have excellent robustness properties.
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Linear Analysis: Summary

Results provided are based on the coordinated turn at φ = 60o.

Linear Analysis Baseline Revised

Multivariable Loop Phase Margin ±63.4◦ ±64.0◦

Multivariable Loop Gain Margin (dB) ±12.53 ±12.73
Diagonal Input Multiplicative: (km = 1

µ) 1.03 1.03
Full Input Multiplicative: (km = 1

µ) 0.98 0.98
Parametric Uncertainty: (km = 1

µ) 8.70 10.8

Linear analysis has shown :

I both the controllers have similar stability margins for different
robustness tests.

I both controllers are very robust for coordinated maneuvers and
slightly less robust for non-coordinated maneuvers.
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Nonlinear Region-of-Attraction (ROA) Analysis

Motivation:

Falling leaf motion is a nonlinear phenomenon which is not
captured by linear analysis around equilibrium points.

I Linear analysis does not provide any quantitative guarantee on
the stable region of flight that each controller provides.

I Nonlinear Region-of-Attraction analysis techniques can be
used to certify regions of stability for individual controllers.

Definition: Region-of-Attraction (ROA) provides the set of the
initial conditions whose state trajectories converge to the
equilibrium point.

Consider:
ẋ = f(x), x(0) = x0

R0 =
{
x0 ∈ Rn : If x(0) = x0 then lim

t→∞
x(t) = 0

}
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Nonlinear ROA Analysis (contd.)

Why ROA Analysis?

I ROA measures the size of the set of initial conditions which
will converge back to an equilibrium point.

I ROA analysis around a trim point provides a guaranteed
stability region for the aircraft.

I Provides a good metric for detecting susceptible region to
departure phenomenon like falling leaf motion.

Hence, ROA analysis is performed on both the baseline and revised
control laws to compare the susceptibility to the falling leaf motion.
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Nonlinear Region-of-Attraction Analysis (cont’d)

Estimating Invariant Subsets of ROA

I Computing exact ROA is very
challenging.

I Restrict searching for the maximum
ellipsoidal approximations.

β∗ = maxβ

subject to: {xT0 Nx0 ≤ β} ⊂ R0

I N determines the shape of the
ellipsoid.

I Now we will attempt to solve the
upper and lower bound:

β ≤ β∗ ≤ β̄
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Nonlinear Region-of-Attraction Analysis (cont’d)

Estimating Lower Bound on ROA

The lower bound estimation problem can
be formulated as:

β := maxβ

subject to: {xT0 Nx0 ≤ β} ⊂ Ωγ

where: V : Rn → R is the Lyapunov
function such that:

I V (0) = 0 and V (x) > 0 for all x 6= 0

I Ωγ := {x ∈ Rn : V (x) ≤ γ} is
bounded.

I Ωγ ⊂ {x ∈ Rn : ∇V (x)f(x) < 0}

These conditions can be formulated as Sum-of-Squares Constraint
using S-procedure and solved via bilinear optimization routine.
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Nonlinear Region-of-Attraction Analysis (cont’d)

Estimating Upper Bound on ROA: Monte Carlo Simulation

I Randomly choose initial condition
on the boundary of a large ellipsoid
and simulate the system.

I If a divergent trajectory is found,
decrease the ellipsoid by a factor of
0.995.

I Repeat until maximum number of
simulation has been reached.

I Size of the divergent initial
condition provides an upper bound.
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Nonlinear Region-of-Attraction Analysis (cont’d)

Choosing the Shape Factor of the Ellipsoid

I N = NT > 0 is user-specified diagonal
matrix which determines the shape of the
ellipsoid.

I Here, we have chosen N such that the
shape factor is normalized by the inverse
of the maximum value each state can
achieve.

I Both the closed loop
models have 7-states :

β : Sideslip Angle, rad
p : Roll rate, rad/s
r : Yaw rate, rad/s
φ : Bank angle, rad
α : Angle-of-attack, rad
q : Pitch rate, rad/s
xc : Controller State
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Nonlinear Region-of-Attraction Analysis (cont’d)

Results on Estimating ROA
Lower & Upper Bounds of ROA Slices in α-β Space for

Coordinated 60o Bank Turn
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Nonlinear Region-of-Attraction Analysis (cont’d)

Results on Estimating ROA
Lower & Upper Bounds of ROA Slices in p - r Space for

Coordinated 60o Bank Turn
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Summary of Nonlinear Analysis Results

Nonlinear Analysis Baseline Revised

Generic Quartic −5.90o ≤ α ≤ +57.9o −19.6o ≤ α ≤ +71.6o

Lyapunov Function −6.40o ≤ β ≤ +6.4o −9.10o ≤ β ≤ +9.10o

−25.0o ≤ p ≤ +25.5o −36.4o ≤ p ≤ +36.4o

+1.32o ≤ r ≤ +14.0o −1.46o ≤ r ≤ +16.81o

Monte Carlo Simulation −9.78o ≤ α ≤ +61.8o −23.2o ≤ α ≤ +75.2o

−7.16o ≤ β ≤ +7.16o −9.85o ≤ β ≤ +9.85o

−28.6o ≤ p ≤ +28.6o −39.4o ≤ p ≤ +39.4o

+0.55o ≤ r ≤ +14.8o −2.14o ≤ r ≤ +17.54o

I Upper and lower bounds on ROA shows significant improvement of
the stability region for the Revised control law over the Baseline
control law.

I Hence, the revised control law is more robust to disturbances and
upset conditions that may lead to the falling leaf motion.

231/235



Summary of F/A-18 Flight Control Law Analysis

I F/A-18 Hornet with baseline control law was susceptible to the
falling leaf motion.

I The revised flight control law suppresses the falling leaf motion in
the F/A-18 aircraft.

I Linear analysis provided similar robustness properties for both the
control laws for both steady and unsteady maneuvers.

I Nonlinear analysis showed the revised control law leads to a
significant increase in the stability region estimate over the baseline
design.

Nonlinear analysis tools are required to address nonlinear phenomenon

like the falling leaf motion in certifying flight control law.
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Computational Aspects of Estimating Region-of-Attraction
Bounds

Computational Aspects

I Computational time for estimating both lower and upper
bound are as follows:

Analysis Iteration Steps Baseline Revised

Lower Bound Estimation(1) 50 7 Hrs 5 Hrs

Monte Carlo Upper Bound(2) 2 million 2 days 2 days

(1) V-s iteration analysis performed on Intel(R) Core(TM) i7 CPU 2.67GHz 8.00GB RAM

(2) Monte Carlo analysis performed on Intel(R) Core(TM)2 Duo CPU E65550 2.33GHz 3.00GB RAM
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Upper bound demonstrations

Contents

VDP with deg(V) = 2
VDP with deg(V) = 6

VDP with deg(V) = 2

Form the vector field

pvar x1 x2;

x = [x1;x2];

x1dot = -x2;

x2dot = x1+(x1^2-1)*x2;

f = [x1dot; x2dot];

Get the default values of options to run the ROA code.

zV = monomials(x,2:2);

Bis.r1deg = 2;

Now, call GetRoaOpts to get the correponding opts, roaconstr, etc.

[roaconstr,opt,sys] = GetRoaOpts(f, x, zV, [],Bis);

opt.sim.NumConvTraj = 200;

opt.sim.dispEveryNth = 40;

opt.display.roaest = 1;

opt.coordoptim.IterStopTol = 1e-4;

Call the wrapper which in turn calls RoaEst.m

outputs = wrapper(sys,[],roaconstr,opt);

------------------Beginning simulations

System 1: Num Stable = 0  Num Unstable = 1  Beta for Sims = 2.348  Beta UB = 2.348 

System 1: Num Stable = 40  Num Unstable = 1  Beta for Sims = 2.348  Beta UB = 2.348 

System 1: Num Stable = 43  Num Unstable = 2  Beta for Sims = 2.230  Beta UB = 2.348 

System 1: Num Stable = 80  Num Unstable = 2  Beta for Sims = 2.230  Beta UB = 2.348 

System 1: Num Stable = 120  Num Unstable = 2  Beta for Sims = 2.230  Beta UB = 2.348 

System 1: Num Stable = 160  Num Unstable = 2  Beta for Sims = 2.230  Beta UB = 2.348 

System 1: Num Stable = 200  Num Unstable = 2  Beta for Sims = 2.230  Beta UB = 2.348 

------------------End of simulations

------------------Begin search for feasible V

Try = 1   Beta for Vfeas = 2.230

Try = 2   Beta for Vfeas = 2.119

------------------Found feasible V

Initial V (from the cvx outer bnd) gives Beta = 1.496

-------------------Iteration = 1 

Beta = 1.513 (Gamma = 0.746) 

-------------------Iteration = 2 

Beta = 1.516 (Gamma = 0.747) 

-------------------Iteration = 3 

Beta = 1.517 (Gamma = 0.747) 

-------------------Iteration = 4 

Beta = 1.517 (Gamma = 0.747) 
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Extract the solution

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

Upper bounds from divergent trajectories

betaUpperDivergent = outputs.RoaEstInfo.info.SimLFG.sim.BetaUB;

betaUpperDivergent

betaUpperDivergent =

    2.3478

Upper bound from infeasibility of the relaxation

if betaUpper < outputs.RoaEstInfo.info.SimLFG.sim.BetaUB

    betaUpperInfeas = betaUpper;

    betaUpperInfeas

else

    display('No upper bound from infeasibility');

end

betaUpperInfeas =

    2.2304

Certified beta

betaCertified = beta;

betaCertified

betaCertified =

    1.5168

VDP with deg(V) = 6

Form the vector field

pvar x1 x2;

x = [x1;x2];

x1dot = -x2;

x2dot = x1+(x1^2-1)*x2;

f = [x1dot; x2dot];

Get the default values of options to run the ROA code.

zV = monomials(x,2:6);

Bis.r1deg = 4;

Now, call GetRoaOpts to get the correponding opts, roaconstr, etc.
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[roaconstr,opt,sys] = GetRoaOpts(f, x, zV, [],Bis);

opt.sim.NumConvTraj = 200;

opt.sim.dispEveryNth = 40;

opt.display.roaest = 1;

opt.coordoptim.IterStopTol = 1e-4;

Call the wrapper which in turn calls RoaEst.m

outputs = wrapper(sys,[],roaconstr,opt);

------------------Beginning simulations

System 1: Num Stable = 0  Num Unstable = 1  Beta for Sims = 2.352  Beta UB = 2.352 

System 1: Num Stable = 7  Num Unstable = 2  Beta for Sims = 2.235  Beta UB = 2.347 

System 1: Num Stable = 40  Num Unstable = 2  Beta for Sims = 2.235  Beta UB = 2.347 

System 1: Num Stable = 80  Num Unstable = 2  Beta for Sims = 2.235  Beta UB = 2.347 

System 1: Num Stable = 120  Num Unstable = 2  Beta for Sims = 2.235  Beta UB = 2.347 

System 1: Num Stable = 160  Num Unstable = 2  Beta for Sims = 2.235  Beta UB = 2.347 

System 1: Num Stable = 200  Num Unstable = 2  Beta for Sims = 2.235  Beta UB = 2.347 

------------------End of simulations

------------------Begin search for feasible V

Try = 1   Beta for Vfeas = 2.235

------------------Found feasible V

Initial V (from the cvx outer bnd) gives Beta = 0.583

-------------------Iteration = 1 

Beta = 1.436 (Gamma = 1.387) 

-------------------Iteration = 2 

Beta = 1.731 (Gamma = 1.618) 

-------------------Iteration = 3 

Beta = 1.886 (Gamma = 1.770) 

-------------------Iteration = 4 

Beta = 1.981 (Gamma = 1.874) 

-------------------Iteration = 5 

Beta = 2.049 (Gamma = 1.948) 

-------------------Iteration = 6 

Beta = 2.098 (Gamma = 2.001) 

-------------------Iteration = 7 

Beta = 2.134 (Gamma = 2.041) 

-------------------Iteration = 8 

Beta = 2.164 (Gamma = 2.072) 

-------------------Iteration = 9 

Beta = 2.188 (Gamma = 2.098) 

-------------------Iteration = 10 

Beta = 2.209 (Gamma = 2.119) 

-------------------Iteration = 11 

Beta = 2.228 (Gamma = 2.137) 

-------------------Iteration = 12 

Beta = 2.244 (Gamma = 2.153) 

-------------------Iteration = 13 

Beta = 2.259 (Gamma = 2.166) 

-------------------Iteration = 14 

Beta = 2.272 (Gamma = 2.178) 

-------------------Iteration = 15 

Beta = 2.283 (Gamma = 2.188) 

-------------------Iteration = 16 

Beta = 2.293 (Gamma = 2.197) 

-------------------Iteration = 17 

Beta = 2.301 (Gamma = 2.204) 

-------------------Iteration = 18 

Beta = 2.308 (Gamma = 2.209) 

-------------------Iteration = 19 

Beta = 2.313 (Gamma = 2.213) 

-------------------Iteration = 20 

Beta = 2.317 (Gamma = 2.217) 
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Extract the solution

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

Upper bounds from divergent trajectories

betaUpperDivergent = outputs.RoaEstInfo.info.SimLFG.sim.BetaUB;

betaUpperDivergent

betaUpperDivergent =

    2.3470

Upper bound from infeasibility of the relaxation

if betaUpper < outputs.RoaEstInfo.info.SimLFG.sim.BetaUB

    betaUpperInfeas = betaUpper;

    betaUpperInfeas

else

    display('No upper bound from infeasibility');

end

No upper bound from infeasibility

Certified beta

betaCertified = beta;

betaCertified

betaCertified =

    2.3173
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4 state aircraft problem with nominal dynamics

Contents

deg(V) = 2 analysis

deg(V) = 4 analysis

deg(V) = 2 analysis

Form the vector field

pvar x1 x2 x3 x4

x = [x1;x2;x3;x4];

f0 = [-0.24366*x2^3+0.082272*x1*x2+0.30492*x2^2+0.015426*x2*x3-0.082272*x2*x4-3.1883*x1-2.7258*x2-0.59781*x3+3.1883*x4;

      -0.054444*x2^2+0.10889*x2*x3-0.054444*x3^2+0.91136*x1-0.64516*x2-0.016621*x3+0.088643*x4;

      x1;

      -0.864*x1-0.3211*x3];

fdX = [ 0.30765*x2^3+0.099232*x2^2+0.12404*x1+0.90912*x2+0.023258*x3-0.12404*x4;

        0.00045754*x2;

        0;

        0];

fdm = [0;

       -0.054444*x2^2+0.10889*x2*x3-0.054444*x3^2-0.6445*x2-0.016621*x3+0.088642*x4;

       0;

       0];

fQ = [-0.0068307*x2^2-0.001428*x2;

      0;

      0;

      0];

pvar dX dm

f = f0+fdX*dX+fdm*dm+fQ*dm*dX;

dXrange = [0.99 2.05];

dmrange = [-0.1 0.1];

Form the nominal vector field

fnom = subs(f,{'dX','dm'},{sum(dXrange)/2,sum(dmrange)/2});

Iteration options and basis vector for V



Iteration options and basis vector for V

Quadratic V

zV = monomials(x,2:2);

Use iterations with no bisection

Bis.flag = 0;

Bis.r1deg = 1;

Generate all options

[roaconstr,opt,sys] = GetRoaOpts(fnom, x, zV, [], Bis);

Modify the options

Options for coordinate-wise affine iterations (stopping tolerance max number of

iterations)

opt.coordoptim.IterStopTol = 1e-2;

opt.coordoptim.MaxIters = 15;

Display the results of the simulations and iterations

opt.display.roaest = 1;

Use pt.sim.NumConvTraj convergent trajectories in forming the LP and display the

simulations data after every pt.sim.NumConvTraj convergent trajectories are foud 

opt.sim.NumConvTraj = 100;

opt.sim.dispEveryNth = 20;

opt.sim.flag = 1 for simulations + linearization for initial V

opt.sim.flag = 0 only linearization for initial V

opt.sim.flag = 1;

Start collecting simulation data from p <= opt.sim.BetaInit

opt.sim.BetaMax = 8;

opt.sim.BetaInit = 8;



Solve the problem and extract the solution

outputs = wrapper(sys,[],roaconstr,opt);

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

------------------Beginning simulations

System 1: Num Stable = 20  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 40  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 60  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 80  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 100  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

------------------End of simulations

------------------Begin search for feasible V

Try = 1   Beta for Vfeas = 8.000

------------------Found feasible V

Initial V (from the cvx outer bnd) gives Beta = 6.295

-------------------Iteration = 1 

Beta = 7.929 (Gamma = 0.885) 

-------------------Iteration = 2 

Beta = 8.553 (Gamma = 0.925) 

-------------------Iteration = 3 

Beta = 8.855 (Gamma = 0.943) 

-------------------Iteration = 4 

Beta = 8.966 (Gamma = 0.950) 

-------------------Iteration = 5 

Beta = 9.018 (Gamma = 0.953) 

-------------------Iteration = 6 

Beta = 9.047 (Gamma = 0.955) 

-------------------Iteration = 7 

Beta = 9.067 (Gamma = 0.956) 

-------------------Iteration = 8 

Beta = 9.081 (Gamma = 0.957) 

-------------------Iteration = 9 

Beta = 9.093 (Gamma = 0.958) 

-------------------Iteration = 10 

Beta = 9.103 (Gamma = 0.958) 

-------------------Iteration = 11 

Beta = 9.112 (Gamma = 0.959) 

Certified beta

beta

beta =



beta =

    9.1122

Upper bound

if betaUpper >=  opt.getbeta.maxbeta

    display('No upper bound has been established');

else

    betaUpper

end

No upper bound has been established

deg(V) = 4 analysis

Iteration options and basis vector for V

Change the degree of V to 4

zV = monomials(x,2:4);

Generate all options

[roaconstr,opt,sys] = GetRoaOpts(fnom, x, zV, [], Bis);

Modify the options (see comments above)

opt.coordoptim.IterStopTol = 1e-2;

opt.coordoptim.MaxIter = 20;

opt.display.roaest = 1;

opt.sim.NumConvTraj = 200;

opt.sim.dispEveryNth = 20;

opt.sim.flag = 1;

opt.sim.BetaMax = 20;

opt.sim.BetaInit = 20;

Solve the problem and extract the solution

outputs = wrapper(sys,[],roaconstr,opt);

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

------------------Beginning simulations

System 1: Num Stable = 20  Num Unstable = 0  Beta for Sims = 20.000  Beta UB =  Inf 



------------------Beginning simulations

System 1: Num Stable = 20  Num Unstable = 0  Beta for Sims = 20.000  Beta UB =  Inf 

System 1: Num Stable = 40  Num Unstable = 0  Beta for Sims = 20.000  Beta UB =  Inf 

System 1: Num Stable = 57  Num Unstable = 1  Beta for Sims = 19.000  Beta UB = 19.597 

System 1: Num Stable = 60  Num Unstable = 1  Beta for Sims = 19.000  Beta UB = 19.597 

System 1: Num Stable = 80  Num Unstable = 1  Beta for Sims = 19.000  Beta UB = 19.597 

System 1: Num Stable = 100  Num Unstable = 1  Beta for Sims = 19.000  Beta UB = 19.597 

System 1: Num Stable = 120  Num Unstable = 1  Beta for Sims = 19.000  Beta UB = 19.597 

System 1: Num Stable = 130  Num Unstable = 2  Beta for Sims = 18.050  Beta UB = 18.787 

System 1: Num Stable = 140  Num Unstable = 2  Beta for Sims = 18.050  Beta UB = 18.787 

System 1: Num Stable = 160  Num Unstable = 2  Beta for Sims = 18.050  Beta UB = 18.787 

System 1: Num Stable = 180  Num Unstable = 2  Beta for Sims = 18.050  Beta UB = 18.787 

System 1: Num Stable = 181  Num Unstable = 3  Beta for Sims = 17.148  Beta UB = 17.974 

System 1: Num Stable = 200  Num Unstable = 3  Beta for Sims = 17.148  Beta UB = 17.974 

------------------End of simulations

------------------Begin search for feasible V

Try = 1   Beta for Vfeas = 17.148

------------------Found feasible V

Initial V (from the cvx outer bnd) gives Beta = 2.771

-------------------Iteration = 1 

Beta = 7.002 (Gamma = 0.730) 

-------------------Iteration = 2 

Beta = 9.503 (Gamma = 1.043) 

-------------------Iteration = 3 

Beta = 10.779 (Gamma = 1.235) 

-------------------Iteration = 4 

Beta = 11.707 (Gamma = 1.357) 

-------------------Iteration = 5 

Beta = 12.346 (Gamma = 1.434) 

-------------------Iteration = 6 

Beta = 12.929 (Gamma = 1.519) 

-------------------Iteration = 7 

Beta = 13.449 (Gamma = 1.598) 

-------------------Iteration = 8 

Beta = 13.892 (Gamma = 1.665) 

-------------------Iteration = 9 

Beta = 14.256 (Gamma = 1.719) 

-------------------Iteration = 10 

Beta = 14.566 (Gamma = 1.764) 

-------------------Iteration = 11 

Beta = 14.828 (Gamma = 1.802) 

-------------------Iteration = 12 

Beta = 15.060 (Gamma = 1.836) 

-------------------Iteration = 13 

Beta = 15.249 (Gamma = 1.862) 

-------------------Iteration = 14 

Beta = 15.409 (Gamma = 1.884) 

-------------------Iteration = 15 

Beta = 15.537 (Gamma = 1.901) 



-------------------Iteration = 15 

Beta = 15.537 (Gamma = 1.901) 

-------------------Iteration = 16 

Beta = 15.645 (Gamma = 1.917) 

-------------------Iteration = 17 

Beta = 15.725 (Gamma = 1.928) 

-------------------Iteration = 18 

Beta = 15.782 (Gamma = 1.937) 

-------------------Iteration = 19 

Beta = 15.828 (Gamma = 1.943) 

-------------------Iteration = 20 

Beta = 15.862 (Gamma = 1.949) 

Certified beta

beta

beta =

   15.8618

Upper bound

if betaUpper >=  opt.getbeta.maxbeta

    display('No upper bound has been established');

else

    betaUpper

end

betaUpper =

   17.9737
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Robust ROA calculations

dynamics:

x1dot = x2;

x2dot = -x2-2*x1+2*x1^3 + delta*(-x1+x1^3);

with delta \in [-1,1]

This example was also used in Topcu and Packard, IEEE TAC, 2009 (in the special issue on
positive polynomials in controls (example 1 in the paper)

% Form the vector field
pvar x1 x2;
x = [x1;x2];
x1dot = x2;
x2dot = -x2-2*x1+2*x1^3;

Nominal system

f = [x1dot; x2dot];

Introduce an uncertain parameter

pvar d1

Specify its range

ini_cell = [-1 1];

Form the uncertain vector field

f = f + d1*[0; -x1+x1^3];

% Get the vertex system
[roaconstr,opt,sys] = GetRoaOpts(f, x);
[fNOM,fVER] = getf(sys,ini_cell);

% Generate the options, etc.
zV = monomials(x,2:4);
Bis.flag = 0;
Bis.r1deg = 4;

[roaconstr,opt,sys] = GetRoaOpts(fVER, x, zV, [], Bis);
sys.fWithDel = [];

opt.sim.NumConvTraj = 40;
opt.display.roaest = 1;
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Run the computations

outputs = wrapper(sys,[],roaconstr,opt);

------------------Beginning simulations
System 1: Num Stable = 0  Num Unstable = 1  Beta for Sims = 3.289  Beta UB = 3.289 
System 1: Num Stable = 0  Num Unstable = 2  Beta for Sims = 1.390  Beta UB = 1.390 
System 1: Num Stable = 2  Num Unstable = 3  Beta for Sims = 1.306  Beta UB = 1.306 
System 1: Num Stable = 4  Num Unstable = 4  Beta for Sims = 0.913  Beta UB = 0.913 
System 1: Num Stable = 6  Num Unstable = 5  Beta for Sims = 0.861  Beta UB = 0.861 
System 1: Num Stable = 12  Num Unstable = 6  Beta for Sims = 0.818  Beta UB = 0.842 
System 1: Num Stable = 18  Num Unstable = 7  Beta for Sims = 0.777  Beta UB = 0.808 
System 2: Num Stable = 1  Num Unstable = 1  Beta for Sims = 1.476  Beta UB = 0.808 
System 2: Num Stable = 3  Num Unstable = 2  Beta for Sims = 1.402  Beta UB = 0.808 
System 2: Num Stable = 6  Num Unstable = 3  Beta for Sims = 1.114  Beta UB = 0.808 
System 2: Num Stable = 6  Num Unstable = 4  Beta for Sims = 1.058  Beta UB = 0.808 
System 2: Num Stable = 8  Num Unstable = 5  Beta for Sims = 1.000  Beta UB = 0.808 
System 2: Num Stable = 10  Num Unstable = 6  Beta for Sims = 0.929  Beta UB = 0.808 
System 2: Num Stable = 11  Num Unstable = 7  Beta for Sims = 0.882  Beta UB = 0.808 
------------------End of simulations
------------------Begin search for feasible V
Try = 1   Beta for Vfeas = 0.882
Try = 2   Beta for Vfeas = 0.838
------------------Found feasible V
Initial V (from the cvx outer bnd) gives Beta = 0.173
-------------------Iteration = 1 
Beta = 0.567 (Gamma = 0.535) 
-------------------Iteration = 2 
Beta = 0.665 (Gamma = 0.604) 
-------------------Iteration = 3 
Beta = 0.716 (Gamma = 0.640) 
-------------------Iteration = 4 
Beta = 0.739 (Gamma = 0.656) 

Extract the solution

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

beta

beta =

    0.7388

Upper bound on beta

betaUpper

betaUpper =

    0.8822
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Plot the results

[Cp4,hp4] = pcontour(p,beta,[-2 2 -2 2],'k'); hold on;
set(hp4,'linewidth',2);
[CV4,hV4] = pcontour(V,gamma,[-2 2 -2 2],'b');
set(hV4,'linewidth',2);
set(gca,'xlim',[-1.5 1.5],'ylim',[-1.5 1.5]);

traj = outputs.RoaEstInfo.info.SimLFG.sim.Trajectories(1).unstab(end).state;
pval = peval(traj,p.coef,p.deg);
[aux,ind] = min(pval);
plot(traj(1,ind),traj(2,ind),'r*','markersize',8);
grid on;
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Robust ROA calculations

dynamics:

x1dot = x2;

x2dot = -x2-2*x1+2*x1^3 + delta*(-x1+x1^3);

with delta \in [-1,1]

This example was also used in Topcu and Packard, IEEE TAC, 2009 (in the special issue on
positive polynomials in controls (example 1 in the paper)

% Form the vector field
pvar x1 x2;
x = [x1;x2];
x1dot = x2;
x2dot = -x2-2*x1+2*x1^3;

Nominal system

f = [x1dot; x2dot];

Introduce an uncertain parameter

pvar d1

Specify its range

ini_cell = [-1 1];

Form the uncertain vector field

f = f + d1*[0; -x1+x1^3];

% Get the vertex system
[roaconstr,opt,sys] = GetRoaOpts(f, x);
[fNOM,fVER] = getf(sys,ini_cell);

% Generate the options, etc.
zV = monomials(x,2:4);
Bis.flag = 0;
Bis.r1deg = 4;

[roaconstr,opt,sys] = GetRoaOpts(fVER, x, zV, [], Bis);
sys.fWithDel = [];

opt.sim.NumConvTraj = 40;
opt.display.roaest = 1;
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Run the computations

outputs = wrapper(sys,[],roaconstr,opt);

------------------Beginning simulations
System 1: Num Stable = 0  Num Unstable = 1  Beta for Sims = 3.289  Beta UB = 3.289 
System 1: Num Stable = 0  Num Unstable = 2  Beta for Sims = 1.390  Beta UB = 1.390 
System 1: Num Stable = 2  Num Unstable = 3  Beta for Sims = 1.306  Beta UB = 1.306 
System 1: Num Stable = 4  Num Unstable = 4  Beta for Sims = 0.913  Beta UB = 0.913 
System 1: Num Stable = 6  Num Unstable = 5  Beta for Sims = 0.861  Beta UB = 0.861 
System 1: Num Stable = 12  Num Unstable = 6  Beta for Sims = 0.818  Beta UB = 0.842 
System 1: Num Stable = 18  Num Unstable = 7  Beta for Sims = 0.777  Beta UB = 0.808 
System 2: Num Stable = 1  Num Unstable = 1  Beta for Sims = 1.476  Beta UB = 0.808 
System 2: Num Stable = 3  Num Unstable = 2  Beta for Sims = 1.402  Beta UB = 0.808 
System 2: Num Stable = 6  Num Unstable = 3  Beta for Sims = 1.114  Beta UB = 0.808 
System 2: Num Stable = 6  Num Unstable = 4  Beta for Sims = 1.058  Beta UB = 0.808 
System 2: Num Stable = 8  Num Unstable = 5  Beta for Sims = 1.000  Beta UB = 0.808 
System 2: Num Stable = 10  Num Unstable = 6  Beta for Sims = 0.929  Beta UB = 0.808 
System 2: Num Stable = 11  Num Unstable = 7  Beta for Sims = 0.882  Beta UB = 0.808 
------------------End of simulations
------------------Begin search for feasible V
Try = 1   Beta for Vfeas = 0.882
Try = 2   Beta for Vfeas = 0.838
------------------Found feasible V
Initial V (from the cvx outer bnd) gives Beta = 0.173
-------------------Iteration = 1 
Beta = 0.567 (Gamma = 0.535) 
-------------------Iteration = 2 
Beta = 0.665 (Gamma = 0.604) 
-------------------Iteration = 3 
Beta = 0.716 (Gamma = 0.640) 
-------------------Iteration = 4 
Beta = 0.739 (Gamma = 0.656) 

Extract the solution

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

beta

beta =

    0.7388

Upper bound on beta

betaUpper

betaUpper =

    0.8822
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Plot the results

[Cp4,hp4] = pcontour(p,beta,[-2 2 -2 2],'k'); hold on;
set(hp4,'linewidth',2);
[CV4,hV4] = pcontour(V,gamma,[-2 2 -2 2],'b');
set(hV4,'linewidth',2);
set(gca,'xlim',[-1.5 1.5],'ylim',[-1.5 1.5]);

traj = outputs.RoaEstInfo.info.SimLFG.sim.Trajectories(1).unstab(end).state;
pval = peval(traj,p.coef,p.deg);
[aux,ind] = min(pval);
plot(traj(1,ind),traj(2,ind),'r*','markersize',8);
grid on;
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4 state aircraft problem with parametric uncertainty

Contents

Form the vector field and generate options

Robust ROA with deg(V) = 2

B&B with deg(V) = 2

Form the vector field and generate options

pvar x1 x2 x3 x4

x = [x1;x2;x3;x4];

f0 = [-0.24366*x2^3+0.082272*x1*x2+0.30492*x2^2+0.015426*x2*x3-0.082272*x2*x4-3.1883*x1-2.7258*x2-0.59781*x3+3.1883*x4;

      -0.054444*x2^2+0.10889*x2*x3-0.054444*x3^2+0.91136*x1-0.64516*x2-0.016621*x3+0.088643*x4;

      x1;

      -0.864*x1-0.3211*x3];

fdX = [ 0.30765*x2^3+0.099232*x2^2+0.12404*x1+0.90912*x2+0.023258*x3-0.12404*x4;

        0.00045754*x2;

        0;

        0];

fdm = [0;

       -0.054444*x2^2+0.10889*x2*x3-0.054444*x3^2-0.6445*x2-0.016621*x3+0.088642*x4;

       0;

       0];

fQ = [-0.0068307*x2^2-0.001428*x2;

      0;

      0;

      0];

pvar dX dm

f = f0+fdX*dX+fdm*dm+fQ*dm*dX;

dXrange = [0.99 2.05];

dmrange = [-0.1 0.1];

Iteration options and basis vector for V

zV = monomials(x,2:2);

Bis.flag = 0;

Bis.r1deg = 1;



Bis.r1deg = 1;

Generate all options

[roaconstr,opt,sys] = GetRoaOpts(f, x, zV, [], Bis);

specify the range of parameters in the order they appear in sys.delvector

sys.delvector

 

ans = 

  [ dX ]

  [ dm ]

 

ini_cell = [dXrange dmrange];

Modify the options

opt.coordoptim.IterStopTol = 1e-2;

opt.coordoptim.MaxIters = 20;

opt.display.roaest = 1;

opt.sim.NumConvTraj = 60;

opt.sim.dispEveryNth = 20;

opt.sim.flag = 1;

opt.sim.BetaMax = 8;

opt.sim.BetaInit = 8;

Robust ROA with deg(V) = 2

Let's first run a quick robust ROA analysis without B&B

Solve the problem and extract the solution

outputs = wrapper(sys,ini_cell,roaconstr,opt);

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

*** Start cellBetaCenter *** 

No Prior V - Run Sim-Based Analysis 

------------------Beginning simulations

System 1: Num Stable = 20  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 40  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 60  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

------------------End of simulations



System 1: Num Stable = 60  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

------------------End of simulations

------------------Begin search for feasible V

Try = 1   Beta for Vfeas = 8.000

------------------Found feasible V

Initial V (from the cvx outer bnd) gives Beta = 6.977

Pre-iteration V with Beta = 6.977 (Gamma = 0.919) 

-------------------Iteration = 1 

Beta = 8.250 (Gamma = 1.013) 

-------------------Iteration = 2 

Beta = 8.696 (Gamma = 1.045) 

-------------------Iteration = 3 

Beta = 8.895 (Gamma = 1.059) 

-------------------Iteration = 4 

Beta = 8.985 (Gamma = 1.065) 

-------------------Iteration = 5 

Beta = 9.036 (Gamma = 1.068) 

-------------------Iteration = 6 

Beta = 9.060 (Gamma = 1.070) 

-------------------Iteration = 7 

Beta = 9.076 (Gamma = 1.071) 

-------------------Iteration = 8 

Beta = 9.089 (Gamma = 1.072) 

-------------------Iteration = 9 

Beta = 9.100 (Gamma = 1.073) 

-------------------Iteration = 10 

Beta = 9.109 (Gamma = 1.073) 

------- "Nominal" Beta =  9.109 ----  

*** Verify at the vertices *** 

****** Robust results: 

Robust Beta = 3.949 (Nominal Beta = 9.109) 

*** End of cellBetaCenter ***  

Extract the solution

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

Certified beta without B&B

beta

beta =

    3.9487

B&B with deg(V) = 2



B&B with deg(V) = 2

Change the options to run B&B

opt.display.BB = 1;

opt.BB.runBB = 1;

opt.BB.max_iter = 9;

Do not display the details within B&B steps

opt.display.roaest = 1;

Solve the problem and extract the solution

outputs = wrapper(sys,ini_cell,roaconstr,opt);

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

***Start B&B refinement***

-------Start cellBetaCenter for the initial partition --

*** Start cellBetaCenter *** 

No Prior V - Run Sim-Based Analysis 

------------------Beginning simulations

System 1: Num Stable = 20  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 40  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 60  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

------------------End of simulations

------------------Begin search for feasible V

Try = 1   Beta for Vfeas = 8.000

------------------Found feasible V

Initial V (from the cvx outer bnd) gives Beta = 6.361

Pre-iteration V with Beta = 6.361 (Gamma = 0.828) 

-------------------Iteration = 1 

Beta = 8.185 (Gamma = 0.961) 

-------------------Iteration = 2 

Beta = 8.741 (Gamma = 0.997) 

-------------------Iteration = 3 

Beta = 8.922 (Gamma = 1.008) 

-------------------Iteration = 4 

Beta = 9.000 (Gamma = 1.013) 

-------------------Iteration = 5 

Beta = 9.039 (Gamma = 1.016) 

-------------------Iteration = 6 

Beta = 9.062 (Gamma = 1.017) 

-------------------Iteration = 7 

Beta = 9.079 (Gamma = 1.018) 

-------------------Iteration = 8 



Beta = 9.079 (Gamma = 1.018) 

-------------------Iteration = 8 

Beta = 9.092 (Gamma = 1.019) 

-------------------Iteration = 9 

Beta = 9.103 (Gamma = 1.020) 

-------------------Iteration = 10 

Beta = 9.112 (Gamma = 1.021) 

------- "Nominal" Beta =  9.112 ----  

*** Verify at the vertices *** 

****** Robust results: 

Robust Beta = 3.943 (Nominal Beta = 9.112) 

*** End of cellBetaCenter ***  

-------End cellBetaCenter for the initial partition --

Current Beta  = 3.943,   Number of active cells = 1

-------Start B&B iteration number = 1 --

*** Start cellBetaCenter *** 

No Prior V - Run Sim-Based Analysis 

------------------Beginning simulations

System 1: Num Stable = 20  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 40  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

System 1: Num Stable = 60  Num Unstable = 0  Beta for Sims = 8.000  Beta UB =  Inf 

------------------End of simulations

------------------Begin search for feasible V

Try = 1   Beta for Vfeas = 8.000

------------------Found feasible V

Initial V (from the cvx outer bnd) gives Beta = 5.400

Pre-iteration V with Beta = 5.400 (Gamma = 0.699) 

-------------------Iteration = 1 

Beta = 7.479 (Gamma = 0.879) 

-------------------Iteration = 2 

Beta = 8.551 (Gamma = 0.949) 

-------------------Iteration = 3 

Beta = 9.100 (Gamma = 0.979) 

-------------------Iteration = 4 

Beta = 9.428 (Gamma = 0.996) 

-------------------Iteration = 5 

Beta = 9.621 (Gamma = 1.007) 

-------------------Iteration = 6 

Beta = 9.739 (Gamma = 1.014) 

-------------------Iteration = 7 

Beta = 9.817 (Gamma = 1.018) 

-------------------Iteration = 8 

Beta = 9.868 (Gamma = 1.021) 

-------------------Iteration = 9 

Beta = 9.907 (Gamma = 1.024) 

-------------------Iteration = 10 

...

Extract the solution



Extract the solution

[V,beta,gamma,p,multip,betaUpper] = extractSol(outputs);

Certified beta with non B&B

beta

beta =

    5.2997

Plot the improvement in beta over B&B steps

dd = outputs.BBInfo.info(1);

for i1 = 1:opt.BB.max_iter

    act = dd(end).Active;

    ind = act == 1;

    B(i1) = min(dd.Beta_vec(ind));

    dd = outputs.BBInfo.info(i1*2+1);

end

plot(B,'*-');hold on;

xlabel('iteration number','fontsize',24)

ylabel('certified \beta','fontsize',24);

title('improvement in \beta for deg(V)=2','fontsize',24);

%
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ROA computation for system with unmodeled dynamics

This code demonstrates the robust ROA calculations for systems with unmodeled

dynamics on the controlled aircraft dynamics where the unmodeled dynamics

connect to the nominal model as shown in slide titled "Example: Controlled

aircraft dynamics with unmodeled dynamics" in section "Robust ROA and

performance analysis with unmodeled dynamics" 

Form the input out dynamics (w-->z) with

xdot = f(x,w)

z = h(x)

pvar x1 x2 x3 x4 w

x = [x1;x2;x3;x4];

y = [x1;x3];

Cc = 2;

v = Cc*x4;

Ac = [-0.864 -0.3211];

x4dot = Ac*y;

u = 1.25*v + w;

f(1,1) = -0.24366*x2^3 + 0.082272*x1*x2 + 0.30492*x2^2 - 0.082272*x2*u/2 + 0.015426*x2*x3 - 3.1883*x1 - 2.7258*x2 + 3.1883*u/2 - 0.59781*x3;

f(2,1) = -0.054444*x2^2 + 0.10889*x2*x3 - 0.054444*x3^2 + 0.91136*x1 - 0.64516*x2 + 0.088643*u/2 - 0.016621*x3;

f(3,1) = x1;

f(4,1) = x4dot;

h = 0.75*Cc*x4;

The unmodeled dynamics has gain <= 1

gainUnmodeled = 1;

Generate some options used in the iterations

V - l1 is SOS

-((Beta-p)*sB - (R2-V)) is SOS

-((R2-V)*sV + Vdot - w'*w + z'*z/gamma^2) is SOS

with sB and sV SOS

rVgCons.p = x'*x;

rVgCons.l1 = 1e-6*x'*x;

basis for multipliers



basis for multipliers

rVgCons.sVBasis = monomials([x;w],1:1);

rVgCons.sBBasis = monomials([x],0:0);

basis for V

rVgCons.VBasis = monomials(x,2:2);

Options used in the optimization (there are two types of bisection)

Options for R2 bisection (given V maximize R2)

opts.OptBis.R2High = 100;

opts.OptBis.R2Low = 0;

opts.OptBis.R2Tol = 1e-5;

Options for beta bisection (given V and R2 maximize beta)

opts.OptBis.BetaLow = 0;

opts.OptBis.BetaHigh = 10;

opts.OptBis.BetaTol = 1e-5;

Options for outer iterations

opts.MaxIter = 30;

opts.StopTol = 1e-4;

Call the routine for the robust ROA calculation.

[bOut,ROut,VOut,sVOut,sBOut] =...

              roaViaGain(f,h,x,w,gainUnmodeled, rVgCons, opts);

--Iteration = 1; Beta = 2.237864e+00 

--Iteration = 2; Beta = 2.528324e+00 

--Iteration = 3; Beta = 2.674789e+00 

--Iteration = 4; Beta = 2.766418e+00 

--Iteration = 5; Beta = 2.841692e+00 

--Iteration = 6; Beta = 2.909317e+00 

--Iteration = 7; Beta = 2.969599e+00 

--Iteration = 8; Beta = 3.024187e+00 

--Iteration = 9; Beta = 3.073797e+00 

--Iteration = 10; Beta = 3.119020e+00 

--Iteration = 11; Beta = 3.160076e+00 

--Iteration = 12; Beta = 3.198042e+00 



--Iteration = 11; Beta = 3.160076e+00 

--Iteration = 12; Beta = 3.198042e+00 

--Iteration = 13; Beta = 3.232651e+00 

--Iteration = 14; Beta = 3.264246e+00 

--Iteration = 15; Beta = 3.293161e+00 

--Iteration = 16; Beta = 3.319778e+00 

--Iteration = 17; Beta = 3.344307e+00 

--Iteration = 18; Beta = 3.366671e+00 

--Iteration = 19; Beta = 3.387337e+00 

--Iteration = 20; Beta = 3.406572e+00 

--Iteration = 21; Beta = 3.424530e+00 

--Iteration = 22; Beta = 3.441334e+00 

--Iteration = 23; Beta = 3.457098e+00 

--Iteration = 24; Beta = 3.471813e+00 

--Iteration = 25; Beta = 3.485594e+00 

--Iteration = 26; Beta = 3.498507e+00 

--Iteration = 27; Beta = 3.510599e+00 

--Iteration = 28; Beta = 3.521967e+00 

--Iteration = 29; Beta = 3.532410e+00 

--Iteration = 30; Beta = 3.542099e+00 

Conclusion: For any system Phi which is known to be strictly dissipative w.r.t.

z^Tz-w^Tw, if the Phi dunamics have zero initial conditions, then, for any x(0) in

{ x : p(x(0)) \leq bOut}, x(t) stays in { x : V(x) \leq ROut^2} and x(t) --> 0 as t-->

infty where 

bOut

bOut =

    3.5421

ROut

ROut =

    5.3042

VOut

 

VOut = 



 

VOut = 

  0.42274*x1^2 

  - 0.30165*x1

  *x2 + 0.72089

  *x1*x3 

  - 0.89644*x1

  *x4 + 3.7846

  *x2^2 

  - 6.3846*x2

  *x3 - 0.13911

  *x2*x4 

  + 5.1233

  *x3^2 

  + 2.3659*x3

  *x4 + 3.6094

  *x4^2
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Using the Polysys Class
This is a quick demonstration of the capabilities of the @polysys class.

Timothy J. Wheeler
Dept. of Mechanical Engineering
University of California, Berkeley
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Creating a polysys object.

Since the polysys class is built on the polynomial class, we first create some polynomial
objects to work with:

pvar x1 x2 u1 u2

The equations of the system are of the form

Define the polynomial objects f and g

mu = -1;
f = [ x2; mu*(1-x1^2)*x2 - x1 ];
g = [x1;x2];

The polynomial objects states and inputs specify the ordering of the variables. For
example, specifying states(1)=x1 indicates that f(1) is the time derivative of x1.

states = [x1;x2];
inputs = [];

Finally, the polynomial objects are used to create a polysys object:

vdp = polysys(f,g,states,inputs)

Continuous-time polynomial dynamic system.



States: x1,x2
State transition map is x'=f(x,u) where
  f1 = x2
  f2 = x1^2*x2 - x1 - x2
Output response map is y=g(x,u) where
  g1 = x1
  g2 = x2

Simulating the system.

The system is simulated over for a given time interval using the sim command. Note that the
syntax is similar to ode45.

T = 10;
x0 = randn(2,1);
[t,x] = sim(vdp,[0,T],x0);

plot(x(:,1),x(:,2),'k-')
xlabel('x_1')
ylabel('x_2')
title('Trajectory for the Van der Pol oscillator')

Converting other objects to polysys objects.

The simplest object that can be "promoted" to a polysys is a double.

gainsys = polysys(rand(2,2))



Static polynomial map.
Inputs: u1,u2
Output response map is y=g(x,u) where
  g1 = 0.54722*u1 + 0.14929*u2
  g2 = 0.13862*u1 + 0.25751*u2

LTI objects can also be converted to polysys objects.

linearsys = rss(2,2,2);
linearpolysys = polysys(linearsys)

Continuous-time polynomial dynamic system.
States: x1,x2
Inputs: u1,u2
State transition map is x'=f(x,u) where
  f1 = -1.4751*u1 + 0.11844*u2 - 1.0515*x1 - 0.097639*x2
  f2 = -0.234*u1 + 0.31481*u2 - 0.097639*x1 - 1.9577*x2
Output response map is y=g(x,u) where
  g1 = 1.4435*x1 + 0.62323*x2
  g2 = -0.99209*u1 + 0.79905*x2

Polynomial objects can also be converted into a "static" polysys objects.

p = x1^2 - x1*x2;
staticsys = polysys(p)

Static polynomial map.
Inputs: u1,u2
Output response map is y=g(x,u) where
  g1 = u1^2 - u1*u2

Interconnections.

Polysys supports most of the same interconnections as the LTI class with the same syntax and
the same semantics. Here are some examples:

append(linearpolysys,staticsys)

Continuous-time polynomial dynamic system.
States: x1,x2
Inputs: u1,u2,u3,u4
State transition map is x'=f(x,u) where
  f1 = -1.4751*u1 + 0.11844*u2 - 1.0515*x1 - 0.097639*x2
  f2 = -0.234*u1 + 0.31481*u2 - 0.097639*x1 - 1.9577*x2
Output response map is y=g(x,u) where
  g1 = 1.4435*x1 + 0.62323*x2
  g2 = -0.99209*u1 + 0.79905*x2
  g3 = u3^2 - u3*u4

series(linearpolysys,gainsys)



Continuous-time polynomial dynamic system.
States: x1,x2
Inputs: u1,u2
State transition map is x'=f(x,u) where
  f1 = -1.4751*u1 + 0.11844*u2 - 1.0515*x1 - 0.097639*x2
  f2 = -0.234*u1 + 0.31481*u2 - 0.097639*x1 - 1.9577*x2
Output response map is y=g(x,u) where
  g1 = -0.14811*u1 + 0.78991*x1 + 0.46034*x2
  g2 = -0.25547*u1 + 0.20011*x1 + 0.29216*x2

The methods append, feedback, parallel, and series are used to interconnect polysys
objects.

Discrete-time systems.

It is also possible to create discrete-time polysys objects, as follows:

a = 1;
b = 1;
fduff = [ x2; -b*x1 + a*x2 - x2^3 ];
gduff = [ x1; x2 ];

xduff = [ x1; x2];
uduff = [];
Tsample = 1;

duff = polysys(fduff,gduff,xduff,uduff,Tsample)

Discrete-time polynomial dynamic system.
Sampling time: 1
States: x1,x2
State transition map is x(k+1)=f(x(k),u(k)) where
  f1 = x2
  f2 = -x2^3 - x1 + x2
Output response map is y(k)=g(x(k),u(k)) where
  g1 = x1
  g2 = x2

Discrete-time systems are simulated using the command dsim. Note that simulation time points
are specified as (0:T), rather than [0,T].

T = 100;
x0 = [.1;.1];
[t,x] = dsim(duff,(0:T),x0);

plot(x(:,1),x(:,2),'k-')
xlabel('x_1')
ylabel('x_2')
title('Trajectory for the Duffing map')



Other Utilities

Polysys object can be linearized at a given point. This syntax returns an SS object:

xe = [1;2];
vdplin = linearize(vdp,xe);
class(vdplin)

ans =
ss

This syntax returns the state-space data of the linearization:

[A,B,C,D] = linearize(vdp);

Check if a polysys object is linear.

islinear(linearpolysys)

ans =
     1

islinear(vdp)



ans =
     0

Subsystems are referenced using the same syntax as LTI objects:

linearpolysys(1,1)

Continuous-time polynomial dynamic system.
States: x1,x2
Inputs: u1
State transition map is x'=f(x,u) where
  f1 = -1.4751*u1 - 1.0515*x1 - 0.097639*x2
  f2 = -0.234*u1 - 0.097639*x1 - 1.9577*x2
Output response map is y=g(x,u) where
  g1 = 1.4435*x1 + 0.62323*x2

We can also get function handles to the system's state transition and output response maps. This
is mostly used to build simulation routines that require handles to functions with a certain syntax
(i.e., ode45).

[F,G] = function_handle(vdp);

xeval = randn(2,1);
ueval = []; % VDP is autonomous
teval = []; % The time input is just for compatibility with ode solvers
xdot = F(teval,xeval,ueval)

xdot =
   -0.7420
    0.9962

We can multiply polysys objects by scalars or matrices.

M = diag([2,3]);
M*vdp

Continuous-time polynomial dynamic system.
States: x1,x2
State transition map is x'=f(x,u) where
  f1 = x2
  f2 = x1^2*x2 - x1 - x2
Output response map is y=g(x,u) where
  g1 = 2*x1
  g2 = 3*x2

12*vdp

Continuous-time polynomial dynamic system.
States: x1,x2



State transition map is x'=f(x,u) where
  f1 = x2
  f2 = x1^2*x2 - x1 - x2
Output response map is y=g(x,u) where
  g1 = 12*x1
  g2 = 12*x2

linearpolysys*M

Continuous-time polynomial dynamic system.
States: x1,x2
Inputs: u1,u2
State transition map is x'=f(x,u) where
  f1 = -2.9503*u1 + 0.35533*u2 - 1.0515*x1 - 0.097639*x2
  f2 = -0.46801*u1 + 0.94443*u2 - 0.097639*x1 - 1.9577*x2
Output response map is y=g(x,u) where
  g1 = 1.4435*x1 + 0.62323*x2
  g2 = -1.9842*u1 + 0.79905*x2
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Using the Worstcase Solver - Demo 1
The worstcase solver is used to find the induced L2-to-L2 gain of a four-state nonlinear
system.

Timothy J. Wheeler
Dept. of Mechanical Engineering
University of California, Berkeley
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Introduction.

Consider a dynamic system of the form

where x(0)=0. Given positive scalars B and T, the goal is to maximize

subject to the constraint

Note: we only consider inputs and outputs defined on the interval [0,T].

System parameters.

This system is parameterized by the following constants:

lam = 1;



PL = 1;
gammaX = 1;
gammaR = 1;
A = 0.8;
tau = 1;
K0x = (-1/tau - A)/lam;
K0r = (1/tau)/lam;

Create a model of the system.

First, polynomial variables are created using the pvar command. Then, these variables are
used to define the functions f and g, which are also polynomial variables.

pvar x1 xm zx zr r w
states = [x1;xm;zx;zr];
inputs = [r;w];

f(1,1) = A*x1 + lam*((zx+K0x)*x1 + (zr+K0r)*r) + w;
f(2,1) = (1/tau)*(-xm+r);
f(3,1) = -gammaX*x1*(x1-xm)*PL;
f(4,1) = -gammaR*r*(x1-xm)*PL;

g = ((zx+K0x)*x1 + (zr+K0r)*r) + w;

Then, a polysys object is created from the polynomials f and g.

sys = polysys(f,g,states,inputs);

The polynomial objects states and inputs specify the ordering of the variables. That is, by
setting states(1) = x1, we specify that f(1) is the time derivative of x1.

Optimization parameters.

Use the following values for the optimization parameters (defined above):

T = 10;
B = 3;

The time vector t specifies the time window (T = t(end)) and the points at which the system
trajectory is computed.

t = linspace(0,T,100)';

Set options for worstcase solver.

Create a wcoptions object that contains the default options.

opt = wcoptions();

Specify the maximum number of iterations and which ODE solver to use.



opt.MaxIter = 50;
opt.ODESolver = 'ode45';

Tell the solver to display a text summary of each iteration.

opt.PlotProgress = 'none';

Specify the optimization objective, and the bound on the input.

opt.Objective = 'L2';
opt.InputL2Norm = B;

Find worstcase input.

[tOut,x,y,u,eNorm] = worstcase(sys,t,opt);

Simulate with worstcase input.

We can only compute the worstcase input over a finite interval of time [0,T]. However, any
response of the system that occurs after the input is "shut off" (i.e., u(t) = 0 for t > T) should
contribute to our objective. Hence, we compute a more accurate value of the objective by
continuing the simulation from the end of the previous trajectory with no input:

[te,xe,ye] = sim(sys,tOut,x(end,:)');
td = [tOut;tOut(2:end)+max(tOut)];
yd = [y;ye(2:end)];

The objective value over [0,T] is

eNorm

eNorm =
    4.7436

The objective value over [0,2T] is

eNormd = get2norm(yd,td)

eNormd =
    4.9622

Display results.

fprintf( 'The L2-to-L2 gain is %f\n', eNormd/B );

figure;
plot(tOut,u)



xlabel('Time, t')
ylabel('Input, u(t)')
title('Worst case input.')

figure;
plot(td,yd)
xlabel('Time, t')
ylabel('Output, y(t)')
title('Worst case output over extended time interval.')

The L2-to-L2 gain is 1.654050



Specifying a starting point.

By default, the worstcase solver starts with a constant input and then searches for a better input.
Since this problem is nonconvex, this search may get "stuck" at a local optimum. We can help
the solver by specifying a sensible starting point that is known to exhibit a large output.

load demo1_badInput
u0 = B * ubad/get2norm(ubad,tbad);
opt.InitialInput = u0;

Run solver again.

[tOut,x,y,u,eNorm] = worstcase(sys,t,opt);

Extend this simulation.

[te,xe,ye] = sim(sys,tOut,x(end,:)');
td = [tOut;tOut(2:end)+max(tOut)];
yd = [y;ye(2:end)];

The objective value over [0,T] is

eNorm

eNorm =



    5.0020

The objective value over [0,2T] is

eNormd = get2norm(yd,td)

eNormd =
    5.0029

Note that we achieve a larger value of the objective when we start the solver at u0.

Display new results.

fprintf( 'The L2-to-L2 gain is %f\n', eNormd/B );

figure;
plot(tOut,u)
xlabel('Time, t')
ylabel('Input, u(t)')
title('Worst case input.')

figure;
plot(td,yd)
xlabel('Time, t')
ylabel('Output, y(t)')
title('Worst case output over extended time interval.')

The L2-to-L2 gain is 1.667635



Published with MATLAB® 7.6



Using the Worstcase Solver - Demo 2
Timothy J. Wheeler
Dept. of Mechanical Engineering
University of California, Berkeley

Contents

Introduction
Create a model of the system.
Optimization parameters.
Set options for worstcase solver.
Find worst input.
Display results.

Introduction

Consider a dynamic system of the form

where x(0)=0. Given positive scalars B and T and a positive definite matrix C, the goal is to
maximize

subject to the constraints

Of course, since we are only interested in the value of x at time T, we only need to consider
inputs defined on the interval [0,T].

Create a model of the system.

First, polynomial variables are created using the pvar command. Then, these variables are
used to define the functions f and g, which are also polynomial variables.

pvar x1 x2 u
states = [x1;x2];
inputs = u;
f = [ -x1 + x2 - x1*x2^2 ; -x2*x1^2 - x2 + u ];
g = states;

Then, a polysys object is created from the polynomials f and g.



sys = polysys(f,g,states,inputs);

The polynomial objects states and inputs specify the ordering of the variables. That is, by
setting states(1) = x1, we specify that f(1) is the time derivative of x1.

Optimization parameters.

Use the following values for the optimization parameters (defined above):

T = 10;
B = 1;
C = eye(2);

The time vector t specifies the time window (T=t(end)) and the points at which the system
trajectory is computed.

t = linspace(0,T,1000)';

Set options for worstcase solver.

Create a @wcoptions object that contains the default options.

opt = wcoptions();

Specify the maximum number of iterations and tell the solver to not display any information
while solving.

opt.MaxIter = 500;
opt.PlotProgress = 'none';

Specify the desired cost function.

opt.Objective = 'Final';
opt.FinalCostMatrix = C;

Specify the bound on the input.

opt.InputL2Norm = B;

Find worst input.

[tOut,x,y,u] = worstcase(sys,t,opt);

Display results.

cost = x(end,:)*C*x(end,:)';
fprintf( '||u|| = %0.4f, cost = %0.4f\n', B, cost );



figure;
plot(tOut,u)
xlabel('Time, t')
ylabel('Input, u(t)')
title('Worst case input.')

||u|| = 1.0000, cost = 0.5727
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